IT-Sicherheit Wintersemester 2014/2015 Harald Baier Kapitel 3: Kryptographie (Begleitfolien)

Größe: px
Ab Seite anzeigen:

Download "IT-Sicherheit Wintersemester 2014/2015 Harald Baier Kapitel 3: Kryptographie (Begleitfolien)"

Transkript

1 IT-Sicherheit Wintersemester 2014/2015 Harald Baier Kapitel 3: Kryptographie (Begleitfolien)

2 Asymmetric Encryption Plaintext Ciphertext Plaintext Document encrypt decrypt Document Encryption key e Decryption key d Alice Public Key Private Key Bob asymmetric Harald Baier IT-Sicherheit h_da, WS 2014/15 2

3 The invention of RSA Ron Rivest Adi Shamir Leonard Adleman Ideas Ideas Review April 1977: Factorisation problem (first ARS, then RSA) 1978: A method for obtaining digital signatures and public key cryptosystems Harald Baier IT-Sicherheit h_da, WS 2014/15 3

4 RSA key generation (1) Alice wants to generate her public and private key 1. Step: She finds her modulus n, i.e. she finds two prime numbers p und q with: p and q are different and odd The binary logarithms of p und q satisfy: p and q have approximately the same bit length p and q are not 'too close' to each other As a general rule: 0.1 < log 2 (p) - log 2 (q) < 30 Any idea about these log-requirements? Alice sets n = p q Harald Baier IT-Sicherheit h_da, WS 2014/15 4

5 RSA key generation (2) 2. Step: Alice finds her public exponent e Choose a number e with 2 e (p-1) (q-1) e is prime to (p-1) (q-1): gcd( e, (p-1) (q-1) ) = 1 Typical choices for e are primes of the form 2 2m + 1: m = 0: 3 = (too small for today's use) m = 2: 17 = (in hex 0x11) m = 4: = (in hex 0x ) 3. Step: Compute the private exponent d e -1 mod ((p-1) (q-1)) Alice publishes her public key: (n, e) Alice keeps secret her private key: d Harald Baier IT-Sicherheit h_da, WS 2014/15 5

6 RSA: Encryption and related problems Encryption: c m e mod n (m is the plaintext) Decryption: m c d mod n (c is the ciphertext) RSA problem: Given a ciphertext c and a public key (n,e), compute m such that c m e mod n Mathematical formulation: Compute an e-th root mod n Factorisation problem (in the context of RSA): Given a natural number n composed of two primes p and q, compute p and q. Harald Baier IT-Sicherheit h_da, WS 2014/15 6

7 Security of RSA Attacker is able to decrypt (or sign), if he knows d Computation of d is today done via (p-1) (q-1) He proceeds as follows: Attacker factors n, i.e. he computes p and q He determines d e -1 mod ((p-1) (q-1)) using extended Euclidian algorithm Consequence: Attacker can solve the factorisation problem ==> Attacker can solve the RSA problem RSA problem is at most as difficult as factorisation problem Suggested bit length of n: Harald Baier IT-Sicherheit h_da, WS 2014/15 7

8 Which RSA numbers are factored? Example: RSA Factorisation startet in August 2007 and ended on December 12, 2009 Partners: EPFL, NTT, Uni Bonn, INRIA, Microsoft Research, CWI = * Harald Baier IT-Sicherheit h_da, WS 2014/15 8

9 RSA challenge Challenge Number Award Status Submission Presenting party Method due to RSA-530 5,000 Factored March_2003 Uni Bonn, BSI GNFS RSA ,000 Factored December_2003 Uni Bonn, BSI GNFS RSA ,000 Factored November_2005 Uni Bonn, BSI GNFS RSA ,000 Factored May_2005 Uni Bonn, CWI, BSI GNFS RSA ,000 Not factored RSA ,000 Factored No submission EPFL (and others) GNFS RSA ,000 Not factored Source (parts): (Challenge is closed since 2007.) Harald Baier IT-Sicherheit h_da, WS 2014/15 9

10 Idee für Public-Key-Kryptographie Whitfield Diffie (*1944) Martin Hellman (*1946) Ralph Merkle Abstraktes Konzept der asymmetrischen Verschlüsselung Schlüsselaustausch in F p 1976: New directions in cryptography Harald Baier IT-Sicherheit h_da, WS 2014/15 10

11 Einwegfunktionen u. Trapdoor-One-Way-Functions Zur Realisierung von Public-Key-Verfahren benötigt man ein mathematisches Problem mit: Eine Richtung ist einfach. Umkehrung ist ohne Spezialwissen schwer. Trapdoor-One-Way-Function: Ohne Spezialwissen bleibt Falltür geschlossen. Spezialwissen ist privater Schlüssel. Suche nach geeigneten Funktionen schwer Heute nur zwei Klassen verbreitet: Multiplikation vs. Faktorisierung Exponentiation vs. diskreter Logarithmus Harald Baier IT-Sicherheit h_da, WS 2014/15 11

12 Schlüsselaustausch nach Diffie-Hellman Schlüsselaustausch zwischen Alice und Bob Setup: Wähle große Primzahl p (z.b Bit) Suche Erzeuger g der multiplikativen Gruppe F p * Schlüsselerzeugung von Alice: Wähle zufällig u. gleichverteilt Zahl a mit 1 a p - 2 Berechne A g a mod p Öffentlicher Schlüssel von Alice: (p, g, A) Geheimer Schlüssel von Alice: a Harald Baier IT-Sicherheit h_da, WS 2014/15 12

13 Schlüsselaustausch nach Diffie-Hellman Schlüsselaustausch zwischen Alice und Bob Setup: Wähle große Primzahl p (z.b Bit) Suche Erzeuger g der multiplikativen Gruppe F p * Schlüsselerzeugung von Alice: Wähle zufällig u. gleichverteilt Zahl a mit 1 a p - 2 Berechne A g a mod p Öffentlicher Schlüssel von Alice: (p, g, A) Geheimer Schlüssel von Alice: a Harald Baier IT-Sicherheit h_da, WS 2014/15 13

14 Schlüsselaustausch nach Diffie-Hellman (2) Schlüsselerzeugung von Bob: Wähle zufällig u. gleichverteilt Zahl b mit 1 b p - 2 Berechne B g b mod p Öffentlicher Schlüssel von Bob: (p, g, B) Geheimer Schlüssel von Bob: b Schlüsselaustausch: Alice schickt Bob ihren öffentlichen Parameter A Bob schickt Alice seinen öffentlichen Parameter B Alice berechnet K B a mod p (K ist symmetrischer Schlüssel) Bob berechnet K' A b mod p Es gilt K = K' : K B a (g b ) a = g ab = (g a ) b A b K' mod p Harald Baier IT-Sicherheit h_da, WS 2014/15 14

15 Schlüsselaustausch nach Diffie-Hellman: Beispiel Setup: p = 17, g = 3 (3 ist ein Erzeuger modulo 17) Schlüsselerzeugung: Alice: Sie wählt a = 7 und berechnet mod 17 (z.b. mit Hilfe der schnellen Exponentiation) Sie schickt Bob ihren öffentlichen Schlüssel 11 Bob: Er wählt b = 4 und berechnet mod 17 Er schickt Alice seinen öffentlichen Schlüssel 13 Symmetrischer Schlüssel: mod 17 Harald Baier IT-Sicherheit h_da, WS 2014/15 15

16 Sicherheit des Schlüsselaustauschs nach Diffie-Hellman Randbedingungen: Angreifer kennt p, g, A g a mod p, B g b mod p Er möchte K g ab mod p berechnen Er kann aber nur g a g b g a+b mod p berechnen Diffie-Hellman-Problem (DHP): Gegeben: p, g, A g a mod p, B g b mod p Finde K g ab mod p Diskretes-Logarithmus-Problem (DLP): Gegeben: p, g, A g a mod p Finde a Harald Baier IT-Sicherheit h_da, WS 2014/15 16

17 Zusammenhang DHP - DLP DLP ist mindestens so schwer wie DHP: Voraussetzungen: Angreifer will DHP lösen Er kann Orakel zur Lösung des DLP befragen Lösung des DHP: Angreifer befragt Orakel zur Lösung des DLP A g a mod p Angreifer berechnet K B a (g b ) a g ab mod p Umkehrung?? In Praxis: Einmal-Diffie-Hellman (Ephemeral DH) Alice und Bob verwenden Einmal-Zahlen a und b Lösung des Problems, dass Alice u. Bob immer gleiches K berechnen Harald Baier IT-Sicherheit h_da, WS 2014/15 17

18 Wer erfand Public-Key-Kryptographie? James Ellis: Arbeitet bei Government Communication Headquarters (GCHQ), UK Wurde 1969 mit Problem des Schlüsselaustauschs betraut Las Artikel von Bell über abhörsichere Telefonate James Ellis Bells Lösungsansatz: Empfänger bringt Rauschen in die Telefonleitung Idee von Ellis: Empfänger beteiligt sich an Verschlüsselung Ende 1969: Konzept der nicht geheimen Verschlüsselung Harald Baier IT-Sicherheit h_da, WS 2014/15 18

19 Warum Public-Key-Kryptographie? Schlüsselaustauschproblem n*(n-1)/2 Schlüssel Internet: ca Nutzer => ca Schlüssel Harald Baier IT-Sicherheit h_da, WS 2014/15 19

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

AES und Public-Key-Kryptographie

AES und Public-Key-Kryptographie Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert

Mehr

KRYPTOSYSTEME & RSA IM SPEZIELLEN

KRYPTOSYSTEME & RSA IM SPEZIELLEN KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)

Mehr

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Prof. Dr. Rüdiger Weis Beuth Hochschule für Technik Berlin Tag der Mathematik 2015 Flächendeckendes Abhören Regierungen scheitern

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Angewandte Kryptographie

Angewandte Kryptographie Angewandte Kryptographie 3. Asymmetrische Verfahren Netzwerksicherheit WS 2001/2002 Jean-Marc Piveteau 1. Die Public Key -Revolution Angewandte Kryptographie Kapitel 2 2 Symmetrische Kryptographie: Die

Mehr

Kryptographie II. Introduction to Modern Cryptography. Jonathan Katz & Yehuda Lindell

Kryptographie II. Introduction to Modern Cryptography. Jonathan Katz & Yehuda Lindell Kryptographie II Introduction to Modern Cryptography Jonathan Katz & Yehuda Lindell Universität zu Köln, WS 13/14 Medienkulturwissenschaft / Medieninformatik AM2: Humanities Computer Science Aktuelle Probleme

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Diffie-Hellman, RSA, etc.

Diffie-Hellman, RSA, etc. Diffie-Hellman, RSA, etc. mathematische Grundlagen asymmetrischer Verschlüsselungsverfahren Sven Moritz Hallberg pesco@hamburg.ccc.de SIGINT 09, 22. 24. Mai 2009 Zusammenfassung Inzwischen sind kryptographische

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Kryptographie eine erste Ubersicht

Kryptographie eine erste Ubersicht Kryptographie eine erste Ubersicht KGV bedeutet: Details erfahren Sie in der Kryptographie-Vorlesung. Abgrenzung Steganographie: Das Kommunikationsmedium wird verborgen. Klassische Beispiele: Ein Bote

Mehr

Message Authentication

Message Authentication Message Authentication 8 Message Authentication Message authentication is concerned with: protecting the integrity of a message, i.e. alteration of message is detectable validating identity of originator,

Mehr

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Was ist Kryptographie

Was ist Kryptographie Was ist Kryptographie Kryptographie Die Wissenschaft, mit mathematischen Methoden Informationen zu verschlüsseln und zu entschlüsseln. Eine Methode des sicheren Senden von Informationen über unsichere

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Eine Einführung in die Kryptographie

Eine Einführung in die Kryptographie LinuxFocus article number 243 http://linuxfocus.org Eine Einführung in die Kryptographie by Pierre Loidreau About the author: Pierre arbeitet als Wissenschaftler und Lehrer

Mehr

Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie

Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310

Mehr

Kommunikationsalgorithmus RSA

Kommunikationsalgorithmus RSA Kommunikationsalgorithmus RSA Herr Maue Ergänzungsfach Informatik Neue Kantonsschule Aarau Früjahrsemester 2015 24.04.2015 EFI (Hr. Maue) Kryptographie 24.04.2015 1 / 26 Programm heute 1. Verschlüsselungsverfahren

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Das wichtigste Kennzeichen asymmetrischer Verschlüsselungsverfahren ist, dass die Kommunikationspartner dabei anstelle eines

Das wichtigste Kennzeichen asymmetrischer Verschlüsselungsverfahren ist, dass die Kommunikationspartner dabei anstelle eines Prof. Dr. Norbert Pohlmann, Malte Hesse Kryptographie: Von der Geheimwissenschaft zur alltäglichen Nutzanwendung (IV) Asymmetrische Verschlüsselungsverfahren In den letzten Ausgaben haben wir zunächst

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

Überblick Kryptographie

Überblick Kryptographie 1 Überblick Kryptographie Ulrich Kühn Deutsche Telekom Laboratories, TU Berlin Seminar Kryptographie 19. Oktober 2005 2 Übersicht Was ist Kryptographie? Symmetrische Kryptographie Asymmetrische Kryptographie

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Das Verschlüsselungsverfahren RSA

Das Verschlüsselungsverfahren RSA Das Verschlüsselungsverfahren RSA von Nora Schweppe Humboldt-Oberschule Berlin Grundkurs Informatik 3 Herr Dietz Inhaltsverzeichnis 1. Einleitung... 1-2 1.1 Symmetrische und asymmetrische Verschlüsselungsverfahren...1

Mehr

1 Das RSA-Verfahren und seine algorithmischen Grundlagen

1 Das RSA-Verfahren und seine algorithmischen Grundlagen 1 Das RSA-Verfahren und seine algorithmischen Grundlagen Das wichtigste d. h., am weitesten verbreitete und am meisten analysierte asymmetrische Verfahren ist das RSA-Verfahren, benannt nach seinen Erfindern

Mehr

Digitale Signaturen. Kapitel 10 p. 178

Digitale Signaturen. Kapitel 10 p. 178 Digitale Signaturen Realisierung der digitalen Signaturen ist eng verwandt mit der Public-Key-Verschlüsselung. Idee: Alice will Dokument m signieren. Sie berechnet mit dem privaten Schlüssel d die digitale

Mehr

5 Codierung nach RSA (Lösung)

5 Codierung nach RSA (Lösung) Kapitel 5 Codierung nach RSA (Lösung) Seite 1/17 5 Codierung nach RSA (Lösung) 5.1 Einführung Die drei Mathematiker Rivest, Shamir und Adleman entwickelten 1977 das nach ihnen benannte RSA-Verfahren. Es

Mehr

Verschlüsselungs. sselungs- verfahren. Mario Leimgruber. AMREIN EN GIN EERIN G Messaging & Gr oupwar e Solutions

Verschlüsselungs. sselungs- verfahren. Mario Leimgruber. AMREIN EN GIN EERIN G Messaging & Gr oupwar e Solutions Verschlüsselungs sselungs- verfahren Mario Leimgruber AMREIN EN GIN EERIN G Messaging & Gr oupwar e Solutions Varianten - Symetrisches Verfahren - Asymetrische Verfahren - Hybrid Verfahren Symmetrische

Mehr

Geeignete Kryptoalgorithmen

Geeignete Kryptoalgorithmen Veröffentlicht im Bundesanzeiger Nr. 158 Seite 18 562 vom 24. August 2001 Geeignete Kryptoalgorithmen In Erfüllung der Anforderungen nach 17 (1) SigG vom 16. Mai 2001 in Verbindung mit 17 (2) SigV vom

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

Kryptographische Algorithmen

Kryptographische Algorithmen Kryptographische Algorithmen Stand: 11.05.2007 Ausgegeben von: Rechenzentrum Hochschule Harz Sandra Thielert Hochschule Harz Friedrichstr. 57 59 38855 Wernigerode 03943 / 659 900 Inhalt 1 Einleitung 4

Mehr

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel 4 RSA und PGP Im Juni 1991 wurde das Programm PGP (für pretty good privacy ) von Phil Zimmermann ins Internet gestellt. Es ermöglichte jedermann, e-mails derart gut zu verschlüsseln, dass nicht einmal

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg Benjamin.Klink@informatik.stud.uni-erlangen.de Proseminar Konzepte von Betriebssystem-Komponenten

Mehr

Teil III ASYMMETRISCHE KRYPTOGRAPHIE

Teil III ASYMMETRISCHE KRYPTOGRAPHIE Teil III ASYMMETRISCHE KRYPTOGRAPHIE KAPITEL 10 EINFÜHRUNG Die Entdeckung der asymmetrischen Kryptographie in den 1970er Jahren kam einer Sensation gleich. Bis zu diesem Zeitpunkt galt das Dilemma, dass

Mehr

Vorlesung IT-Sicherheit FH Frankfurt Sommersemester 2007

Vorlesung IT-Sicherheit FH Frankfurt Sommersemester 2007 Vorlesung IT-Sicherheit FH Frankfurt Sommersemester 2007 Dr. Volker Scheidemann Teil 5 Schlüsselverteilung Public Key Kryptographie Idee der digitalen Signatur Diffie-Hellman Schlüsselaustausch RSA-Verfahren

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

1. General information... 2 2. Login... 2 3. Home... 3 4. Current applications... 3

1. General information... 2 2. Login... 2 3. Home... 3 4. Current applications... 3 User Manual for Marketing Authorisation and Lifecycle Management of Medicines Inhalt: User Manual for Marketing Authorisation and Lifecycle Management of Medicines... 1 1. General information... 2 2. Login...

Mehr

MGI Exkurs: RSA-Kryptography

MGI Exkurs: RSA-Kryptography MGI Exkurs: RSA-Kryptography Prof. Dr. Wolfram Conen WS 05/06, 14.+17.10.2005 Version 1.0 Version 1.0 1 Angenommen, Sie heißen ALICE...... haben Geheimnisse......und wollen mit einem Bekannten namens BOB

Mehr

"What's in the news? - or: why Angela Merkel is not significant

What's in the news? - or: why Angela Merkel is not significant "What's in the news? - or: why Angela Merkel is not significant Andrej Rosenheinrich, Dr. Bernd Eickmann Forschung und Entwicklung, Unister GmbH, Leipzig UNISTER Seite 1 Unister Holding UNISTER Seite 2

Mehr

Kryptographie. nur mit. Freier Software!

Kryptographie. nur mit. Freier Software! Michael Stehmann Kryptographie nur mit Freier Software! Kurze Einführung in Kryptographie ErsterTeil: Bei der Kryptographie geht es um die Zukunft von Freiheit und Demokratie Artur P. Schmidt, 1997 http://www.heise.de/tp/artikel/1/1357/1.html

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Kapitel 1.6: Einführung in Kryptographie

Kapitel 1.6: Einführung in Kryptographie Kapitel 1.6: Einführung in Kryptographie Referenzen Markus Hufschmid, Information und Kommunikation, Teubner, 2006. Buchmann, Einführung in die Kryptographie, Springer, 2009. Bruce Schneier, "Applied Cryptography",

Mehr

Modul 1. Basics in Cryptography

Modul 1. Basics in Cryptography Modul 1 Basics in Cryptography Folie 1 Objectives of Cryptography Privacy: Assure confidentiality of information Integrity: Assure retention of information, i.e. no unauthorized modification Authentication:

Mehr

Krypto Präsentation. 15. Februar 2007. Berger, Ehrmann, Kampl, Köchl, Krajoski, Kwak, Müller, Niederklapfer, Ortbauer. Inhalt Klassisch Enigma RSA

Krypto Präsentation. 15. Februar 2007. Berger, Ehrmann, Kampl, Köchl, Krajoski, Kwak, Müller, Niederklapfer, Ortbauer. Inhalt Klassisch Enigma RSA Krypto Präsentation 15. Februar 2007 Berger, Ehrmann, Kampl, Köchl, Krajoski, Kwak, Müller, Niederklapfer, Ortbauer Transposition Substitution Definitionen Einführung Schlüssel Transposition Substitution

Mehr

Verschlüsselung mit elliptischen Kurven

Verschlüsselung mit elliptischen Kurven Bernd Banzhaf / Reinhard Schmidt Verschlüsselung mit elliptischen Kurven Als eine neue Methode für eine asymmetrische Verschlüsselung bietet sich die Verschlüsselung mittels elliptischer Kurven an. Elliptische

Mehr

3 Das RSA-Kryptosystem

3 Das RSA-Kryptosystem Stand: 15.12.2014 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Das RSA-Kryptosystem RSA: Erfunden von Ronald L. Rivest, Adi Shamir und Leonard Adleman, 1977. (Ein ähnliches Verfahren

Mehr

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002 FH Schmalkalden Fachbereich Informatik http://www.informatik.fh-schmalkalden.de/ 1/17 Kolloquium 21. März 2002 Entwicklung eines JCA/JCE API konformen Kryptographischen Service Providers für HBCI unter

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

SECURITY PROOFS IN NUMBER THEORETIC CRYPTOGRAPHY

SECURITY PROOFS IN NUMBER THEORETIC CRYPTOGRAPHY DISS ETH NO. 20264 SECURITY PROOFS IN NUMBER THEORETIC CRYPTOGRAPHY A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by DIVESH AGGARWAL M.Sc. ETH in Computer Science

Mehr

Risiko Datensicherheit End-to-End-Verschlüsselung von Anwendungsdaten. Peter Kirchner Microsoft Deutschland GmbH

Risiko Datensicherheit End-to-End-Verschlüsselung von Anwendungsdaten. Peter Kirchner Microsoft Deutschland GmbH Risiko Datensicherheit End-to-End-Verschlüsselung von Anwendungsdaten Peter Kirchner Microsoft Deutschland GmbH RISIKO Datensicherheit NSBNKPDA kennt alle ihre Geheimnisse! Unterschleißheim Jüngste Studien

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Andere Protokolle für digitale Unterschriften Wintersemester 2006/2007 Gliederung 1 Provably Secure Signature Schemes Lamport Signature Scheme Full Domain Hash 2 Undeniable Signatures 3 Fail-stop Signature

Mehr

Post-quantum cryptography

Post-quantum cryptography Post-quantum cryptography Post-quantum cryptography 1. Komplexität & Quantencomputer 2. Kryptografie in Gittern 3. FHE Eine Revolution im Datenschutz? WIESO? KOMPLEXITÄT Public-Key-Kryptografie Grafiken:

Mehr

Primzahlen: vom antiken Griechenland bis in den Computer

Primzahlen: vom antiken Griechenland bis in den Computer Primzahlen: vom antiken Griechenland bis in den Computer Jakob Stix Institut für Mathematik Goethe Universität Frankfurt am Main 28 April 2016 Girls Day GU-Frankfurt Primzahlen Atome (unteilbar!) der Multiplikation:

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Der Adapter Z250I / Z270I lässt sich auf folgenden Betriebssystemen installieren:

Der Adapter Z250I / Z270I lässt sich auf folgenden Betriebssystemen installieren: Installationshinweise Z250I / Z270I Adapter IR USB Installation hints Z250I / Z270I Adapter IR USB 06/07 (Laden Sie den Treiber vom WEB, entpacken Sie ihn in ein leeres Verzeichnis und geben Sie dieses

Mehr

ProSeminar Kryptografie Prof. Dr. Ulrike Baumann. RSA-Verschlüsselung Francesco Kriegel

ProSeminar Kryptografie Prof. Dr. Ulrike Baumann. RSA-Verschlüsselung Francesco Kriegel ProSeminar Kryptografie Prof. Dr. Ulrike Baumann WS 2006/2007 RSA-Verschlüsselung Francesco Kriegel 14. 12. 2006 Inhaltsverzeichnis 1 Public-Key-Verfahren 2 1.1 Idee......................................................................

Mehr

Grundlegende Protokolle

Grundlegende Protokolle Grundlegende Protokolle k.lindstrot@fz-juelich.de Grundlegende Protokolle S.1/60 Inhaltsverzeichnis Einleitung Passwortverfahren Wechselcodeverfahren Challange-and-Response Diffie-Hellman-Schlüsselvereinbarung

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

https://portal.microsoftonline.com

https://portal.microsoftonline.com Sie haben nun Office über Office365 bezogen. Ihr Account wird in Kürze in dem Office365 Portal angelegt. Anschließend können Sie, wie unten beschrieben, die Software beziehen. Congratulations, you have

Mehr

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2 ReadMe zur Installation der BRICKware for Windows, Version 6.1.2 Seiten 2-4 ReadMe on Installing BRICKware for Windows, Version 6.1.2 Pages 5/6 BRICKware for Windows ReadMe 1 1 BRICKware for Windows, Version

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!!

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!! REPORT OF INVENTION Please send a copy to An die Abteilung Technologietransfer der Universität/Hochschule An die Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH Ettlinger Straße

Mehr

Parameterwahl für sichere zeitgemäße Verschlüsselung

Parameterwahl für sichere zeitgemäße Verschlüsselung Parameterwahl für sichere zeitgemäße Verschlüsselung Prof. Dr. Mark Manulis Kryptographische Protokolle Fachbereich Informatik TU Darmstadt / CASED Mornewegstrasse 30 64293 Darmstadt Room 4.1.15 (4th floor)

Mehr

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient Filing system designer FileDirector Version 2.5 Novelties FileDirector offers an easy way to design the filing system in WinClient. The filing system provides an Explorer-like structure in WinClient. The

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Erstellen sicherer ASP.NET- Anwendungen

Erstellen sicherer ASP.NET- Anwendungen Erstellen sicherer ASP.NET- Anwendungen Authentifizierung, Autorisierung und sichere Kommunikation Auf der Orientierungsseite finden Sie einen Ausgangspunkt und eine vollständige Übersicht zum Erstellen

Mehr

ELBA2 ILIAS TOOLS AS SINGLE APPLICATIONS

ELBA2 ILIAS TOOLS AS SINGLE APPLICATIONS ELBA2 ILIAS TOOLS AS SINGLE APPLICATIONS An AAA/Switch cooperative project run by LET, ETH Zurich, and ilub, University of Bern Martin Studer, ilub, University of Bern Julia Kehl, LET, ETH Zurich 1 Contents

Mehr

Workshop: Was wollen wir tun? - Aufbau eines einfachen Tunnel Setup zum verbinden zweier netze und eines externen hosts. Womit?

Workshop: Was wollen wir tun? - Aufbau eines einfachen Tunnel Setup zum verbinden zweier netze und eines externen hosts. Womit? Cryx (cryx at h3q dot com), v1.1 Workshop: Was wollen wir tun? - Aufbau eines einfachen Tunnel Setup zum verbinden zweier netze und eines externen hosts - Aufbau der Netze und testen der Funktion ohne

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Das komplette Material finden Sie hier: School-Scout.de Pronouns I Let s talk about

Mehr

PGP und das Web of Trust

PGP und das Web of Trust PGP und das Web of Trust Thomas Merkel Frubar Network 14. Juni 2007 E509 273D 2107 23A6 AD86 1879 4C0E 6BFD E80B F2AB Thomas Merkel (Frubar Network) PGP und das Web of Trust 14. Juni

Mehr

Listening Comprehension: Talking about language learning

Listening Comprehension: Talking about language learning Talking about language learning Two Swiss teenagers, Ralf and Bettina, are both studying English at a language school in Bristo and are talking about language learning. Remember that Swiss German is quite

Mehr

Abteilung Internationales CampusCenter

Abteilung Internationales CampusCenter Abteilung Internationales CampusCenter Instructions for the STiNE Online Enrollment Application for Exchange Students 1. Please go to www.uni-hamburg.de/online-bewerbung and click on Bewerberaccount anlegen

Mehr

Digicomp Hacking Day 2013 Einführung Kryptographie. Kryptographie Einführung und Anwendungsmöglichkeiten. Andreas Wisler, CEO GO OUT Production GmbH

Digicomp Hacking Day 2013 Einführung Kryptographie. Kryptographie Einführung und Anwendungsmöglichkeiten. Andreas Wisler, CEO GO OUT Production GmbH Kryptographie Einführung und Anwendungsmöglichkeiten Andreas Wisler, CEO GO OUT Production GmbH 1 Übersicht Kryptologie Kryptografie Kryptoanalyse Steganografie Die Kryptologie ( versteckt, verborgen,

Mehr

9 Schlüsseleinigung, Schlüsselaustausch

9 Schlüsseleinigung, Schlüsselaustausch 9 Schlüsseleinigung, Schlüsselaustausch Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal initiale Schlüsseleinigung für erste sichere Kommunikation Schlüsselerneuerung für weitere Kommunikation

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 2: Kryptographische Begriffe und symmetrische Verschlüsselungsverfahren Inhalt Kryptographische Begriffe Historische Verschlüsselungsverfahren

Mehr

Hochschule Wismar. Fachbereich Wirtschaft. Semesterarbeit. Public Key Kryptosysteme. Studiengang Wirtschaftsinformatik Matrikel Nr.

Hochschule Wismar. Fachbereich Wirtschaft. Semesterarbeit. Public Key Kryptosysteme. Studiengang Wirtschaftsinformatik Matrikel Nr. Hochschule Wismar Fachbereich Wirtschaft Semesterarbeit Public Key Kryptosysteme eingereicht von: Betreuer: Matthias Koch Studiengang Wirtschaftsinformatik Matrikel Nr. : 100193 Prof. Dr. J. Cleve Copyright

Mehr

How to access licensed products from providers who are already operating productively in. General Information... 2. Shibboleth login...

How to access licensed products from providers who are already operating productively in. General Information... 2. Shibboleth login... Shibboleth Tutorial How to access licensed products from providers who are already operating productively in the SWITCHaai federation. General Information... 2 Shibboleth login... 2 Separate registration

Mehr

Digitale Signaturen Einführung und das Schnorr Signaturschema

Digitale Signaturen Einführung und das Schnorr Signaturschema Digitale Signaturen Einführung und das Schnorr Signaturschema Patrick Könemann paphko@upb.de Proseminar: Public-Key Kryptographie Prof. Dr. rer. nat. J. Blömer Universität Paderborn 27. Januar 2006 Abstract

Mehr

Solutions Übungsblatt 12

Solutions Übungsblatt 12 Futioetheorie, SS 204 Solutios Übugsblatt 2 Aufgabe : Es sei g eie meromorphe Futio auf C mit höchstes eifache Pole. Wir ehme a, dass das Residuum a jedem Pol vo g eie gae Zahl ist. Zeige Sie: a) Es existiert

Mehr

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 5. Januar 2015 WS 2015/2016

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 5. Januar 2015 WS 2015/2016 IT-Sicherheit WS 2015/2016 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 5. Januar 2015 Wiederholung Hashfunktionen Einwegfunktionen Schwach

Mehr

Modul 2: Zusammenspiel der Verfahren: Authentisierung, Verschlüsselung und Schlüsselmanagement

Modul 2: Zusammenspiel der Verfahren: Authentisierung, Verschlüsselung und Schlüsselmanagement Modul 2: Zusammenspiel der Verfahren: Authentisierung, und Schlüsselmanagement M. Leischner nsysteme II Folie 1 Gegenseitige, symmetrische, dynamische Authentisierung und Authentisierung rnd-c A RANDOM

Mehr

Employment and Salary Verification in the Internet (PA-PA-US)

Employment and Salary Verification in the Internet (PA-PA-US) Employment and Salary Verification in the Internet (PA-PA-US) HELP.PYUS Release 4.6C Employment and Salary Verification in the Internet (PA-PA-US SAP AG Copyright Copyright 2001 SAP AG. Alle Rechte vorbehalten.

Mehr

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail.

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail. von Beweis von vom ggt zu gpg 1 30.05.2012 1 lars.scher (bei) gmx-topmail.de Inhaltsverzeichnis von Beweis 1 Einführung 2 von Rechnen mit n Beispiele & Regeln Der gröÿte gemeinsame Teiler Der euklidische

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Public-Key- mit dem RSA-Schema Andreas Meisel und Robert Mileski Institut für Informatik der Universität Potsdam Seminar und Datensicherheit WS 2006/2007 Inhaltsverzeichnis Geschichte der (1/3) 1900 v.

Mehr

ONLINE LICENCE GENERATOR

ONLINE LICENCE GENERATOR Index Introduction... 2 Change language of the User Interface... 3 Menubar... 4 Sold Software... 5 Explanations of the choices:... 5 Call of a licence:... 7 Last query step... 9 Call multiple licenses:...

Mehr