Ferienkurs Experimentalphysik 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Experimentalphysik 4"

Transkript

1 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner

2 Inhaltsverzeichnis 1 Quantenstatistik Vorüberlegungen Verteilungsfunktionen Bosonen Fermionen Zustandsdichte Freies Elektronengas Photonengas Abbildungsverzeichnis 1 Verteilung auf zwei Teilchen X,Y auf Zustände 1,2,3 entsprechend der Maxwell-Boltzmann, Bose-Einstein und Fermi-Dirac Statistik Bose-Einstein und Fermi-Dirac Verteilungsfunktion bei endlicher Temperatur Spektrale Energiedichte des Planckschen Gesetzes für Schwarzkörperstrahlung. 6

3 1 Quantenstatistik 1.1 Vorüberlegungen Wir wollen jetzt Systeme mit einer sehr großen Anzahl an Teilchen, wie z.b. Gase oder Festkörper betrachten. Genau wie für Einteilchensysteme wollen wir Observablen, hier sog. Zustandsgrößen, berechnen. Beispiele hierfür sind Druck, Gesamtenergie, Temperatur, Wärmekapazität usw. In erster Näherung betrachten wir N identische Teilchen in einem Volumen V ohne gegenseitige Wechselwirkung. Die Gesamtwellenfunktion ist somit wieder einfach ein Produkt von N Einteilchen-Wellenfunktionen. Hierbei soll q i für die Ortskoordinaten sowie a i für alle weiteren Quantenzahlen stehen. Auch hier muss das Pauli-Prinzip gelten, d.h. zwei identische Fermionen dürfen nicht den gleichen Zustand besetzen, Ψ(q 1,..., q i,..., q j,...) = + Ψ(q 1,..., q j,..., q i,...) für Bosonen Ψ(q 1,..., q i,..., q j,...) = Ψ(q 1,..., q j,..., q i,...) für Fermionen. (1) Abb. 1: Verteilung auf zwei Teilchen X,Y auf Zustände 1,2,3 entsprechend der Maxwell- Boltzmann, Bose-Einstein und Fermi-Dirac Statistik. Um den Unterschied zwischen einem klassischen und einem quantenmechanischen Vielteilchensystem zu verdeutlichen betrachten wir ein einfaches Beispiel. Betrachte ein System aus zwei identischen Teilchen X und Y, die jeweils 3 mögliche Zustände 1,2,3 besetzen können. Im klassischen Fall sind X und Y unterscheidbar und die verschiedenen 1

4 Besetzungsmöglichkeiten der Zustande 1-3 sind in Abb. (1, links) gegeben. Für den Fall eines Quantensystemes und für bosonische Teilchen X und Y sind diese ununterscheidbar und die Zustände sind gegeben in Abb. (1, mitte). Betrachtet man schließlich X und Y als Fermionen, so sind diese wiederum ununterscheidbar und unterliegen zusätzlich noch dem Pauli-Prinzip, sodass sich die Besetzungsmöglichkeiten wie in (1, rechts) ergeben. Wir sehen hier bereits prinzipelle Eigenschaften von Quantenvielteilchensystemen: Bosonen neigen dazu gleiche Zustände bevorzugt zu besetzen während Fermionen immer unterschiedliche Zustände besetzen (müssen). Der Mischfall entspricht dem klassischen Grenzwert. 1.2 Verteilungsfunktionen Numerieren wir jetzt alle möglichen Zustände eines Vielteilchensystems (in unserem Beispiel 1-3) mit i = 1, 2,... durch, so ist das System vollständig charakterisiert durch die Angabe der jeweiligen Besetzungszahl des Zustandes n i. Wir müssen nicht konkret berücksichtigen, welches Teilchen sich in welchem Zustand befindet, da die Teilchen identisch und damit ohnehin ununterscheidbar sind. Im Allgemeinen ist die Besetzungszahl n i eines Zustandes abhängig von der Energie E i des jeweiligen Zustandes Bosonen Für Bosonen kann jeder Zustand mit beliebig vielen Teilchen besetzt werden. Insbesondere gilt, dass im Grundzustand alle Teilchen den Zustand n 1 mit der niedrigsten Energie E 1 < E i besetzen werden. Im Grenzfall großer Systeme werden die Energien E i so nah zusammen liegen, dass wir die Energie eines Zustandes ɛ als kontinuierliche Variable auffassen. Damit ist es möglich den Erwartungswert der Besetzungszahl n(ɛ) für Zustände mit Energie im Intervall [ɛ, ɛ + dɛ], die sogenannte Verteilungsfunktion, herzuleiten. Es ergibt sich: n(ɛ) = 1 e ɛ µ kt 1. (2) Hierbei ist µ das sog. chemische Potential (eine vom konkret betrachteten System abhängige Konstante), k die Boltzmann-Konstante sowie T die Temperatur. Diese Funktion gibt also an, wieviele Teilchen einen Zustand der Energie ɛ besetzen Fermionen Für Fermionen ist aufgrund des Pauli-Prinzips klar, dass n i nur die Werte 1 oder 0 annehmen kann. Der Zustand der niedrigsten Energie E 1 kann somit im besten Fall von 2

5 Abb. 2: Bose-Einstein und Fermi-Dirac Verteilungsfunktion bei endlicher Temperatur. lediglich zwei Teilchen (Spin up/down) besetzt werden. Die Berechnung der Grundzustandsenergie gestaltet sich demnach wesentlich schwieriger. Analog zum bosonischen Fall kann man die Verteilungsfunktion herleiten und es ergibt sich: f(ɛ) = 1 e ɛ µ kt + 1. (3) Die beiden Funktionen sind in Abb. (2) für endliche Temperatur dargstellt. Es sollte nicht überraschen, dass für T 0 (Grundzustand) die Verteilungsfunktion für Fermionen eine Stufenfunktion reproduziert. Es werden einfach sukzessive alle Energieniveaus mit Fermionen besetzt die nach dem Pauli-Prinzip erlaubt sind. Somit ergibt sich eine Verteilungsfunktion, die sobald alle Teilchen in Zustände verteilt sind apprupt abbricht. Die höchste besetzte Energie bezeichnet man auch als die Fermi-Energie ɛ F. 1.3 Zustandsdichte Nachdem wir die Verteilungsfunktion berechnet haben (die angibt wieviele Teilchen sich in einem Zustand der Energie ɛ aufhalten) ist es für die Berechnung von Zustandsgrößen nötig, auch die Zustandsdichte D(ɛ) zu ermitteln, welche angibt wieviele Zustände es mit einer derartigen Energie gibt. Die Gesamtanzahl an Teilchen mit einer Enegie im Bereich dɛ ist also gegeben Anzahl der Zustände mit dieser Energie mal Besetzungszahl 3

6 für einen solchen Zustand, dn = f(ɛ)d(ɛ). (4) dɛ Oder in integraler Form, dann ist die Gesamtteilchenzahl des Systems gegeben als N = ˆ 0 dɛf(ɛ)d(ɛ). (5) Völlig analog gelten obige Gleichungen natürlich für Bosonen wenn man jeweils die Verteilungsfunktion ersetzt. Für die Berechnung von Zustandsgrößen letztendlich muss man die Verteilung entpsrechend gewichten, so ist beispielsweise die Gesamtenergie eines Systems gegeben als ɛ ges = ˆ 0 dɛɛf(ɛ)d(ɛ). (6) Die Zustandsdichte ist im Gegensatz zu den Verteilungsfunktionen eine stark vom betrachteten System abhängige Größe, d.h. wir erhalten sie durch gegebene Randbedingungen, wie im Folgenden einige Beispiele erläutern sollen. (7) 1.4 Freies Elektronengas Als einfaches Beispiel eines vielteilchen Quantensystem betrachten wir ein System von N wechselwirkungsfreien Elektronen in einem unendlich hohen Potentialtopf des Volumens L 3. Das ist ein sehr einfaches Modell für Valenzelektronen in einem Metall. Die möglichen Lösungen für die Wellenfunktion in x-richtung lauten wie gewohnt ψ(x) sin(k n x). (8) Mit der üblichen Randbedingung einer verschwindenden Wellenfunktion an den Rändern des Potentialtopfes ergibt sich die Quantisierung möglicher Impulse, k nx = π L n x mit n x N. (9) Völlig analoges gilt für y- und z-richtung. Damit ergibt sich für die Energie im n-ten Zustand ɛ n = 2 2m (k2 n x + k 2 n y + k 2 n z ) = 2 π 2 2mL 2 (n x 2 + n y 2 + n z 2 ) = 2 π 2 2mL 2 n2. (10) Zur Berechnung der Zustandsgrößen des Systems benötigen wir die Zustandsdichte. Wir wollen im Grenzwert großer n arbeiten. Die Anzahl der Zustände mit gleicher Energie ist die Entartung der einzelnen Energieniveaus, d.h. wieviele verschiedene Realisierungsmöglichkeiten (n x, n y, n z ) es gibt, die zu einem gleichen n führen. Für n = 4

7 n 2 x + n 2 y + n 2 z lässt sich n als Betrag eines Vektors in drei Dimensionen auffassen. Da n i 0 befindet sich dieser Vektor lediglich im 1. Oktanden. Das vom Vektor definierte Volumen des Kugeloktanden entspricht der Gesamtanzahl der Zustände, da pro Einheitsvolumen ein möglicher Zustand (n x, n y, n z ) existiert. Die Zahl der Zustände im Intervall [n, n + dn] ist gegeben durch D(n)dn mit der Zustandsdichte D(n). Das entspricht aber einfach dem 1 Volumen einer Kugelschale der Dicke dn, also 8 D(n)dn = 1 8 4πn2 dn. (11) Bis jetzt haben wir den Spin komplett vernachlässigt, bei Berücksichtigung verdoppelt sich die Anzahl der Zustände. Wir wollen nun die Zustandsdichte pro Energie angeben. Benutzt man nun den Zusammenhang (10) um in (11) n durch ɛ zu substituieren, ergibt sich und damit dn dɛ = ( 2m 2 ) 1/2 L 2π 1 ɛ, (12) ( ) 3/2 2m L 3 D(ɛ)dɛ = ɛdɛ. (13) 2 2π 2 Mit der Fermi-Dirac Verteilung und der Zustandsdichte haben wir nun alle nötigen Funktionen zusammen um Zustandsgrößen für unser System berechnen zu können. 1.5 Photonengas Analog zum freien Elektronengas wollen wir jetzt Photonen in einem Hohlraum des Volumens V = L 3 mit reflektierenden Wänden betrachten. Auch hier gilt die Bedingung verschwindender Wellenfunktion an den Rändern, woraus sich wiederum die gleiche Impulsquantisierung wie in (9) ergibt. Der Unterschied im Vergleich zu den zuvor betrachteten Elektronen liegt einerseits in der bosonischen Natur der Photonen, andererseits in der Dispersionsrelation, ω 2 = k 2 c 2 = π2 c 2 L 2 (n2 x + n 2 y + n 2 z) = π2 c 2 L 2 n2. (14) Wiederum betrachten wir zur Berechnung der Zustandsdiche die Kugelschale zwischen n und n + dn, woraus sich D(n) ergibt wie in (11). Auch das Photon hat - obwohl es ein Spin 1 Teilchen ist - zwei interne Freiheitsgrade, da es Masselos ist. Demnach resultiert auch hier ein zusätzlicher Faktor 2 für die Anzahl möglicher Zustände. Mit der, nun anderen, Dispersionsrelation ergibt sich dn dω = L πc, (15) 5

8 Abb. 3: Spektrale Energiedichte des Planckschen Gesetzes für Schwarzkörperstrahlung. Und damit die Zustandsdichte D(ω)dω = ω3 L 3 dω. (16) c 3 π2 Zur Berechnung von Zustandsgrößen müssen wir nun natürlich auch die bosonische Besetzungsstatistik (2) verwenden. In unserem Fall ist das chemische Potential µ = 0, da es keine Arbeit kostet Potonen zum Gas hinzuzufügen. Wir können jetzt zum Beispiel die Gesamtenergie eines solchen Photonengases in abhängigkeit der Temperatur berechnen. E ges (T ) = ˆ 0 dωn(ω)d(ω)e(ω) = ˆ 0 dω ω2 L 3 c 3 π 2 e ω ω kt 1. (17) Der Integrand ist dabei die sog. Spektrale Energie, aus dem sich bei Division durch das Volumen L 3 die spektrale Energiedichte ergibt, u(ω, T ) = c 3 π 2 ω 2 e ω kt 1. (18) Das ist das Plancksche Gesetz für Schwarzkörperstrahlung, wir haben es aus der Quantisierung des Photonenfeldes und der bosonischen Quantenstatistik hergeleitet. Abbildung (3) zeigt beispielhaft die spektralen Energiedichten für verschiedene Temperaturen. 6

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Physik IV. Vorlesungsskript zur Vorlesung im SS Prof. Dr. Rudolf Gross

Physik IV. Vorlesungsskript zur Vorlesung im SS Prof. Dr. Rudolf Gross Physik IV Atome, Moleküle, Wärmestatistik Vorlesungsskript zur Vorlesung im SS 2003 Prof. Dr. Rudolf Gross Walther-Meissner-Institut Bayerische Akademie der Wissenschaften und Lehrstuhl für Technische

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes 2. Vorlesung 1. Zusammenfassung: Masse in der klassischen Mechanik + 1. Übungsaufgabe 2. Energie des klassischen elektromagnetischen Feldes Literatur: beliebiges Lehrbuch klassische Elektrodynamik z.b.

Mehr

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Wahrscheinlichkeit/Zerfall......... 2 1.2 Photoelektrischer Effekt.......... 2 1.3 De-Broglie-Wellenlänge.......... 3 1.4 Compton-Effekt.............. 3 1.5 Polarisation................

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Mehrelektronensysteme Markus Perner, Rolf Ripszam, Christoph Kastl 17.02.2010 1 Das Heliumatom Das Heliumatom als einfachstes Mehrelektronensystem besteht aus

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben:

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben: Kapitel 9 Quantenmechanik von Mehr-Teilchen-Systeme Mehr-Teilchen-Systeme sind aus zwei Gründen schwieriger zu behandeln als Ein-Teilchen-Systeme. Zum einen führt Wechselwirkung zwischen Teilchen dazu,

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Kapitel 10. Quantengase

Kapitel 10. Quantengase Kapitel Quantengase Ein ideales Quantengas ist ein System aus N Quantenteilchen, die nicht miteinander wechselwirken und (je nach Teilchenart) der Fermi- oder Bose-Statistik unterliegen mögen. Statt N

Mehr

er atomare Aufbau der Materie

er atomare Aufbau der Materie er atomare Aufbau der Materie 6. Jhd. v. Chr.: Thales von Milet Wasser = Urgrund aller Dinge 5. Jhd. v. Chr.: Demokrit Atombegriff 5. Jhd. v. Chr.: Empedokles vier Elemente: Erde, Wasser, Feuer, Luft (unterstützt

Mehr

II.2 Lösung der freien Klein Gordon-Gleichung

II.2 Lösung der freien Klein Gordon-Gleichung II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen 7. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung β-version) Aufgabe : Bestimmen Sie alle Häufungspunkte der Folgen mit den Folgengliedern a) a n n n X + cosnπ), b) b n i) i j, und geben Sie

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Kritische Dimensionen

Kritische Dimensionen Kritische Dimensionen Vortrag im Rahmen der Vorlesung Nanostrukturphysik I von Annika Diehl 7. Januar 2012 1 Inhaltsverzeichnis 1. Strukturelle Korrelationen und kooperative Phänomene 2. Ladung und Ladungstransport

Mehr

Elektronenkonfigurationen von Mehrelektronenatomen

Elektronenkonfigurationen von Mehrelektronenatomen Elektronenkonfigurationen von Mehrelektronenatomen Der Grundzustand ist der Zustand, in dem alle Elektronen den tiefstmöglichen Zustand einnehmen. Beispiel: He: n 1 =n 2 =1 l 1 =l 2 =0 m l1 =m l2 =0 Ortsfunktion

Mehr

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer:

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer: Chemie Testat 2 Name: Vorname: Matrikelnummer: Bearbeitungszeit: 1 Stunde Zugelassene Hilfsmittel: Stifte, unbeschriebenes Papier, ein nichtprogrammierbarer Taschenrechner und ein Periodensystem Bitte

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

8 Mehrteilchensysteme

8 Mehrteilchensysteme 8. Symmetrie 8.. Unterscheidbarkeit von Elementarteilchen Wir diskutieren im Folgenden Systeme von mehrern Teilchen. Diese werden formal in einem Hilbertraum dargestellt, welcher dem direkten Produkt (Tensorprodukt)

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden.

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden. phys4.022 Page 1 12.4 Das Periodensystem der Elemente Dimitri Mendeleev (1869): Ordnet man die chemischen Elemente nach ihrer Ladungszahl Z, so tauchen Elemente mit ähnlichen chemischen und physikalischen

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Bandstrukturen II: NFE-Ansatz

Bandstrukturen II: NFE-Ansatz Bandstrukturen II: NFE-Ansatz Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs, 4.2011 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen

Mehr

1 Grundlagen der optischen Spektroskopie

1 Grundlagen der optischen Spektroskopie Vorbemerkungen 1 Grundlagen der optischen Spektroskopie Gegenstand: Wechselwirkung von Licht mit Materie Licht im engeren Sinn: Licht im infraroten bis ultravioletten Spektralbereich Wir werden uns meist

Mehr

Physik IV. Vorlesungsskript zur Vorlesung im SS Prof. Dr. Rudolf Gross

Physik IV. Vorlesungsskript zur Vorlesung im SS Prof. Dr. Rudolf Gross Physik IV Atome, Moleküle, Kerne, Wärmestatistik Vorlesungsskript zur Vorlesung im SS 2002 Prof. Dr. Rudolf Gross Walther-Meissner-Institut Bayerische Akademie der Wissenschaften und Lehrstuhl für Technische

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06.

VL 19 VL 17 VL 18. 18.1. Mehrelektronensysteme VL 19. 19.1. Periodensystem. Wim de Boer, Karlsruhe Atome und Moleküle, 25.06. VL 19 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten

Mehr

Das Modell der freien Elektronen

Das Modell der freien Elektronen Kapitel 6 Das Modell der freien lektronen Die physikalischen igenschaften eines Festkörpers können weitgehend entweder durch die Gitter-Dynamik oder durch das Verhalten der lektronen (allg. Ladungsträger)

Mehr

Auswahlregeln UV/VIS-Spektroskopie

Auswahlregeln UV/VIS-Spektroskopie Auswahlregeln UV/VIS-Spektroskopie H H H H Ethen: π-π*übergang erlaubt? π LUMO π HOMO hν zunächst Punktgruppe bestimmen Symmetrieoperationen σ xz σ yz C 2 (x) C 2 (z) σ xy i C 2 (y) 3 Spiegelebenen i,

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung 29. Lektion Atomaufbau 39. Atomaufbau und Molekülbindung Lernziele: Atomare Orbitale werden von Elektronen nach strengen Regeln der QM aufgefüllt. Ein Orbital darf von nicht mehr als zwei Elektronen besetzt

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang Prof. Ch. Berger, Physik f. Maschinenbauer, WS 02/03 11. Vorlesung 3.6 Spektralapparate Im Prinzip kann die Bestimmung von Wellenlangen durch Beugung am Spalt erfolgen. Eine wesentlich bessere Auosung

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 4. Vorlesung Mehrelektronensysteme Felix Bischoff, Christoph Kastl, Max v. Vopelius 27.08.2009 1 Atome mit mehreren Elektronen 1.1 Das Heliumatom Das Heliumatom besteht

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Prüfungsfragen zum Diplom/Master in Theoretischer Physik

Prüfungsfragen zum Diplom/Master in Theoretischer Physik Prüfungsfragen zum Diplom/Master in Theoretischer Physik von Mike Georg Bernhardt 5. Oktober 009 Dies ist eine Zusammenstellung von Fragen, die in Diplom- und Masterprüfungen zur Theoretischen Physik häufig

Mehr

Schweredruck von Flüssigkeiten

Schweredruck von Flüssigkeiten Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

Einführung in die Biophysik - Übungsblatt 8

Einführung in die Biophysik - Übungsblatt 8 Einführung in die Biophysik - Übungsblatt 8 July 2, 2015 Allgemeine Informationen: Die Übung ndet immer montags in Raum H030, Schellingstr. 4, direkt im Anschluss an die Vorlesung statt. Falls Sie Fragen

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Statistische Thermodynamik

Statistische Thermodynamik - 45 - Statistische Thermodynamik 1 Phänomenologische Therm., Quantenmechanik, Statistische Thermodynamik In diesem einführenden Kapitel soll etwas zu den Möglichkeiten, Vorzügen und Nachteilen dieser

Mehr

Vorbereitung. Wärmestrahlung. Versuchsdatum:

Vorbereitung. Wärmestrahlung. Versuchsdatum: Vorbereitung Wärmestrahlung Carsten Röttele Stefan Schierle Versuchsdatum: 15.5.212 Inhaltsverzeichnis Theoretische Grundlagen 2.1 Wärmestrahlung................................ 2.2 Plancksches Strahlungsgesetz.........................

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr