Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz"

Transkript

1 Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz

2 itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue Auflge ersheint dieses Jhr!!! U.R. unze, G. Shwedt, Grundlgen der qulittiven und quntittiven Anlyse, Georg Thieme Verlg Stuttgrt, New York M. Sheer, J. Whter Skript zum Prktikum Anorgnishe Chemie I, Institut für Anorgnishe Chemie der Universität Regensurg Jnder, Jhr Mßnlyse Wlter de Gruyter Verlg Berlin, New York G. Jnder, E. Blsius ehruh der nlytishen und präprtiven norgnishen Chemie S. Hirzel Verlg Stuttgrt, eipzig

3 Qulittive/Quntittive Anlyse Qulittive Anlyse Bestimmung der Zusmmensetzung von Verindungen, Gemishen und ösungen (Ws ist drin??? Quntittive Anlyse Bestimmung von Stoffmengen eknnter Bestndteile von Verindungen, Gemishen und ösungen (Wie viel dvon ist drin??? Bestimmung durh hemishe und physiklishe Methoden

4 Wihtige Größen in der quntittiven Anlyse Grundlge: Interntionles Einheitensystem (SI-System (Système Interntionl d Unités Stoffmengeneinheit Mol (Formelzeihen: n, Einheit: mol Mol ist eine Stoffmenge, die us so vielen Teilhen esteht, wie 0,0 kg des ohlenstoff-nuklids C Atome enthlten. Avogdro-onstnte N A 6,0 0 mol n (X N(X N A n(x: Stoffmenge N(X: Teilhenzhl N A :Avogdro-onstnte

5 Wihtige Größen in der quntittiven Anlyse Mssennteil Stoffmengennteil Volumennteil w Mssenkonzentrtion Stoffmengenkonzentrtion i ϕ i x i mi mi ni n V i i V i i i i β i m i V i n V i Volumenkonzentrtion σ i V i V

6 Wihtige Größen in der quntittiven Anlyse Molre Msse (Formelzeihen: M, Einheit g mol Msse der Stoffmenge mol eines estimmten Teilhens m M (X n(x n(x M m (X

7 Beispiele Berehnung der molren Msse von Shwefelsäure M (H SO M (H + M (S + M (O 98,07g mol Berehnung der Stoffmenge von 0 g ohslz (NCl m(ncl 0g; M (NCl M (Cl + M (N,99 g mol + 5,5 g mol 58,g mol n(ncl m(ncl M (NCl 0g 58,g mol 0,7 mol

8 Beispiel (stöhiometrishe Berehnung Wie viel Eisen(IIIoxid und ohlenstoff wird enötigt, um durh Reduktion eine Tonne Eisen herzustellen? Wie viel CO entsteht dei? Fe O + C Fe + CO n(fe O n(fe m( Fe n( Fe M ( Fe m(fe O n(fe O M (Fe O n( Fe M (Fe O m(fe O m(c n(c M (C m(c 7905 mol,0g mol m(co n(co M (CO n( Fe M (CO m(co ; n(c n(fe 000 kg 55,85g mol 7905 mol 59,70g mol ; n(co n(fe n( Fe M (C 7905 mol,0g mol ; g 55,85g mol 7905 mol 97 g 0 kg 679 g 6 kg g 59 kg (entspriht l CO

9 Beispiel Stoffmengenkonzentrtion von HCl, w 5% ( 5%ige Slzsäure w(hcl 0,05; ρ(hcl - ösung,0g/m Ein iter HCl - ösung enthält : m(hcl w(hcl m gesmt m(hcl w(hcl V (HCl ρ(hcl ösung 0, m 0g/m, m n(hcl M (HCl (HCl V V 5,5 g 6,6g mol,0 mol/ 5,5g

10 Beispiel Stoffmengenkonzentrtion von reinem Wsser ρ(h (H O 000 g/; O n(h V O m M (H V O 000g 8g mol 55,6mol

11 Äquivlentkonzentrtionen Äquivlentteilhen: Bruhteil /z* eines Teilhens (Molekül, Atom et. der ei einer estimmten hemishen Rektion jeweils m Austush einer Elementrldung eteiligt ist. n z * X z * n(x z * X z * (X z.b.: ( ( H SO 0,mol ; MnO 0,0mol ; 5

12 Äquivlentkonzentrtionen Beispiel: Neutrlistion von Ntronluge mit Slzsäure/Shwefelsäure HCl + NOH H O + NCl H SO + NOH H O + N SO onzentrtion wird so gewählt, dss die ösung zgl. der Protonen eine onzentrtion von 0, mol/l ht. (HCl ( H SO (H SO 0,mol 0,mol ( H SO 0,mol z * ; z* 0,05mol

13 Äquivlentkonzentrtionen Beispiel: liumpermngnt-ösung MnO H e - Mn + + H O onzentrtion wird so gewählt, dss die ösung zgl. der usgetushten Elektronen eine onzentrtion von 0, mol/l ht ( MnO 5 (MnO 0,mol ( MnO 0,mol 5 z * ; z* 5 5 0,0 mol

14 Mssenwirkungsgesetz Alle ungehemmt lufenden hemishen Rektionen führen zu einem Gleihgewihtszustnd, der durh ds Mssenwirkungsgesetz (MWG eshrieen wird. A + B v (A (B AB v v k (AB v k Dynmishes Gleihgewiht: v v (AB (A (B k k

15 Mssenwirkungsgesetz Allgemeine Formulierung: v A A + v B B v M M v C C + v D D v N N (C (A v v C A (D (B v v D B (N (M v v N M i v i i Beispiel: H SO + H O H O + + SO - + (HO (SO (H SO (H O

16 Mssenwirkungsgesetz Folgerektionen A + B AB A + B AB C + D C + D (AB (A (B (C (D (AB (C (A (D (B

17 Mssenwirkungsgesetz Beispiel: Eigendissozition des Wssers H O + H O H O + + OH - (H O + (H (OH O w (H O + (OH 0 mol / w : Ionenprodukt des Wssers (temperturhängig Bestimmung üer eitfähigkeitsmessungen

18 öslihkeit von Stoffen öslihkeitsprodukt: mximles Ionenprodukt einer Verindung. Für inäre Verindungen gilt: + ( A (B AB fest A + + B - Die öslihkeit ist die Gesmtkonzentrtion des gelösten Stoffes in der gesättigten ösung, ezogen uf die Formeleinheit. Für inäre, einwertige Verindungen gilt: (AB (A + (B (AB und + (A (B (AB

19 öslihkeit von Stoffen Allgemeine Formulierung x+ y ( A (B (A x+ B y- fest A x+ + B y- Drus ergit sih die llgemeine Formel für die öslihkeit: + A B

20 Herleitung llgemeine Formel für öslihkeit (A x+ B y- fest A x+ + B y- y x (B A ( + CF B A B A mol 0,8 mol 0,5, : CF : B (A ( ( (B (A Einsetzen in B (A (B und B (A (A Rkt.Gleihung us (B (A B (A Bsp

21 Beispiel öslihkeit von AgCl in Wsser AgCl fest Ag + + Cl (Ag (Cl 0 mol l AgCl + (AgCl (Ag (Cl 0 0 mol 0 5 mol In einem iter Wsser liegen lso gelöst vor: n(agcl (AgCl V m(agcl 0 5 mol n(agcl M (AgCl mol mol,g mol 0,00 g

22 Beispiel öslihkeit von AgCl in NCl-ösung der onzentrtion 0, mol/l AgCl fest Ag + + Cl (Ag (Cl 0 mol 0 weil (Cl (Ag 0 (Cl + 0,mol (Ag (Ag + + ( >> (Cl (Cl ' (Cl (Cl + ' (Cl 0 0 mol 0,mol 0 9 mol Ds entspriht. 0, g Ag pro iter

23 Quntittive Anlytik Einteilung in Mßnlyse Grvimetrie

24 Herstellen einer ösung mit einer estimmten Stoffmengenkonzentrtion Vorgehen: Genues Awiegen einer Stoffportion (drus ergit sih Stoffmenge n Auflösen des Stoffs in einem ösungsmittel (Wsser Auffüllen uf ein estimmtes Volumen im Messkolen (drus ergit sih V und dmit n / V

25 Grvimetrie Zu nlysierende Sustnz wird in shwerlöslihen Niedershlg üerführt, der nshließend usgewogen wird. Vorussetzungen: Quntittive Ausfällung Stöhiometrish zusmmengesetzter Niedershlg Niedershlg drf sih niht mehr verändern (Anlgerung von Wsser et.

26 Grvimetrishe Bestimmung von Fe + FeCl + 6 NH (q + x+ H O Fe O xh O (f +6 NH Cl Shwerlöslihe Verindung, er keine stöhiometrishe Zusmmensetzung Fe O xh O Fe O + x H O ösung: Durh Glühen des Niedershlgs entsteht Fe O, ds eine eknnte Zusmmensetzung ht und exkt gewogen werden knn

27 Beispiel Aus einer Fe + -ösung uneknnter onzentrtion wird Eisen ls Oxidhydrt gefällt und durh Glühen zu Fe O üerführt. Auswge: 50 mg. Wie viel Eisen wr in der ösung? n(fe m(fe m(fe m(fe w(fe n(fe O O 5,0 mg 50,0 mg und n(fe M (Fe m(fe M (Fe M (Fe O 0,699 n(fe O n(fe 55,8g mol 0,0500 g 59,69g mol O 69,9% m(feo M (Fe O M (Fe 0,050 g 5,0 mg

28 Volumetrie oder Mßnlyse Der zur nlysierenden Proe wird soviel einer Regenslösung eknnter onzentrtion zugefügt, wie für die hemishe Umsetzung gerde erforderlih ist, d. h. die äquivlente Stoffmenge. (Titrtion Anzeige des Endpunkts ggf. durh Indiktor Vorussetzungen Rektion muss shnell, quntittiv und eindeutig (wie in Rkt. Gleihung lufen Regenslösung eknnter onzentrtion muss herstellr und stil sein Endpunkt der Rektion muss erkennr sein und mit dem Äquivlenzpunkt zusmmenfllen

29 Volumetrishe Bestimmung von Fe + 5 Fe + + MnO H + 5 Fe + + Mn + + H O Zuge von MnO zu Fe + -ösung: Entfärung der MnO ösung Wenn lle Fe + -Ionen verruht sind (Äquivlenzpunkt: Rosfärung der ösung durh Üershuss n MnO Aus Volumen und onzentrtion der verruhten MnO - Mßlösung lässt sih die Stoffmenge n Fe + erehnen

30 Beispiel Eine Sthlproe (m 00 mg soll uf ihren Eisengehlt untersuht werden. Prktishes Vorgehen Auflösen der Proe in Säure und ggf. weitere Vorehndlungen Auffüllen der Proe uf ein eknntes Volumen (00 m Entnehmen eines Bruhteils der Proe (0 m und Bestimmen des Eisengehlts mittels Titrtion: durhshnittliher Verruh V(MnO 7,00 m (MnO 0,0 mol - und ( 5MnO 0, mol -

31 Beispiel 5 Fe + + MnO H + 5 Fe + + Mn + + H O n(fe n(mno n(fe 5 n(mno n(mno m m Proe Proe gesmte Proe : m gesmt w(fe (Fe 5 (Fe 50,0mol V ( Fe V Pr oe (MnO m V n(fe M (Fe 5 (MnO Pr oe m(fe 95,5 mg m 00 mg us RG gesmt 0, ,8g mol ( Fe 97,75% V M (Fe 0,09g 00m 9,mg 95,5 mg 0m 9,mg

32 Beispiel (mit Äquivlentkonzentrtionen Fe + Fe + + e - n(fe n(e Proe us RG n(fe n(e n( MnO 5 n(e ( MnO 5 V m (Fe (Fe (Fe ( Proe n M MnO (Fe 5 V M m (Fe 0, mol 0, ,8g mol 0,09g 9,mg

33 Mßlösungen Einfhe und reproduzierre Drstellung Stilität gegen tmosphärishe, thermishe und photohemishe Einflüsse Gehlt zw. onzentrtion der Mßlösung müssen längere Zeit konstnt leien. onzentrtion (Titer muss genu eknnt sein Exktes Awägen der Verindung und Auffüllen uf ein eknntes Volumen (z.b. NCl, BrO, Cr O 7 Herstellen einer Mßlösung von ungefähr eknnter onzentrtion und estimmen der exkten onzentrtion durh Titrtion gegen eine Urtitersustnz

34 Beispiel Eine Mßlösung von HCl soll gegen N CO eingestellt werden. Dei werden für die Rektion von 0, mg N CO 0, m HCl- ösung der ungefähren onzentrtion 0, mol/ verruht. Wie ist die exkte HCl-onzentrtion (Titer? N CO + HCl CO - + H + CO + H O + NCl CO + H O n(hcl n(n CO n(h n(hcl + n(n m M (N CO m M (N CO CO (HCl (HCl m n(hcl M (N CO V V 0,0 g 05,99g mol 0,09 mol 0,00

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz Seminr zum norgnisch-chemischen Prktikum Quntittive Anlyse Ptrick Schwrz itertur M. Scheer, J. Wchter Skript zum Prktikum Anorgnische Chemie I, Institut für Anorgnische Chemie der Universität Regensurg

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminar zum anorganisch-chemischen Praktikum I Quantitative Analyse Prof. Dr. M. Scheer Patrick Schwarz Termine und Organisatorisches Immer Donnerstag, 11:00 12:00 in HS 44 Am Semesteranfang zusätzlich

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Nach dem Gesetz der konstanten Proportionen (Proust 1799) kommen die gleichen Elemente in einer Verbindung stets im gleichen Massenverhältnis

Nach dem Gesetz der konstanten Proportionen (Proust 1799) kommen die gleichen Elemente in einer Verbindung stets im gleichen Massenverhältnis 0.4 Chemisches Rechnen Chemische Grundgesetze Das Gesetz von der Erhaltung der Masse (Lavosier 1789) besagt, dass sich die Gesamtmasse bei chemischen Reaktionen nicht ändert. Die Masse der Ausgangsstoffe

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler von udolf Fiedler Zusmmenfssung: Der Beitrg eshreit die Aufgen des Projektontrollings, insesondere des strtegishen Projektontrollings. Für die wesentlihen Aufgenereihe werden prktikle Instrumente vorgestellt.

Mehr

1 152.17. 1. Gegenstand und Zweck

1 152.17. 1. Gegenstand und Zweck 5.7. März 0 Verordnung üer die Klssifizierung, die Veröffentlihung und die Arhivierung von Dokumenten zu Regierungsrtsgeshäften (Klssifizierungsverordnung, KRGV) Der Regierungsrt des Kntons Bern, gestützt

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Praktikum Quantitative Analysen

Praktikum Quantitative Analysen Praktikum Quantitative Analysen Wintersemester 2009/10 Arbeitsmethoden der Quantitativen Analyse A: klassische Methoden vorwiegend chemische Arbeitsmethoden Bestimmung der Bestandteile durch eine chemische

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

DIN 41612/60603-2 Steckverbinder und ergänzende Komponenten. www.erni.com. Katalog D 074559 11/09 Ausgabe 2

DIN 41612/60603-2 Steckverbinder und ergänzende Komponenten. www.erni.com. Katalog D 074559 11/09 Ausgabe 2 DIN /00- tekverinder und ergänzende Komponenten www.erni.om Ktlog D 09 /09 Ausge www.erni.om Ctlog E 0 Ktlog 0/0 D 09 /09 Edition Ausge www.erni.om DIN /IEC 00- tekverinder Inhltsverzeihnis DIN /IEC 00-

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: 3-938744-76-6. FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: 3-938744-76-6. FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 KASTNER AG ds medienhus FIT_ÜS_Kndidten-/Prueferletter_Oktoer_5 FIT IN DEUTSCH Üungsstz Kndidtenlätter/Prüferlätter ISBN: 3-938744-76-6 Fit in Deutsh. Üungsstz Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS VIESMANN VITODENS Agssysteme für Gs-Brennwertkessel 3,8 is 105,0 kw Plnungsnleitung ABGASSYSTEME VITODENS 5369 08 5/011 Inhltsverzeihnis Inhltsverzeihnis 1. Agssysteme 1.1... 4 Butehnishe Einheit... 4

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen

Gerd Wöstenkühler. Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen Gerd Wöstenkühler Grundlgen der Digitltehnik Elementre Komponenten, Funktionen und Steuerungen Inhlt 1 Einleitung... 11 1.1 Anloge unddigitledrstellungsformen... 11 1.1.1 AnlogeGrößendrstellung... 11 1.1.2

Mehr

Mobile radiographische Untersuchung von Holz und Bäumen

Mobile radiographische Untersuchung von Holz und Bäumen Moile rdiogrphishe Untersuhung von Holz und Bäumen K. Osterloh, A. Hsenst, U. Ewert, M. Kruse, J. Goeels Bundesnstlt für Mterilforshung und -prüfung (BAM), Berlin Zusmmenfssung Sowohl im Buholz ls uh in

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Übung zu den Vorlesungen Organische und Anorganische Chemie

Übung zu den Vorlesungen Organische und Anorganische Chemie Übung zu den Vorlesungen Organische und Anorganische Chemie für Biologen und Humanbiologen 07.11.08 - Lösungen - 1. Vervollständigen Sie die Reaktionsgleichungen und benennen Sie alle Verbindungen und

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007

STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007 STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007 Die Wirtshfts- und Sozilwissenshftlihe Fkultät der Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Tutorium zur Analytischen Chemie Übungsaufgaben 1

Tutorium zur Analytischen Chemie Übungsaufgaben 1 Tutorium zur Analytischen Chemie Übungsaufgaben 1 1.) Berechnen Sie die folgenden Molmassen! a) [Cu(NH 3 ) 6 ]Cl 2 b) AgCl c) Ti(SO 4 ) 2 d) Na 2 [Sn(OH) 6 ] e) Na 2 CO 3 f) Ca(HCO 3 ) 2 2.) Berechnen

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Van-der-Waals-Gleichung II

Van-der-Waals-Gleichung II Prof. r. H.-H. Kohler, WS 005/06 PC Kitel B Vn-der-Wls-Gleihung B- B Vn-der-Wls-Gleihung II Fortsetzung on PC B. Wiederholung (s. PC B..5 und B.0..4) Anhnd der entsrehenden Folien in Vorlesung wiederholen!

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Die Philosophisch-historische Fakultät der Universität Bern. erlässt

Die Philosophisch-historische Fakultät der Universität Bern. erlässt Stuienpln für s Bhelor- un Mster-Stuienprogrmm Estern Europen Stuies / Osteurop-Stuien / Étues e l Europe orientle er Universität Bern in Zusmmenreit mit er Universität Friourg vom 1. August 2009 Die Philosophish-historishe

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Feststellungsprüfung Chemie Lösungen. Wegen seiner hohen Reaktivität kommt Chlor in der Natur nicht elementar vor. = 26, ,957=35,45

Feststellungsprüfung Chemie Lösungen. Wegen seiner hohen Reaktivität kommt Chlor in der Natur nicht elementar vor. = 26, ,957=35,45 Thema I 1a 1b 1c 1d 1e 2a 2b Feststellungsprüfung Chemie Lösungen Wegen seiner hohen Reaktivität kommt Chlor in der Natur nicht elementar vor.,,,, = 26,496 8,957=35,45 Die relative Isotopenmasse ist die

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 Die Wirtshfts- un Sozilwissenshftlihe Fkultät er Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Professur für VWL II Wolfgng Scherf Die Exmensklusur us der Volkswirtschftslehre Erschienen in: WISU 8-9/2000, S. 1163 1166. Fchbereich Wirtschftswissenschften Prof. Dr.

Mehr

Projektmanagement Selbsttest

Projektmanagement Selbsttest Projektmngement Selsttest Oliver F. Lehmnn, PMP Projet Mngement Trining www.oliverlehmnn-trining.de Dieses Dokument drf frei verteilt werden, solnge seine Inhlte einshließlih des Copyright- Vermerks niht

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Haus B Außenwand, Sockel

Haus B Außenwand, Sockel Hus B 18 Außenwnd, Sokel 19 Innenwnd, Bodenpltte 20 Außenwnd, Fundment 21 Innenwnd, Fundment 22 Außenwnd, Deke, Fenster 23 Innenwnd, Deke, Tür 24 Außenwnd, Trufe 25 Außenwnd, Ortgng 26 Außenwnd, Eke 27

Mehr

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform Fhgeiet Rehnersysteme 2. Üung Logisher Entwur Tehnishe Universität Drmstt 2. Üung Logisher Entwur 4. Auge 1 4. Auge 2. Üung Logisher Entwur 4. Auge 3 ) Minterm-Normlorm Geen sei ie ooleshe Funktion + +

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen 35 4 Stöchiometrie Teil II: Chemische Reaktionsgleichungen Zusammenfassung Chemische Reaktionsgleichungen geben durch die Formeln der beteiligten Substanzen an, welche Reaktanden sich zu welchen Produkten

Mehr

Füllungen im Zahnhalsbereich Mit dem Laser im Vorteil

Füllungen im Zahnhalsbereich Mit dem Laser im Vorteil Füllungen im Zhnhlsereih Mit dem Lser im Vorteil Vorgehen im Vergleih zur konventionellen Behndlung Die Präprtion mit Er:YAG-Lsern ht gegenüer Hohgeshwindigkeitsshleifkörpern diverse Vorteile. Wesentlih

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Technische Universität Chemnitz Chemisches Grundpraktikum

Technische Universität Chemnitz Chemisches Grundpraktikum Technische Universität Chemnitz Chemisches Grundpraktikum Protokoll «CfP5 - Massanalytische Bestimmungsverfahren (Volumetrie)» Martin Wolf Betreuerin: Frau Sachse Datum:

Mehr

Getriebe und Übersetzungen Übungsaufgaben

Getriebe und Übersetzungen Übungsaufgaben Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Quelle: Ai-Prüfungen des Lndes Bden-Württeerg 1 HP 1996/97-1 Shiffsufzug Bei der Bergfhrt uss von jeder Motor-Getrieeeinheit eine Krftdifferenz von

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

(1,544mol / l) 0,228mol / l 0,228mol / l

(1,544mol / l) 0,228mol / l 0,228mol / l 4 Ds hemishe Gleihgewiht Beispiel : Bilung un Zerfll von Iowsserstoff, HI, ei 490 C Bringt mn in ein Rektionsgefäß mol H un mol I, so ilen sih ei 490 C nur,544 mol HI im Gemish mit 0,8 mol H un 0,8 mol

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Prüfen von Kunststoffen

Prüfen von Kunststoffen Prüfen von Kunststoffen Prüfen von Kunststoffen -Mehnishe Prüfungen Kureit - Lngeit -Chemish Physikishe Prüfungen Strukturnyse -Thermonyse Rheoogie Dihte Wssergeht Spnnungsriss -Mikroskopie Lihtmikrosk.

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten Die Brückenlppentechnik zum sicheren Verschluss von Nsenseptumdefekten T. Stnge, H.-J. Schultz-Coulon Einleitung Die Rekonstruktion eines defekten Nsenseptums zählt zu den schwierigsten rhinochirurgischen

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

t ) - auch Zerfallsrate genannt - ist

t ) - auch Zerfallsrate genannt - ist Differentilgleichungen - Ausgewählte Proleme us der Phsik Beisiel: Rdioktiver Zerfll Eine gnze Reihe hsiklischer Erscheinungen lässt sich unter dem Stichwort Zerfll ngeregter Zustände einordnen. Ein Beisiel

Mehr

Facharbeit über algebraische Gleichungen vierten Grades

Facharbeit über algebraische Gleichungen vierten Grades Fchrbeit über lgebrische Gleichungen vierten Grdes inkl. der Crdni schen Formeln und dem Beweis der Formeln. Verfßt von Ing. Wlter Höhlhubmer im Oktober ergänzt im Juli und August und erweitert im Dez.

Mehr