Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie"

Transkript

1 Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele H-Atom Spin Mehrelektronen-Atome und Spektroskopie Molekülorbitaltheorie Born-Oppenheimer-Potential Mikrokosmos Mikroskopische Beschreibung der Materie Kapitel 4: Molekülspektroskopie Kapitel 5: Zwischenmolekulare Kräfte Kapitel 6: Struktur der Materie Bewegungsformen eines Moleküls: Rotationen,Schwingungen, elektron. Bewegung Mikrowellen-, Infrarot- und optische Spektroskopie Elektrostatische Eigenschaften von Molekülen Zwischenmolekulare Wechselwirkungen Struktur von Biomolekülen Reale Gase Kondensierte Phasen Moleküldynamik Makrokosmos

2 Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik: Vorbereitung Kapitel 10: Grundlagen der Thermodynamik Kapitel 11: Thermochemie Kapitel 12: Chemisches Gleichgewicht Kapitel 13: Phasenübergänge Kapitel 14: Transportvorgänge Zustandsbesetzungen im Teilchenensemble Maxwell-Boltzmann-Verteilung Herleitung thermodynamischer Grössen aus Eigenschaften des Teilchenensembles Zustandsfunktionen und totales Differential Homogene Funktionen und mechanische Koeffizienten Die vier Hauptsätze der Thermodynamik Chemisches Potential Chemische Anwendungen der Thermodynamik: thermochemische Grössen, Satz von Hess Reaktionsgleichgewicht, Gleichgewichtskonstanten Temperaturabhängigkeit Phasengleichgewichte und -diagramme Clapeyron-Gleichung und Phasenregel Materie-, Energie- und Impuls-Transport in Gasen und Flüssigkeiten Übergang von mikroskopischer zu makroskopischer Beschreibung Klassische Thermodynamik: Makroskopische Beschreibung der Materie

3 Kapitel 7: Boltzmann-Verteilung Übersicht: 7.1 Einleitung 7.2 Zustandsbesetzungen 7.3 Die wahrscheinlichste Verteilung 7.4 Die molekulare Zustandssumme 7.5 Anwendungen Literatur: Atkins, de Paula, Physikalische Chemie (4. Aufl.), Kapitel 16, 21 Atkins, de Paula, Kurzlehrbuch Physikalische Chemie (4. Aufl.), Kapitel 1, 22

4 7.1. Einleitung Moleküleigenschaften, die man aus den besetzten Energieniveaus berechnen bzw. messen kann Eigenschaften der makroskopischen Materie Wir betrachten: ein System aus N Teilchen (Ensemble) mit Gesamtenergie E, die unter den Teilchen verteilt ist Zwischen den Teilchen kommt es zu Stössen Austausch von Energie zwischen den Teilchen Austausch von Energie zwischen den verschiedenen Freiheitsgraden

5 7.2 Zustandsbesetzungen In einer Ansammlung von Molekülen (Ensemble) kann jeder molekulare (Rotations-, Vibrations-, elektronische) Zustand i durch dessen Energie E i und die Zahl der Teilchen N i in diesem Zustand (=Besetzung) charakterisiert werden Ziel: Berechnung der Besetzung der Zustände für jedes Teilchen, in jedem Freiheitsgrad und für jede Temperatur Eigenschaften des Ensembles Die Besetzung der Zustände bleibt im Mittel konstant (thermisches Gleichgewicht), auch wenn sich die Identität der Teilchen/Moleküle in einem spezifischen Zustand nach jedem Stoss ändern kann Die Teilchen sind unabhängig voneinander Wechselwirkungen zwischen den Teilchen werden vernachlässigt Alle Wahrscheinlichkeiten, die Energien zu verteilen, sind gleich wahrscheinlich (A-Priori-Prinzip) Schwingungszustände und Rotationszustände der selben Energie E i sind genau gleich besetzt Die Besetzung der Zustände hängt nur von einem Parameter ab: der Temperatur

6 7.2.2 Konfigurationen Ein System besitzt: N 0 Teilchen mit einer Energie E 0, N 1 Teilchen mit Energie E 1, N 2 Teilchen mit Energie E 2,... Nk Teilchen mit Energie Nk mit: E 0... Nullpunktsenergie (Referenzenergieniveau gem. Konvention: E 0 = 0) E i... Energie des Zustands i k... Anzahl Zustände Die Konfiguration eines Systems wird dann beschrieben als {N 0,N 1,N 2,...} (7.2.1) Beispiele für ein Ensemble von N Molekülen: {N, 0, 0,...} {N 1, 1, 0,...}, {N 1, 0, 1,...},... {N 2, 2, 0,...}, {N 2, 0, 2,...},... alle Moleküle im Grundzustand ein Molekül in einem angeregten Zustand zwei Moleküle im gleichen angeregten Zustand Für die Realisierung von zwei Molekülen im gleichen angeregten Zustand gibt es W = 1 2N(N 1) (7.2.2) verschiedene Möglichkeiten.

7 7.2.3 Gewicht der Konfiguration Eine bestimmte Konfiguration {N 0, N 1, N 2,..., Nk} kann auf W verschiedene Arten realisiert werden. W bezeichnet dabei das Gewicht der Konfiguration: W = N! N 0!N 1!N 2!...N k! (7.2.3) Dabei sind die Teilchen in jedem einzelnen Zustand nicht unterscheidbar, jedoch unterscheidbar von den Teilchen in den k - 1 anderen Zuständen. Beispiel: Berechne das Gewicht einer Konfiguration von 20 Teilchen, die folgenderweise verteilt sind: {0,1,5,0,8,0,3,2,0,1}; N = 20, k = 9 W = 20! 0!1!5!0!8!0!3!2!0!1! =

8 7.3 Die Boltzmann-Verteilung Die wahrscheinlichste Verteilung hat ein so grosses Gewicht W, dass das System praktisch immer in dieser Konfiguration gefunden wird: W = maximal dw = 0 (7.3.1) Wie findet man die wahrscheinlichste Konfiguration? Bedingungen: Energiekriterium: Berücksichtige nur diejenigen Konfigurationen, die zu einer konstanten Gesamtenergie des Systems E beitragen: E = X i N i E i (7.3.2) Teilchenzahl-Kriterium: Gesamtzahl der Teilchen ist konstant gleich N: X N i = N i (7.3.3) Löse Extremwert-Problem mit der Methode der Lagrange-Multiplikatoren Herleitung: Tafel

9 Boltzmann-Verteilung: Ni = N exp{ E i/k B T } P j exp{ E j/k B T } (7.3.4) mit kb= J K Boltzmann-Konstante Der Ausdruck im Nenner von Gl. (7.21) wird als molekulare Zustandssumme q bezeichnet: q = X exp{ E j /k B T } (7.3.5) j Gibt es g i Zustände mit der Energie E I (d.h. das Niveau i ist g i -fach entartet), dann gilt: N (7.3.6) i = N g i q exp{ E i/k B T } mit q = X g j exp{ E j /k B T } (7.3.7) j wobei die Summe nun über alle entarteten Niveaus läuft. Der Ausdruck exp{ E i k B T } (7.3.8) im Zähler von Gl. (7.3.4), (7.3.6) wird auch als Boltzmann-Faktor bezeichnet.

10 aterial: is K5-8 Statistik und Datenauswertung 7.4 Anwendungen der Boltzmann-Verteilung Moleküle mit quantisierten Energieniveaus Wie verteilen sich Teilchen in einem gequantelten System? Moleküle weisen i.a. quantisierte Energieniveaus für die Translation, Rotation, den Vibration, sich alle Teilchen elektronische auf dem untersten und Spin-Bewegung Energieniveau. auf (s. Kapitel 1-4). den Bei sich T einige = 0 besetzen Teilchen wegen alle Teilchen ihrer thermischen das unterste Energie Energieniveau auf höherem Niveau. (Grundzustand): N0=N. Bei T > 0 besetzen einige Teilchen wegen ihrer thermischen Energie auch nnscher höhere e-satz Niveaus. (ohne Beweis): E n kt In Abhängigkeit der Temperatur N o = Teilchen (und auf Niveau damit Eder o mit thermischen E o = 0 Energie) ergeben sich aus Gl. (7.3.6) qualitativ N n = folgende Teilchen auf Besetzungsszenarien Niveau E n für die Niveaus Ni (i>0): : N n NE on k B T : N i N Alle Niveaus ungefähr gleich besetzt : N n 0E n k B T : N i Nur das tiefste Niveau (Grundzustand) besetzt E i k B T : Besetzungen folgen exponentiell der Energie Ei

11 Der relative Anteil der Teilchen auf Niveau j (Population pj) errechnet sich aus Gl. (7.3.6) gemäss: p j = N j (7.4.1) N = g j q exp{ E j/k B T } wobei q die Zustandssumme Gl. (7.3.7) und gj den Entartungsfaktor für Niveau j bezeichnen. K5-2 Boltzmann-Statistik Bsp.: Besetzung der Rotationsisomere (Konformere) von 1-Bromo-2-Fluoromethan im thermischen Gleichgewicht: Die relativen Teilchenzahlen (oder äquivalent die Frage: Mit welcher Häufigkeit relativen Populationen) der beiden Isomere gauche 4 liegt welches Isomer vor? und anti berechnen sich aus Gl. (7.3.6) (oder auch Beachte: es gibt zwei 2 Egauche Gl. (7.4.1)) gemäss: Problemstellung Beispiel zur Boltzmannstatistik: Rotationspotential von 1-Bromo-2-Fluoro-Ethan V(ϕ) ϕ 360 Br Br Br F F gauche anti gauche Die Antwort gibt die Boltzmann-Formel: F ( ) n( anti) n gauche } ΔE ( ) ( ) = g gauche g anti Realisierungsmöglichkeiten für gauche, aber nur eine für anti e ΔE kt n = Häufigkeit der Moleküle, g = Anzahl Realisierungsmöglichkeiten (hier 2 gauche, 1 anti) ΔE > 0 Energieunterschied zwischen höherem und tieferem Energieniveau, T = Temperatur k = Boltzmann-Konstante Eanti E i n f ü h r u n g i n d i e P h y s i k a l i s c h e C h e m i e ΔE kt ΔE molar RT N gauche N anti = p gauche p anti = g gauche g anti exp{ E gauche /k B } exp{ E anti /k B } = g gauche g anti exp{ E/k B T } Da es zwei Realisierungen des gauche-isomers, aber nur eine des anti-isomers gibt, gilt: ggauche=2, ganti=1. Für ΔE=5 kj mol -1 und T=300 K erhält man: p gauche = 2 p anti 1 exp{ } =0.269 Bem.: Wird im Boltzmannfaktor ΔE in [kj mol -1 ] eingesetzt, ersetze kb durch die Gaskonstante R, damit die Einheiten konsistent bleiben (R=NA kb). Mit zunehmender Temperatur wird das Argument der Exponentialfunktion kleiner und es liegen mehr gauche-isomere vor!

12 7.4.2 Barometrische Höhenformel Die Abhängigkeit des Luftdrucks P von der Höhe h über dem Meer (barometrische Höhenformel) kann aus Gl. (7.4.1) hergeleitet werden, wenn man für die Energiedifferenz die Gravitationsenergie ΔEg=Mgh der Luft einsetzt: P (h) P (h = 0) =exp E g (h)/rt E g (h = 0)/RT P (h) =P (0) exp{ Mgh/RT } =exp (7.4.2) E g /RT mit: g Erdbeschleunigung h - Höhe über dem Meer P(h) Druck auf Höhe h P(0) Druck auf Meereshöhe (h=0) M Molmasse der Luft R molare Gaskonstante h

13 7.4.3 Temperaturabhängigkeit der Geschwindigkeitskonstanten: Arrhenius-Gleichung Es kann gezeigt werden, dass die empirische Arrhenius-Gleichung (7.4.3), die die Abhängigkeit der Reaktionsgeschwindigkeit von der Temperatur beschreibt, unter gewissen Annahmen aus statistisch-thermodynamischen Überlegungen basierend auf der Boltzmann-Verteilung erhalten werden kann (s. Vorlesung PC IV). k(t )=A exp{ E A /RT } (7.4.3) mit: k(t) - temperaturabhängige Reaktionsgeschwindigkeits-Konstante A - Präexponentieller Faktor nach Arrhenius EA - Aktivierungsenergie der Reaktion nach Arrhenius

14 7.4.4 Maxwell-Boltzmann-Geschwindigkeitsverteilung eines Gases Die Verteilung der Geschwindigkeiten von Gasteilchen bei einer Temperatur T (Maxwell-Boltzmann-Geschwindigkeitsverteilung) lässt sich ebenfalls aus der Boltzmann-Verteilung herleiten Tafel. in 1D: p(v x )dv x = M 2 RT 1 2 exp Mv 2 x 2RT dv x (7.4.4) 3 M 2 Mv p(v)dv =4 v 2 2 in 3D: exp 2 RT 2RT dv (7.4.5) Wichtige Kenngrössen der Verteilung: Mittlere Geschwindigkeit der Teilchen: Z r 1 8RT v = vp(v)dv = M 0 (7.4.6) Wahrscheinlichste Geschwindigkeit der Teilchen (Geschwindigkeit am Maximum der Verteilungsfunktion): r 2RT (7.4.7) v = M p(v)

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Einstellung des Gleichgewichts,

Mehr

Einführung. Physikalische Chemie für Biochemiker. Jörg Enderlein. joerg.enderlein@uni-tuebingen.de. www.joerg-enderlein.

Einführung. Physikalische Chemie für Biochemiker. Jörg Enderlein. joerg.enderlein@uni-tuebingen.de. www.joerg-enderlein. Einführung Physikalische Chemie für Biochemiker Jörg Enderlein joerg.enderlein@uni-tuebingen.de www.joerg-enderlein.de/vorlesungen Einführung Thermodynamik Chemische Kinetik Elektrochemie Spektroskopie

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Basiskenntnistest - Chemie

Basiskenntnistest - Chemie Basiskenntnistest - Chemie 1.) Welche Aussage trifft auf Alkohole zu? a. ) Die funktionelle Gruppe der Alkohole ist die Hydroxygruppe. b. ) Alle Alkohole sind ungiftig. c. ) Mehrwertige Alkohole werden

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,

Mehr

Kapitel 4. Die Grundlagen der Kinetik

Kapitel 4. Die Grundlagen der Kinetik Kapitel 4. Die Grundlagen der Kinetik Monomolekulare Reaktion erster rdnung A Produkte; v = k [A] (S N 1) bimolekulare Reaktion zweiter rdnung (S N 2) A + B Produkte; v = k [A] [B] Einfluss der Aktivierungsbarrieren

Mehr

Schweredruck von Flüssigkeiten

Schweredruck von Flüssigkeiten Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen Einleitende Fragen 1. Was versteht man unter Thermodynamik? Thermodynamik ist die Lehre von den Energieumwandlungen und den Zusammenhängen zwischen den Eigenschaften der Stoffe. 2. Erklären Sie folgende

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Repetitorium Physikalische Chemie für Lehramt

Repetitorium Physikalische Chemie für Lehramt Repetitorium Physikalische Chemie für Lehramt Anfangstext bei der Prüfung. Hier nicht relevant. Zu jeder der 10 Fragen werden maximal 12,5 Punkte vergeben. Höchstens 100 Punkte können erreicht werden,

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik Der Entropiebegriff in der Thermodynamik und der Statistischen Mechanik Kurt Schönhammer Institut für Theoretische Physik Universität Göttingen Inhaltsangabe Zur historischen Enwicklung der Thermodynamik

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.)

Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.) Vorlesung Organische Chemie II Reaktionsmechanismen (3. Sem.) Gliederung Grundlagen der physikalisch-organischen Chemie Radikalreaktionen Nukleophile und elektrophile Substitution am gesättigten C-Atom

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

254 15. ORDNUNG UND UNORDNUNG

254 15. ORDNUNG UND UNORDNUNG 54 15. ORDNUNG UND UNORDNUNG 15.4 Ordnungsdomänen Da die verschiedenen Untergitter im llgemeinen gleichwertig sind, können die - oder B-tome bei einer an verschiedenen Stellen beginnenden Keimbildung das

Mehr

Grundwissen Chemie 9. Jahrgangsstufe

Grundwissen Chemie 9. Jahrgangsstufe Grundwissen Chemie 9. Jahrgangsstufe 1. Stoffe und Reaktionen Gemisch: Stoff, der aus mindestens zwei Reinstoffen besteht. Homogen: einzelne Bestandteile nicht erkennbar Gasgemisch z.b. Legierung Reinstoff

Mehr

Schulcurriculum des Evangelischen Gymnasiums Siegen-Weidenau im Fache Chemie, Einführungsphase:

Schulcurriculum des Evangelischen Gymnasiums Siegen-Weidenau im Fache Chemie, Einführungsphase: Schulcurriculum des Evangelischen Gymnasiums Siegen-Weidenau im Fache Chemie, Einführungsphase: Inhaltsfeld_1 (Kohlenstoffverbindungen und Gleichgewichtsreaktionen) 1) Organische Kohlenstoffverbindungen

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie

9.4 Der 2. Hautsatz: spontane Prozesse und Entropie 9.4 Der 2. Hautsatz: spontane Prozesse und Entropie Beispiele für spontane Prozesse: Ein heisser Körper kühlt sich auf Umgebungstemperatur ab. Ein kalter Köper erwärmt sich auf Umgebungstemperatur. Die

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Brahe Kepler. Bacon Descartes

Brahe Kepler. Bacon Descartes Newton s Mechanics Stellar Orbits! Brahe Kepler Gravity! Actio = Reactio F = d dt p Gallilei Galilei! Bacon Descartes Leibnitz Leibniz! 1 Statistical Mechanics Steam Engine! Energy Conservation Kinematic

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Thermodynamik der Gemische

Thermodynamik der Gemische Thermodynamik der Gemische Bearbeitet von Andreas Pfennig 1. Auflage 2003. Buch. x, 394 S. Hardcover ISBN 978 3 540 02776 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 771 g Weitere Fachgebiete > Chemie, Biowissenschaften,

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Praktika Physikalische Chemie Wintersemester 2016 / 2017 Informationen PCAP

Praktika Physikalische Chemie Wintersemester 2016 / 2017 Informationen PCAP Dr. Ludwig Kibler 01.09.2016 PCAP Infos Praktika Physikalische Chemie Wintersemester 2016 / 2017 Informationen PCAP Seite 2 Ansprechpartner Organisation und Dozenten Studienkommission Chemie (Prof. Thorsten

Mehr

Bitte prüfen Sie Ihre Klausur sofort auf Vollständigkeit und Lesbarkeit. Spätere Beanstandungen werden nicht berücksichtigt!

Bitte prüfen Sie Ihre Klausur sofort auf Vollständigkeit und Lesbarkeit. Spätere Beanstandungen werden nicht berücksichtigt! Klausur zur Grundvorlesung Allg. und Anorg. Chemie vom 12.01.2006 Seite 1 von 9 Punkte: von 100 Matrikelnummer: Name: Vorname: Bitte eintragen: Fachsemester: Studiengang: Bitte ankreuzen: Biologie Molekulare

Mehr

Fakultät Chemie Physikalische Chemie I

Fakultät Chemie Physikalische Chemie I Fakultät Chemie Physikalische Chemie I Einstiegstraining für die Chemie-Olympiade 013 in Russland Physikalische Chemie Einheiten und Größen Ableiten und Integrieren Ideale Gase Thermodynamik chemischer

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

k B T de + p k B T dv µ k B T dn oder de = T ds pdv + µdn (1) Enthalpie I = E + pv zu betrachten und es gilt di = T ds + V dp + µdn (3)

k B T de + p k B T dv µ k B T dn oder de = T ds pdv + µdn (1) Enthalpie I = E + pv zu betrachten und es gilt di = T ds + V dp + µdn (3) III. hermodynamik 14. Wärme und Arbeit 14.1 Wiederholung Ziffer 4: Reversible Zustandsänderungen (a) Zustandsgrößen im thermodynamischen Gleichgewicht: Extensive Zustandsgrößen: E, V, N; ln Φ(E, V, N)

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k Versuche des Kapitel 7 Reaktionskinetik Einleitung Die Reaktion von Piperidin mit Dinitrochlorbenzol zum gelben Dinitrophenylpiperidin soll auf die Geschwindigkeitskonstante und die Arrheniusparameter

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Statistische Thermodynamik

Statistische Thermodynamik - 45 - Statistische Thermodynamik 1 Phänomenologische Therm., Quantenmechanik, Statistische Thermodynamik In diesem einführenden Kapitel soll etwas zu den Möglichkeiten, Vorzügen und Nachteilen dieser

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 2 Themen für die Poster-Session Entwicklung der Atommodelle Von der Fadenstrahlröhre zum Beschleuniger Franck-Hertz-Versuch Radioaktivität: Strahlenarten und

Mehr

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge Roland Reich Thermodynamik Grundlagen und Anwendungen in der allgemeinen Chemie Zweite, verbesserte Auflage VCH Weinheim New York Basel Cambridge Inhaltsverzeichnis Formelzeichen Maßeinheiten XV XX 1.

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Einführung in das Molecular Modelling

Einführung in das Molecular Modelling Einführung in das Molecular Modelling Darstellung und Bearbeitung dreidimensionaler Molekülstrukturen Berechnung der physikochemischen Eigenschaften Ziel: Einsicht in die molekularen Mechanismen der Arzneistoffwirkung

Mehr

11. Der Phasenübergang

11. Der Phasenübergang 11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,

Mehr

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung

Grenzflächenphänomene. Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie. J m. N m. 1. Oberflächenspannung Grenzflächenphänomene 1. Oberflächenspannung Physikalische Grundlagen der zahnärztlichen Materialkunde 3. Struktur der Materie Grenzflächenphänomene Phase/Phasendiagramm/Phasenübergang Schwerpunkte: Oberflächenspannung

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Änderungen für nächste Woche Vorlesung

Mehr

endotherme Reaktionen

endotherme Reaktionen Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer

Mehr

Klausur. zur Vorlesung Allgemeine Chemie (Physikalisch Chemischer Teil)

Klausur. zur Vorlesung Allgemeine Chemie (Physikalisch Chemischer Teil) Universität Regensburg Institut für Physikalische und Theoretische Chemie PD. Dr. A. Slenczka Vorname:... Nachname:... Geb.-Datum:... Matr.Nr.:... Studienfach: Chemie Diplom Biochemie oder Lehramt WS 2002/03

Mehr

Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik

Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik Kapitel 3 Alkene Struktur, Nomenklatur, Reaktivität Thermodynamik und Kinetik 34 Geben Sie die systematischen Namen jeder der folgenden Verbindungen an: Welche der Verbindungen aus Übung besitzen E- und

Mehr

Nach dem Gesetz der konstanten Proportionen (Proust 1799) kommen die gleichen Elemente in einer Verbindung stets im gleichen Massenverhältnis

Nach dem Gesetz der konstanten Proportionen (Proust 1799) kommen die gleichen Elemente in einer Verbindung stets im gleichen Massenverhältnis 0.4 Chemisches Rechnen Chemische Grundgesetze Das Gesetz von der Erhaltung der Masse (Lavosier 1789) besagt, dass sich die Gesamtmasse bei chemischen Reaktionen nicht ändert. Die Masse der Ausgangsstoffe

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 6 Entropie und Gibbs Enthalpie Gibbs-elmholtz-Gleichung Absolute Entropien Gibbs Standardbildungsenthalpien Kinetik

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI Physik für Mediziner im 1. Fachsemester #9 02/11/2010 Vladimir Dyakonov / Volker Drach dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Grundwissen Chemie 9. Klasse SG

Grundwissen Chemie 9. Klasse SG Grundwissen Chemie 9. Klasse SG Stoffe und Reaktionen - bestehen aus kleinsten Teilchen - lassen sich aufgliedern in Reinstoffe und Stoffgemische Stoffe Reinstoff Stoffe Stoffgemisch Atome Moleküle heterogen

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr