SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen"

Transkript

1 SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel: Alkoholkonsum-Fragebogen 1 2 Datensatz 2 3 Bestimmung der Itemschwierigkeiten, Itemmittelwerte und Itemvarianzen 5 4 Bestimmung der Itemtrennschärfen 8 5 Testwertermittlung 12 1 Einleitung zum inhaltlichen Beispiel: Alkoholkonsum-Fragebogen In diesem Anhang zu Kapitel 4 Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen wollen wir die Berechnungen bei einer Itemanalyse veranschaulichen. Hierzu verwenden wir einen fiktiven Datensatz, der in Anlehnung an eine Fragebogenerhebung zum Thema Alkoholkonsum bei Studierenden generiert worden ist. Der ursprüngliche Fragebogen wurde ad hoc im Rahmen der Veranstaltung Testtheorie und Testkonstrukion an der Goethe Universität Frankfurt von Holger Brandt IBM SPSS Statistics hieß früher PASW Statistics. - Alle Abbildungen in diesem Beitrag stammen aus dem Programm IBM SPSS Statistics, Release Chicago: SPSS, an IBM Company. Wir danken IBM für die freundliche Genehmigung zur Verwendung der Screenshots. 1

2 2 DATENSATZ im Jahr 2007 entwickelt. Aus diesem Fragebogen wurden acht Items für unser Beispiel übernommen sowie Wortlaute und Daten aus Veranschaulichungsgründen willkürlich verändert 1. In unserem fiktiven Fragebogen wurden Studierenden Aussagen präsentiert. Die Studierenden sollten anhand einer vierstufigen Skala (von trifft überhaupt nicht zu bis trifft vollständig zu ) eine Selbsteinschätzung vornehmen, inwieweit die Aussagen auf sie selbst zutreffen. Die Aussagen (Fragebogenitems) lauten wie folgt: 1. Nach einem anstrengenden Tag entspanne ich mich gern mit einem Glas Bier oder Wein. 2. Wenn ich trinke, fällt es mir schwer aufzuhören. 3. Mein Partner/meine Eltern haben sich schon einmal über meinen Alkoholkonsum beschwert. 4. Ein Freitag ohne Filmriss ist kein Freitag. 5. Ich trinke mehr als meine Freunde. 6. In meinem Kühlschrank befindet sich meist Alkohol. 7. Ich trinke Alkohol nur in kleinen Mengen. (r) 8. Alkohol ist etwas, das ich ausschließlich zu besonderen Anlässen trinke. (r) (r) kennzeichnet invertierte Items, die vor der Itemanalyse in Richtung des Gesamtmerkmals umkodiert wurden. 2 Datensatz Der konkrete Datensatz, den wir für unsere Analysen verwenden werden, ist in Tabelle 1 aufgeführt. Rohwerte für 40 Probanden und 8 Items sind tabellarisch angegeben. Eine SPSS-Rohwerte-Datei findet man auch unter der Bezeichung Alkoholkonsum.sav auf dieser Internetseite wieder. Bevor der Testkonstrukteur irgendwelche Itemanalysen (d.h., eine Bestimmung der Itemschwierigkeiten, Itemvarianzen, Itemtrennschärfen etc.) vornimmt, sollte er ein Gefühl für die Qualität seiner Daten entwickelt haben. Hierzu ist es unerlässlich, univariate und multivariate deskriptivstatistische Methoden durchzuführen, wie sie sich in jedem Einführungslehrbuch zur Statistik finden lassen. So können einfache Häufigkeitsverteilungen (Histogramme) der Antwortkategorien bei einem Item sehr aussagekräftig darüber sein, ob es sich überhaupt noch lohnt, weitere Analysen durchzuführen. Wenn z.b. alle 1 Es versteht sich von selbst, dass dies nicht die Vorgehensweise in einer realen Untersuchung darstellen darf!

3 2 DATENSATZ Tabelle 1: Rohwerte des Alkoholkonsum-Fragebogens Pbn Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 (r) Item 8 (r)

4 2 DATENSATZ Probanden bei einem Item nur eine Antwortkategorie angekreuzt haben, erübrigt sich die Analyse der Itemtrennschärfe für dieses Item, da es nicht differenziert. Bereits früh lässt sich in unserem Datensatz erkennen, dass Item 4 Ein Freitag ohne Filmriss ist kein Freitag. eine starke Häufung der ersten Antwortkategorie trifft überhaupt nicht zu aufweist und daher wenig differenziert. Die nachfolgenden Analysen gehen davon aus, dass die Daten intervallskaliert sind. Der Testkonstrukteur muss die Plausibilität dieser Annahme vertreten können. Abbildung 1 zeigt das Anwenderfenster von SPSS in der Datenansicht nach dem Öffnen der Beispieldatei Alkoholkonsum.sav. Abbildung 1: Datenansicht der Beispieldatei Alkoholkonsum.sav

5 3 BESTIMMUNG DER ITEMSCHWIERIGKEITEN, ITEMMITTELWERTE UND ITEMVARIANZEN 3 Bestimmung der Itemschwierigkeiten, Itemmittelwerte und Itemvarianzen Die Bestimmung der Itemschwierigkeiten, Itemmittelwerte und Itemvarianzen (vgl. Abschnitte 4.2 und 4.3 im Buch) erfolgt am einfachsten unter Verwendung des Menüs Analysieren Deskriptive Statistiken und Deskriptive Statistik... (s. Abbildung 2). Abbildung 2: Deskriptive Statistiken. Nachdem sich das Menüfenster geöffnet hat, wählt man jene Items aus, für die Kennwerte bestimmt werden sollen. Dies geschieht dadurch, dass die Items (bei uns acht) selegiert werden und mittels Klick auf den nach rechts zeigenden Pfeil in das rechte Teilfenster bewegt werden. Nach der Selektion sieht das Menüfenster aus wie in Abbildung 3 dargestellt. Durch Betätigung der Schaltfläche Optionen... kann man die zu bestimmenden Kennwerte auswählen (s. Abbildung 4). Es ist sinnvoll, sich verschiedene Kennwerte ausgeben zu lassen. Dazu gehören der Mittelwert, die Standardabweichung, die Varianz der Variablen (Items) etc. aber auch die Kurtosis und Schiefe sowie Minima und Maxima der Variablen. Nachdem alle Kennwerte ausgewählt wurden (Betätigung der Weiter-Schaltfläche) und die Analyse gestartet wurde (erneute Betätigung der OK-Schaltfläche) erhält man eine SPSS-Ausgabe, die in Abbildung 5 wiedergegeben ist. Wie man Abbildung 5 entnehmen kann, fällt Item 4 durch einen sehr niedrigen Itemmittelwert von 0.20 auf. Dieses Item wurde tendenziell negiert. Die Itemvarianz von Item 4 ist ebenfalls die geringste (0.318). Die größte Itemvarianz weist Item 3 Mein Partner/meine Eltern haben sich schon einmal über meinen Alkoholkonsum beschwert.

6 3 BESTIMMUNG DER ITEMSCHWIERIGKEITEN, ITEMMITTELWERTE UND ITEMVARIANZEN Abbildung 3: Auswahl der Items, für die Itemmittelwerte, Itemschwierigkeiten und Itemvarianzen berechnet werden sollen. Abbildung 4: Optionen im Menü Deskriptive Statistik.

7 3 BESTIMMUNG DER ITEMSCHWIERIGKEITEN, ITEMMITTELWERTE UND ITEMVARIANZEN Abbildung 5: SPSS-Ausgabe der Itemkennwerte.

8 4 BESTIMMUNG DER ITEMTRENNSCHÄRFEN auf (1.579). Auch im Hinblick auf die Kurtosis und Schiefe weicht Item 4 sehr stark von einer Normalverteilung ab. Die Itemschwierigkeiten kann man in SPSS in der Regel nicht direkt berechnen lassen. Die Itemschwierigkeiten lassen sich relativ leicht per Hand berechnen. Dafür müssen aber folgende zwei Punkte gegeben sein: a) Die Kodierung der k Antwortstufen geht von 0 bis k 1 (in unserem Bespiel von 0 bis 3). b) Die Itemmittelwerte wurden berechnet unter der Verwendung der Antwortstufenkodierung von 0 bis k 1. In unserem Beispiel erfolgte eine Kodierung von 0 bis 3 und nicht von 1 bis 4. Damit können wir die Itemmittelwerte verwenden, die von SPSS (s. Abbildung 5) ausgegeben wurden. Die Itemschwierigkeit eines Items i ergibt sich unmittelbar unter Anwendung folgender Formel (vgl. auch Gleichung 4.1, Abschnitt 4.2 im Buch, S. 75): P i = x i 100 (1) max(x i ) wobei x i der Itemmittelwert und max(x i ) der maximal erreichbare Wert in einem Item i (bei uns 3) sind. Für Item 4 ergibt sich eine Itemschwierigkeit von P 4 = = Das heißt, wenige Personen haben der Aussage Ein Freitag ohne Filmriss ist kein Freitag. zugestimmt. Die größte Itemschwierigkeit weist Item 8 auf (P 8 = = 66.67). 4 Bestimmung der Itemtrennschärfen Die Bestimmung der Itemtrennschärfen (vgl. Abschnitt 4.4 im Buch) erfolgt unter Verwendung des Menüs Analysieren Skalierung und Reliabilitätsanalyse... (s. Abbildung 6). In diesem Menü befinden sich auch jene Schaltflächen, die für die Reliabilitiätsanalysen (vgl. Kapitel 6) benötigt werden. Auf diese soll im weiteren Verlauf nicht eingegangen werden, da hierfür ein gesondertes SPSS-Übungskapitel zur Verfügung steht. Nachdem sich das Menüfenster geöffnet hat, wählt man jene Items aus, für die Trennschärfen bestimmt werden sollen. Dies geschieht dadurch, dass die Items (bei uns acht) selegiert werden und mittels Klick auf den nach rechts zeigenden Pfeil in das rechte Teilfenster bewegt werden. Nach der Selektion sieht das Menüfenster aus wie in Abbildung 7 dargestellt. Durch Betätigung der Schaltfläche Statistiken... öffnet sich ein neues Fenster (s. Abbildung 8). In diesem Fenster ist es notwendig, die Option Skala wenn Item gelöscht... zu aktivieren. Nachdem die Weiter-Schaltfläche betätigt wurde und die Analyse gestartet wurde (erneute Betätigung der OK-Schaltfläche) erhält man eine SPSS-Ausgabe, die in Abbildung 9 wiedergegeben ist.

9 4 BESTIMMUNG DER ITEMTRENNSCHÄRFEN Abbildung 6: Menübefehle der Trennschärfenbestimmung. Abbildung 7: Auswahl der Items, für die Itemtrennschärfen berechnet werden sollen.

10 4 BESTIMMUNG DER ITEMTRENNSCHÄRFEN Abbildung 8: Optionen im Menü Statistiken.... In der Spalte Korrigierte Item-Skala-Korrelation der ausgegebenen Tabelle stehen die korrigierten Itemtrennschärfen, die insbesondere bei kurzen Skalen zu verwenden sind. Unsere Ergebnisse zeigen, dass erneut Item 4 keine guten Kennwerte aufweist. Dessen Trennschärfe beträgt 0.287, weshalb sich unter Berücksichtigung der vorangegangen Ergebnisse eine Eliminierung des Items aus dem finalen Fragebogen empfiehlt.

11 4 BESTIMMUNG DER ITEMTRENNSCHÄRFEN Abbildung 9: SPSS-Ausgabe der Itemtrennschärfen.

12 5 TESTWERTERMITTLUNG 5 Testwertermittlung Eine sehr einfache Form der Testwertermittlung x v für einen Probanden v besteht darin, alle Itemwerte (x vi ) über alle Items zu summieren (vgl. auch Gleichung 4.17, Abschnitt 4.6 im Buch, S. 86): x v = m x vi (2) i=1 Diese Form der Summenbildung ist die einfachste Art der Testwertbildung. Sie ist an strenge Annahmen geknüpft (z.b., dass alle Items gleichermaßen das latente Merkmal repräsentieren etc.). Es sei an dieser Stelle lediglich angemerkt, dass es eine Vielzahl von psychometrischen Möglichkeiten gibt, auf der Grundlage von Regressionsanalysen gewichtete Summen zu bilden oder aber Faktorwerte (sog. factor scores) im Rahmen eines latenten Ansatzes zu schätzen. In SPSS lässt sich die in Gleichung (2) beschriebene Form der Testwertbildung wie folgt vornehmen. Im Menü Transformieren wählt man den Punkt Variable berechnen..., um eine Summenvariable zu berechnen (s. Abbildung 10) Nachdem sich das Berechnungsfenster geöffnet hat (s. Abbildung 11), kann man durch die Auswahl von Variablen und die Verwendung von mathematischen Funktionen eine neue Variable kreieren. In unserem Falle soll eine Variable sum berechnet werden, die die Summe aller Items ist. Item 4 fließt aufgrund der vorangegangen Überlegungen nicht in die Summe ein. Nach Betätigung der OK-Schaltfläche erscheint in der Datenansicht der Rohwerte-Datei eine neue Spalte (Variable), die die von uns berechneten Testwerte enthält (s. Abbildung 12). Die neu entstandene Testwertvariable ist ihrerseits deskriptivstatistisch eingehend zu untersuchen. Dabei empfiehlt es sich, wieder anhand des Menüs Analysieren Deskriptive Statistiken und Deskriptive Statistik... (vgl. Abschnitt 3) deskriptivstatistische Analysen vorzunehmen sowie Histogramme zur Veranschaulichung der Verteilung zu erstellen.

13 5 TESTWERTERMITTLUNG Abbildung 10: Menübefehle der Testwertbildung.

14 5 TESTWERTERMITTLUNG Abbildung 11: Erstellung einer Summenvariable (Testwertvariable) durch die Verwendung des Berechnungsfensters.

15 5 TESTWERTERMITTLUNG Abbildung 12: Datenansicht mit der neu berechneten Variable sum.

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt 06 1. Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat).

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Normierung Schritte der Normierung

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage Elisabeth Raab-Steiner/ Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 3., aktualisierte und überarbeitete Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 13

Mehr

SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1

SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1 SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1 Karin Schermelleh-Engel & Christina S. Werner Inhaltsverzeichnis 1 Empirischer Datensatz... 1 2 Interne Konsistenz... 2 3 Split-Half-Reliabilität...

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Kapitel 35 Histogramme

Kapitel 35 Histogramme Kapitel 35 Histogramme In einem Histogramm können Sie die Häufigkeitsverteilung der Werte einer intervallskalierten Variablen darstellen. Die Werte werden zu Gruppen zusammengefaßt und die Häufigkeiten

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 04: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016)

Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016) Aufbau und Beurteilung der Prüfung (Gültig für Prüfungstermine vor dem 1.1.2016) Die Prüfung zur VO Rechnungswesen findet in EDV-gestützter Form unter Verwendung des Softwaretools Questionmark Perception

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller » SCHRITT-FÜR-SCHRITTANLEITUNG«MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Daniela Keller Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Impressum 2016 Statistik und Beratung Dipl.-Math. Daniela

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

QuickStart. «/ Scores» Kurzanleitung

QuickStart. «/ Scores» Kurzanleitung QuickStart «/ Scores» Kurzanleitung 1. Anwendungsfelder Mit Scores bietet Ihnen onlineumfragen.com eine geniale, exklusive Funktion zur vierfältigen, multivariaten Summierung von antwortabhängigen Punktzahlen.

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Institut für Marketing und Handel Prof. Dr. W. Toporowski. SPSS Übung 5. Heutige Themen: Faktorenanalyse. Einführung in Amos

Institut für Marketing und Handel Prof. Dr. W. Toporowski. SPSS Übung 5. Heutige Themen: Faktorenanalyse. Einführung in Amos SPSS Übung 5 Heutige Themen: Faktorenanalyse Einführung in Amos 1 Faktorenanalyse Datei Öffnen V:/Lehre/Handelswissenschaft/Daten_Übung3/Preisimage_F_und_C.sav 2 Datensatz (I) v1 Wenn Produkte zu Sonderpreisen

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage.

Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage. Wolf-Gert Matthäus, Jörg Schulze Statistik mit Excel Beschreibende Statistik für jedermann 3./ überarbeitete und erweiterte Auflage Teubner Inhaltsverzeichnis Einleitung 11 1 Grundlagen 17 1.1 Statistische

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Statistische Auswertung in der Betriebsprüfung

Statistische Auswertung in der Betriebsprüfung Dr. Harald Krehl Der Einsatz verteilungsbezogener Verfahren Der Einsatz verteilungsbezogener Verfahren etwa des Benford- Newcomb Verfahrens oder der Normalverteilung bzw. der LogNormalverteilung in der

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Gemeinsam einsam fernsehen

Gemeinsam einsam fernsehen Alexander Blicker-Dielmann Gemeinsam einsam fernsehen Eine Untersuchung zum Einfluss sozialer Hinweisreize auf die Filmrezeption Diplomica Verlag Alexander Blicker-Dielmann Gemeinsam einsam fernsehen:

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos

Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos Forschungsbericht Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos Projektteam Testentwicklung, 2014 Verfasser: Rebekka Schulz & Rüdiger Hossiep Projektteam

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Kapitel 18 Mittelwertvergleiche

Kapitel 18 Mittelwertvergleiche Kapitel 18 Mittelwertvergleiche 18.1 Prozeduren für Mittelwertvergleiche Wenn einzelne Fallgruppen wie zum Beispiel verschiedene Personengruppen bezüglich eines bestimmten Merkmals miteinander verglichen

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Ziel: Analysieren und verdeutlichen von Zusammenhängen mehrerer Variablen, wie z.b. Anzahlen pro Kategorien; Mittelwert und Standardabweichung pro

Mehr

Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten

Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten https://cuvillier.de/de/shop/publications/2438 Copyright: Cuvillier Verlag,

Mehr

Auswertung der Zufriedenheitsumfrage unter den Nutzenden des IT Centers. Zusammenfassung Hanna Tröger Stand: 21.12.2015 Version 1.

Auswertung der Zufriedenheitsumfrage unter den Nutzenden des IT Centers. Zusammenfassung Hanna Tröger Stand: 21.12.2015 Version 1. Auswertung der Zufriedenheitsumfrage unter den Nutzenden des IT Centers Zusammenfassung Hanna Tröger Stand:..05 Version.0 Inhaltsverzeichnis Einleitung... Datensatz... Ergebnisse.... Soziodemographie....

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1

Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1 Exploratorische Faktorenanalyse: Hauptachsenanalyse und Hauptkomponentenanalyse SPSS-Beispiel zu Kapitel 13 1 Karin Schermelleh-Engel, Christina S. Werner & Helfried Moosbrugger Inhaltsverzeichnis 1 Vorbemerkungen...

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Einsatz von Statistikprogrammen

Einsatz von Statistikprogrammen Einsatz von Statistikprogrammen Friends Don t Let Friends Use Excel for Statistics! Get the Right Tool for the Job! What About SPSS / BiAS? EXCEL flache Datenstruktur Tabellen (spreadsheet) Infarktdaten

Mehr

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW)

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW) 50 3.3 Das Fruchtwasser-Schätzvolumen in der 21.-24.SSW und seine Bedeutung für das fetale Schätzgewicht in der 21.-24.SSW und für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.3.1 Referenzwerte für

Mehr

Grundlagen der Versuchsmethodik. Datenauswertung. Datenvisualisierung

Grundlagen der Versuchsmethodik. Datenauswertung. Datenvisualisierung Grundlagen der Versuchsmethodik Datenauswertung Datenvisualisierung Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Korrespondenzanalyse

Korrespondenzanalyse Seite 1 von 5 Korrespondenzanalyse Ziel der Korrespondenzanalyse... 1 Anforderungen an die Daten (Stärke des Verfahrens)... 1 Einordnung in die multivariaten Verfahren... 1 Normierung der Daten... 1 Festlegung

Mehr

Schülerfragebogen zur Beurteilung des Unterrichts

Schülerfragebogen zur Beurteilung des Unterrichts IBUS Inventar zur Beurteilung von Unterricht an Schulen SCHÜLERFRAGEBOGEN ZUM UNTERRICHT Schülerfragebogen zur Beurteilung des Unterrichts Mit dem folgenden kurzen Fragebogen wird der Unterricht eines

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Kurze Einführung in IBM SPSS für Windows

Kurze Einführung in IBM SPSS für Windows Kurze Einführung in IBM SPSS für Windows SPSS Inc. Chicago (1968) SPSS GmbH Software München (1986) 1984: Datenanalyse Software für den PC 1992: Datenanalyse Software unter Windows 1993: Datenanalyse Software

Mehr

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Befragungszeitraum: Marz 2016 bis Mai 2016 27.06.2016 Hon.-Prof. Dr. Christian Kreidl / Prof. Dr. Ulrich Dittler Inhaltsübersicht

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Matthias Gabriel. Kurze Einführung in SPSS 11.5

Matthias Gabriel. Kurze Einführung in SPSS 11.5 Kurze Einführung in SPSS 11.5 2001 überarbeitet Oktober 2003 1 Legende: Im folgenden Text entsprechen die Wörter zwischen Anführungszeichen den Befehlen bzw. Menüoptionen im SPSS z.b: Berechnen, Zählen,

Mehr

Erste Schritte mit SPSS - eine Anleitung

Erste Schritte mit SPSS - eine Anleitung Der Internetdienst für Ihre Online-Umfragen Erste Schritte mit SPSS - eine Anleitung -1- Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Jung Kyu Canci Universität Basel HS2015 1 / 15 Literatur Kapitel 6 Statistik in Cartoons : Kapitel 8 Krengel : 6 und 14 Storrer

Mehr

Erste Datenbereinigung

Erste Datenbereinigung Erste Datenbereinigung I. Datenbereinigung klassisch I. Schritt: Praktisch: Auf zwei PCs die Datei herunterladen. Auf dem einen PC wird die Häufigkeitsauszählung durchgeführt, auf dem anderen PC wird die

Mehr

Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung

Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung Sommersemster 007 Analyse und Modellierung von Blickbewegungen Veranstalter: Hendrik Koesling Grundlagen der Versuchsmethodik, Datenauswertung

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Gebrauchsanleitung für Lehrpersonen Verwendung der Excel- Auswertungsbogen für ein Schülerinnen- und Schülerfeedback

Gebrauchsanleitung für Lehrpersonen Verwendung der Excel- Auswertungsbogen für ein Schülerinnen- und Schülerfeedback Gebrauchsanleitung für Lehrpersonen Verwendung der Excel- Auswertungsbogen für ein Schülerinnen- und Schülerfeedback von Markus Mauchle 11. April 2011 IQES online Tellstrasse 18 8400 Winterthur Schweiz

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr