3. Echtzeit-Scheduling Grundlagen

Größe: px
Ab Seite anzeigen:

Download "3. Echtzeit-Scheduling Grundlagen"

Transkript

1 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei Freigabezei, Bereizei (release ime) Zeischranke, Fris (deadline) Task Menge zusammengehörender Jobs speziell: Jobnez oder periodische Task Deadline har/weich Nuzen ime/uiliy funcion deerminisisch/probabilisisch Zei Ressource (Beriebsmiel BM) akiv (Prozessor) passiv exklusiv, i.d.r. enziehbar (Kosen!) Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-1 Hamann, TU Dresden

2 Schedule (Ablaufplan) zeiliche Zuordnung von Jobs zu Prozessoren gülig (valid): Zuordnung verlez keine der gegebenen Bedingungen ausführbar (feasible): alle Zeischranken werden eingehalen Scheduling * Einplanung: Vorgehen (Algorihmus), das bei gegebener Taskbeschreibung für jede Taskmenge einen güligen Ablaufplan besimm * Prozessor-Zuordnung: Auswahl eines Jobs durch Scheduler Einplanbarkei Taskmenge is einplanbar (schedulable) bei einem Scheduling-Algorihmus, wenn der Algorihmus einen ausführbaren Ablaufplan erzeug Admission (Zulassung) Verfahren, das die Einplanbarkei einer Taskmenge enscheide Opimaliä (bzgl. Einplanbarkei) eines Scheduling-Verfahrens in einer Klasse C von Verfahren: erzeug für jede Taskmenge T einen ausführbaren Ablaufplan, sofern überhaup T mi irgendeinem Verfahren aus C einplanbar is Klassifikaion Scheduling für Jobneze periodische Tasks Scheduling für periodische Tasks: zeigeseuer (ime driven) ereignisgeseuer (even driven) saische dynamische Prioriäen nichperiodische Tasks Nuzung weierer, nich enziehbarer Beriebsmiel Enziehbarkei (Verdrängbarkei) Ein-/Mehrprozessorsyseme Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-2 Hamann, TU Dresden

3 3.2. Schedulingsraegien für Jobneze Beschreibung Job J e (r d] Jobname Ausführungszei Freigabezei Zeischranke (Deadline) Jobnez Jobabhängigkeien: Präzedenzrelaion R: irreflexive asymmerische Relaion (A, B) R: B kann ers beginnen, wenn A ferig Darsellung häufig als Vorgangsknoennez Beispiel. A 2 (2 10] C 2 (1 12] D 1 (4 9] F 6 (0 20] B 3 (0 7] E 1 (1 8] G 5 (6 21] Effekive Freigabezei und Deadline effekive Freigabezei eines Jobs: Maximum der Freigabezei des Jobs und der effekiven Freigabezeien seiner Vorgänger effekive Deadline analog (Minima der Nachfolger) in 1-Prozessor-Sysemen können Abhängigkeien ignorier werden! Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-3 Hamann, TU Dresden

4 Grundlegende Sraegien EDF LST Earlies Deadline Firs Leas Slack Time e laxiy l MLF Minimum Laxiy Firs r d l = (d ) e LRT Laes Release Time EDF rückwärs e : Reslaufzei Beispiel. A 3 (] C 2 (2 7] B 2 (1 8] EDF: LST: sreng: LRT: Bedeuung EDF, MLF = LST und LRT sind opimal (bzgl. Einplanbarkei) in 1-Prozessor-Sysemen bei verdrängbaren Jobs ohne gemeinsame BM. Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-4 Hamann, TU Dresden

5 3.3. EDF Opimaliä EDF is opimal in 1-Prozessor-Sysemen mi Enzug und ohne gemeinsame BM-Nuzung, d.h.: Wenn es auf irgendeine Weise möglich is, eine Jobmenge J einzuplanen, so is dies auch gemäß EDF möglich. Beweis. Folgender Ablaufplan sei ausführbar: I 1 J i I 2 J k r i d k d i Dann is auch der folgende Ablaufplan ausführbar: I 1 I 1 J k,1 J k,2 J i r i r k d k d i Dami ergib sich als endgüliger EDF-Plan: I 1 I 2 J k,1 J k,2 J i r i r k d k d i Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-5 Hamann, TU Dresden

6 Admission-Krierium für periodische Tasks Voraussezungen T = { 1,..., n } n unabhängige periodische Tasks, verdrängbar, 1 Prozessor i = (p i, e i ) p i Periodenlänge = Deadline, e i Ausführungszei Admission-Krierium für EDF n ei T is einplanbar genau dann, wenn u 1 i 1 pi Beweis-Skizze A) u > 1 T nich einplanbar (rivial). B) T lasse sich nich einplanen ij : ij überschreie seine Deadline. 1 i ij k n 0 Zum Zeipunk is keiner der akuellen Jobs bisher ausgeführ worden. Der Gesambedarf an Prozessorzei bis zu diesem Zeipunk überseig : Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-6 Hamann, TU Dresden

7 Allgemeiner * i: d i p i : T einplanbar u 1. * i: d i < p i : T muß nich einplanbar sein auch bei u 1. Beispiel. 1 (2; 1), 2 (5; 2,5) d i = p i : 10 d 1 = 2, d 2 = 3: * Diche (densiy) n ei i i min( d, p ) i i i 1 Offenbar gil: i: d i < p i > u. 10 Es gil: T is einplanbar, falls 1. * In summa 10 Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-7 Hamann, TU Dresden

8 Probleme Nich-Opimaliä EDF is nich opimal bei (1) gemeinsam genuzen Beriebsmieln (2) nich verdrängbaren Jobs (3) in Mehrprozessorsysemen. Beispiele. (1) A [5 R(2 3)] (0 9] B [3 R(0 1)] (3 7] (2) A 3 (0 4] B 1 (1 3] (3) Prozessoren P 1, P 2 ; 3 Jobs (e i, d i ): (1; 1) (1; 2) (3; 3,5); r i = 0 P 1 J 1 J 3 P 1 P 2 J 2 P 2 Domino-Effek : d 1 d 2 d 3 d 4 d 5 L max d 2 d 1 d 3 d 4 d 5 L max 1 Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-8 Hamann, TU Dresden

9 3.4. Zeigeseueres Scheduling für periodische Tasks Periodische Tasks Begriffe Beschreibung T = { 1,..., n } n N fes; i = ( ij ) j = 1,2,... (φ, p, e, d) Zeischranke Ausführungszei Periode Phase absulu relaiv konsan unabhängig, d.h. R = und keine gemeinsamen BM! Hyperperiode H = kgv(p 1,..., p n ) Harmonische Perioden p i p j p i p j i, j = 1,,n Klassifikaion periodisch: konsan minimaler Absand sporadisch: beliebig dich, hare Deadline aperiodisch: keine (oder weiche) Deadline Off-line Scheduling Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-9 Hamann, TU Dresden

10 Rahmenbasieres zyklisches Scheduling Scheduling-Enscheidungen sollen periodisch erfolgen auf der Basis von Rahmen (frames) der Größe f. f... 0 f 2f 3f H Bedingungen für f (1) f e i i = 1,...,n (2) i {1,,n}: f p i (3) 2f ggt(p i, f) d i i = 1,...,n. T 1 (6, 3), T 2 (7, 3) f = f = f = Jobscheiben (job slices) T 1 (8, 3), T 2 (5, 2) kleinser Rahmen gemäß (1)/(2): f = 4. Aber: 2 4 ggt(5, 4) = 7 5? Jobscheiben für T 1 : (8, 2), (8, 1). Sporadische Tasks: Einplanung miels slack sealing Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-10 Hamann, TU Dresden

11 3.5. Prioriäsbasieres Scheduling für periodische Tasks Voraussezungen wie in 3.4. Wichige Sraegien und Ergebnisse Saische Prioriäen RMS is opimal bei d i = p i rae monoonic DMS is opimal bei d i < p i deadline monoonic Admission-Krierium für RMS: u n u n ( 2 1) hinreichend, u 1 bei harmonischen Tasks. n i 1 Exak: LEHOCZKY-Krierium bzw. Analyse des Zeibedarfs. Ausgangspunk: Kriischer Zeipunk einer Task. ei p i ; Dynamische Prioriäen EDF is opimal. Krierium: u 1. Beispiel. 1 : p 1 = 2 e 1 = 1 2 : p 2 = 5 e 2 = 2,5. u = 1 2 RMS EDF Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-11 Hamann, TU Dresden

12 3.6. Eingeschränke Prioriäszuordnung Problemsellung Taskprioriäen 1,...,n sind auf Sysemprioriäen 1,...,m aufzueilen mi m < n. Vorgehen a 1,...,a m sei eine Aufeilung (d.h. 1 a 1 < < a m = n). Möglichkeien: gleichmäßig (linear) in gleichmäßigem Verhälnis ai 1 1, i = 2,...,m. a i Hinergrund Grenzauslasung für gesichere Einplanbarkei (schedulable uilizaion) Kleinse Auslasung u ~, so daß jede Taskmenge mi u u~ einplanbar is. RMS: ~ n u n( 2 1), EDF: u ~ 1. Wird bei unzureichenden Sysemprioriäen eingeschränk. RMS g a i 1 min i 2,..., m ai 1, n groß: ~ ln(2g) 1 g g 1 2 u LEHOCZKY/SHA, 1986 g g 1 2 Es gil ses u ~ ln 2. Beispiel. n = , m = 256: u ~ = 0,9986 ln 2; Aufeilung: Schedulingheorie 2013 Grundlagen Echzei-Scheduling 3-12 Hamann, TU Dresden

Quantitative Methoden. Betriebssysteme

Quantitative Methoden. Betriebssysteme Quantitative Methoden Betriebssysteme Problem und Gegenstand Problem Erfüllen von QoS-Anforderungen mit zeit- bzw. größenbeschränkten Ressourcen Gegenstand Scheduling basierend auf deterministischen Modellen

Mehr

Scheduling in Echtzeitbetriebssystemen. Prof. Dr. Margarita Esponda Freie Universität Berlin

Scheduling in Echtzeitbetriebssystemen. Prof. Dr. Margarita Esponda Freie Universität Berlin Scheduling in Echtzeitbetriebssystemen Prof. Dr. Margarita Esponda Freie Universität Berlin Echtzeitsysteme Korrekte Ergebnisse zum richtigen Zeitpunkt Hart Echtzeitsysteme Eine verspätete Antwort ist

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Echtzeitscheduling (1)

Echtzeitscheduling (1) Echtzeitscheduling (1) Scheduling in Betriebssystemen Ressourcenausteilung (CPU, Speicher, Kommunikation) Faire Ressourcenvergabe, insbesondere CPU Hohe Interaktivität / kurze Reaktionszeit für interaktive

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich hema 3: Dynamischer versus saischer Voreilhafigkeisvergleich Vor allem in der Wirschafspraxis belieb: Gewinnorieniere sa zahlungsorieniere Ansäze zum reffen von Invesiionsenscheidungen. sogenanne saische

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Zeitgesteuerte Scheduling-Strategien in Echtzeitsystemen

Zeitgesteuerte Scheduling-Strategien in Echtzeitsystemen Wanja Hofer Hauptseminar Ausgewählte Kapitel eingebetteter Systeme 01.06.2005 Lehrstuhl 4 Betriebsysteme und Verteilte Systeme Zeitgesteuerte Scheduling-Strategien in Echtzeitsystemen Inhaltsverzeichnis

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

PPS-Auswahl und -einsatz - weniger ist mehr!

PPS-Auswahl und -einsatz - weniger ist mehr! Prof. Dr.-Ing. Wilhelm Dangelmaier Einleiung Die eine Aussage dieser Überschrif is: Auswahlprozesse für die Produkionsplanung und -seuerung laufen nich immer so ab, dass schließlich das geeigneese Sysem

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

ESIGN Renderingservice

ESIGN Renderingservice Markeingmaerialien on demand ohne Fooshooings und Aufbauarbeien Mi dem ESIGN Renderingservice er sellen wir für Sie koseneffizien und zeinah neue, druckfähige Markeingmaerialien zur Gesalung von Broschüren,

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1 Windenergie Grundsäzlich gil: - Energie-Erhalung E ges = E + E +... = cons. - (physikalische) Arbei bezeichne den Prozeß der Umwandlung einer Energieform E in eine andere E ; Energie bedeue auch Arbeisvermögen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation Gliederung akroökonomie 1 rof. Volker Wieland rofessur für Geldheorie und -poliik J.W. Goehe-Universiä Frankfur 1. Einführung 2. akroökonomische Analyse mi Flexiblen reisen 3. akroökonomische Analyse in

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrsuhl für Finanzwirschaf Lösungen zu Konrollfragen Finanzwirschaf Prof. Dr. Thorsen Poddig Fachbereich 7: Wirschafswissenschaf Einführung (Kapiel ) Sichweisen in der Finanzwirschaf. bilanzorieniere

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Value Based Management

Value Based Management Value Based Managemen Vorlesung 5 Werorieniere Kennzahlen und Konzepe PD. Dr. Louis Velhuis 25.11.25 Wirschafswissenschafen PD. Dr. Louis Velhuis Seie 1 4 CVA Einführung CVA: Cash Value Added Spezifischer

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking Seminararbeispräsenaion Risiko und Seuern On he Effecs of Redisribuion on Growh and Enrepreneurial Risk-aking aus der Vorlesung bekann: Posiionswahlmodell Selbssändigkei vs. abhängige Beschäfigung nun

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen Kapiel IX Öffenliche Verschuldung a) Besandsgröße Einige Kenngrößen Öffenliche Verschuldung, ausgedrück durch den Schuldensand (Schuldner: Bund, Länder, Gemeinden, evenuell auch Unernehmen dieser Gebieskörperschafen,

Mehr

3 Prozessorzuteilungsverfahren für Echtzeitsysteme

3 Prozessorzuteilungsverfahren für Echtzeitsysteme -Systeme 3 sverfahren für systeme 3.1 Überblick 3.1.1 Zielstellung Finden einer Abbildung Ausführungseinheit Prozessor, so daß alle notwendigen Ressourcen (Rechenzeit, Speicherplatz, Geräte,... ) den Ausführungseinheiten

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

5) Realzeitscheduling

5) Realzeitscheduling Inhalte Anforderungen Klassifizierungen Verschiedene Verfahren: FIFO, Round Robin, Least Laxity, EDF, fixed/dyn. Prio. Beispiele und Aufgaben Seite 1 Motivation Gegeben: Ein Einprozessorsystem, das Multiprogrammierung

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion

Übersicht über die Vorlesung. 2 Marketing-Mix und Marktreaktion Üersich üer die Vorlesung Was is arkeing? arkeing-ix und arkreakion 3 Sraegisches arkeing 4 Produkpoliik 5 Preispoliik 6 Kommunikaionspoliik 7 Disriuionspoliik Gliederung des zweien Kapiels arkeing-ix

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung

Prognoseverfahren: Gewogener gleitender Durchschnitt, Exponentielle Glättung erster und zweiter Ordnung 4202 KE2 Quaniaive verfahren verfahren: Gewogener gleiender Durchschni, Exponenielle Gläung erser und zweier Ordnung Ein Unernehen öche die Nachfrage nach eine Produk prognosizieren. Dabei sollen ier die

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

2. Schärfentiefe des Mikroskops

2. Schärfentiefe des Mikroskops Seie 3 Prakikum Nr. 11 urclic-mikrskp. Scärfeniefe des Mikrskps.1 Gemerisc-pisce Scärfeniefe Wird ein Objek mi Tiefenausdenung fgrafier (der auf eine Masceibe abgebilde), s is nur ein ebener Scni durc

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

II. Wertvergleich von Zahlungsströmen durch Diskontierung

II. Wertvergleich von Zahlungsströmen durch Diskontierung Unernehmensfinanzierung Winersemeser 20/2 Prof. Dr. Alfred Luhmer II. Wervergleich von Zahlungssrömen durch Diskonierung Gegenwarswere und Zukunfswere Kalkulaionszinsfuß Bewerung konsaner Zahlungssröme:

Mehr

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik 3. Nichperiodische Signale 3.1 ω ω ω dω Nichperiodische Signale endlicher Länge Die Fourierransformaion zerleg nichperiodische Signale endlicher Länge in ein koninuierliches endliches Frequenzspekrum.

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Ressourcenbeschränkte Projektplanung mit kostenbehafteten Zusatzkapazitäten

Ressourcenbeschränkte Projektplanung mit kostenbehafteten Zusatzkapazitäten Ressoucenbeschänke Pojekplanung mi kosenbehafeen Zusazkapaziäen Andé Schnabel Leibniz Univesiä Hannove Wischafswissenschafliche Fakulä Insiu fü Podukionswischaf uzvoag fü DoWoNo 204 22. Mai 204 Andé Schnabel

Mehr

Übung zur Vorlesung Echtzeitsysteme

Übung zur Vorlesung Echtzeitsysteme Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Übung zur Vorlesung Echtzeitsysteme Philipp Heise heise@in.tum.de Christoph Staub staub@in.tum.de Steffen

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Verteilte Echtzeit-Systeme

Verteilte Echtzeit-Systeme - Verteilte Echtzeit-Systeme Hans-Albrecht Schindler Wintersemester 2015/16 Teil B: Echtzeit-Betriebssysteme Abschnitt 9: Scheduling gemischter Prozessmengen CSI Technische Universität Ilmenau www.tu-ilmenau.de

Mehr

Dokumentation von Bildungsaktivitäten

Dokumentation von Bildungsaktivitäten Dokumenaion von Bildungsakiviäen und -prozessen A Übersich über die in den lezen Monaen durchgeführen Bildungsakiviäen, die die Lernund Enwicklungsprozesse der Kinder vorrangig im Bildungsbereich Mahemaik

Mehr

Vom singenden Draht zum DVB-C

Vom singenden Draht zum DVB-C Vom singenden Drah zum DVB-C Is digiale Kommunikaion effiziener? Gerolf Ziegenhain TU Kaiserslauern Übersich Einleiung Begriffsklärung Ziel Analoge Modulaion AM FM Muliplexverfahren Digiale Modulaion QPSK

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren ADM I Analoge & Digiale Modulaionsverfahren Digiale und Analoge Modulaionsverfahren Inhalsverzeichnis 1 Idealisiere analoge und digiale Signale 1 2 Bezeichnungen für digiale Modulaionsverfahren 2 3 Eingriffsmöglichkeien

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Real- Time Systems. Part 7: Scheduling. Fakultät für Informa0k der Technischen Universität München

Real- Time Systems. Part 7: Scheduling. Fakultät für Informa0k der Technischen Universität München Real- Time Systems Part 7: Scheduling 1 Content 1. Introduc0on 2. Scheduling Algorithms a. Overview b. Offline Schedulers c. Online Schedulers 3. Schedulability Tes0ng 4. Resources and Resource Access

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

ESIGN Scanservice. High-End-Scansystem für die Erstellung professioneller Produktfotos

ESIGN Scanservice. High-End-Scansystem für die Erstellung professioneller Produktfotos Mi dem ESIGN Scanservice ersellen Sie hochaufgelöse und farbkorreke Produk foos Ihrer Bodenbeläge und anderer Oberflächenmaerialien aus dem Inerieurbereich. Die Einsazberei - che der Produkfoos reichen

Mehr

(b) Worin besteht der Unterschied zwischen online und offline Scheduling?

(b) Worin besteht der Unterschied zwischen online und offline Scheduling? Universität Paderborn Fachgebiet Rechnernetze SoSe 2013 Konzepte und Methoden der Systemsoftware Präsenzübung 3 2013-05-06 bis 2013-05-10 Aufgabe 1: Scheduling - Grundbegriffe Bekanntlich gibt es für das

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

J. Reinier van Kampenhout Robert Hilbrich Hans-Joachim Goltz. Workshop Echtzeit Fraunhofer FIRST

J. Reinier van Kampenhout Robert Hilbrich Hans-Joachim Goltz. Workshop Echtzeit Fraunhofer FIRST Modellbasierte Generierung von statischen Schedules für sicherheitskritische, eingebettete Systeme mit Multicore Prozessoren und harten Echtzeitanforderungen J. Reinier van Kampenhout Robert Hilbrich Hans-Joachim

Mehr

Zahlungsverkehr und Kontoinformationen

Zahlungsverkehr und Kontoinformationen Zahlungsverkehr und Konoinformaionen Mulibankfähiger Zahlungsverkehr für mehr Flexibilä und Mobiliä Das Zahlungsverkehrsmodul biee Ihnen für Ihre Zahlungsverkehrs- und Konenseuerung eine Vielzahl mulibankenfähiger

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) 9.Vorlesung Betriebssysteme (BTS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Betriebssysteme 10.5.2007 Exkursion Die Exkursion wird am Freitag, den 18.5.2007

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr