3 Erzwungene Konvektion 1

Größe: px
Ab Seite anzeigen:

Download "3 Erzwungene Konvektion 1"

Transkript

1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation ) Sieen weiterhin: interne Konvektion z.b. Rohrströmung externe Konvektion z.b. überströmte Platte, quer angeströmte Profile Funamentale Gleichung für konvektiven Wärmeübergang: Newton scher Ansatz Newton s law of cooling Q A q W

2 3 Erzwungene Konvektion Kühlen Heizen w(r) (r) (r) wu w W = 00 (Haftbeingung) W q w w Wärmeübertragung in unmittelbarer Wannähe urch Wärmeleitung in er haftenen Grenzschicht Wan w = 0 Flui haftene Fluischicht q W fw y W W Wärmeleitfähigkeit es Fluies an er Wan fw W y W

3 3 Erzwungene Konvektion 3 Wärmeübergangskoeffizient bei Konvektion hängt von Temperaturprofil un amit wieerum vom Geschwinigkeitsprofil ab. = f ( w, x, y, z,,, c p,,, ) Für ie exakte Bestimmung er konvektiven Wärmeübergangskoeffizienten weren eshalb ie Erhaltungssätze benötigt für Masse (Kontinuitätsgleichung) Impuls (Navier-Stokes Gleichungen) Energie Diese Gleichungen erhält man urch Bilanzen an Kontrollvolumina. Die ausführliche Herleitung er Erhaltungsgleichungen ist in en Vorlesungs- unterlagen Seite 7- argestellt (Vorlesungsumruck). Temperaturgraient im Flui an er Wan nur schwer zugänglich ösung er Erhaltungsgleichungen sehr aufwänig Ähnlichkeitstheorie imensionslose Kennzahlen

4 Kontinuitätsgleichung 3 Erzwungene Konvektion 4 ein x

5 3 Erzwungene Konvektion 5

6 3 Erzwungene Konvektion 6

7 3 Erzwungene Konvektion 7 3. Prantl sche Grenzschichttheorie th, ein h, ein th h ˆ ˆ ˆ ˆ thermische Einlauflänge hyraulische Einlauflänge thermische Grenzschichticke hyraulische Grenzschichticke

8 3 Erzwungene Konvektion 8 aminare Strömung y w w y u Δw ylam Turbulente Strömung y w w y u Δw yturb < ylam w y turb w y lam

9 3.3 aminare Strömung 3 Erzwungene Konvektion 9 Reynols-Experiment y Für ausgebilete laminare Strömung gilt: Geschwinigkeitsprofil Parabel Gesetz von Hagen-Poiseuille w y w max y /

10 3 Erzwungene Konvektion 0 Bei laminarer Strömung erfolgt keine Quervermischung in y-richtung. Wärmeübertragung nur urch Wärmeleitung entlang Temperaturgraient in er thermischen Grenzschicht Die Grenzschichticke hängt von er auflänge ab. w h, ein Hyraulisch voll ausgebilet Geschwinigkeitsprofil Re = Beschleunigungskraft Reibungskraft y h, ein Re h, ein 0,05 w Re 50 bis 00

11 3 Erzwungene Konvektion Temperaturprofil th, ein q q Kühlung th, ein th, ein h, ein 0,05 Re Pr Pr ˆ Pr th, ein h, ein a Prantl-Zahl Re- un Pr-Zahl sin von entscheiener Beeutung für en konvektiven Wärmeübergang. Typische Werte für Pr: Flüssige Metalle Pr << Gase Pr 0,7 Flüssigkeiten Pr 7 Zähe Flüssigkeiten, Öl Pr 70 3 Pr th h h 3 ~ Pr Impulstransport urch Reibung Pr = Wärmetransport urch eitung th Wasser: Pr = 7, 9 h th

12 3 Erzwungene Konvektion laminar solange Re 300 (gilt nur bei Rohrströmung) Übergang laminar turbulent 300 Re Für ausgebilete laminare Strömung: Nu const. Nu charakt Flui z.b. für zylinrisches Rohr mit W const., Nu 3,65 Nu 3,66 Nu = Wärmestrom urch Konvektion Wärmestrom urch eitung in er Flüssigkeit Nu / q q konv W

13 3 Erzwungene Konvektion 3 Im VDI- Wärmeatlas wir für vollausgebilete, laminare Rohrströmung folgene Gleichung für ie mittlere Nußelt-Zahl empfohlen Nu = 3, , 7 3 +, 65 Re Pr /3 0, 7 3 /3 (3.a) Für en ebenen Spalt: (hier l char = Spaltweite s) Nu s = 3, , Re Pr s + Pr Re Pr s /3 (3.b) Geltungsbereich: 0 Pr ; 0 Re Pr Genauigkeit: 0 %

14 3 Erzwungene Konvektion 4 Re Pr Pe / w a t a a t Fo Gz Fo: Verweilzeit es Fluis im Rohr Pe: Peclet Zahl Gz: Graetz Zahl Enthalpietransport urch Strömung Pe = Wärmestrom urch eitung in er Flüssigkeit Schlußfolgerungen Pe w a w a charak w / c p charak Nu ist am Anfang es Rohres sehr hoch un geht bei langen Rohren gegen 3,65 (3,66). In Hochleistungswärmeübertragern wir eshalb ie ausgebilete Strömung gestört, so ass sich ie Strömung neu ausbilen muss un amit er Wärmeübergang verbessert wir.

15 3 Erzwungene Konvektion 5 Wärmeübertragung im laminar urchströmten Rohr

16 3.4 Turbulente Strömung 3 Erzwungene Konvektion 6 In en meisten technischen Anwenungsfällen keine laminare Strömung. z.b. Wasser bei 0 C, = 5 mm, w = 0,0 m/s, h, ein Re = 500 (laminar),5 m 75 In er Praxis meist w > 0,5 m/s Turbulente Strömung h, ein 4,4 Re / 6 h, ein 540 w 0,5m / s 0 w Re 0,5 50 Re 6 0 Re 7500 h,ein 6 m 0 / s 3

17 3 Erzwungene Konvektion 7 Es gilt: ; y w y ; größer als bei laminarer Strömung Nu Nu turb. lam. Für turbulente Strömung keine exakten ösungen möglich. Die zuverlässigste Gleichung ist nach VDI-Wärmeatlas (Gnielinski-Gleichung): Nu 8 Re, Pr Pr /3 3 (3.) Druckverlustbeiwert für technisch rauhe Rohre:,8 log Re, 0 5

18 3 Erzwungene Konvektion 8 Für glatte Rohre gilt nach Blasius: 0, 5 0,364 Re ynam. Viskosität Gültigkeitsbereich er Gnielinski-Gleichung: Stoffwerte für 300 < Re < 0 6 0,5 < Pr < < / < b ( Bulk -Temperatur). Einfluss Kühlung/Erwärmung berücksichtigen 0 5 % Genauigkeit Heizen W fl Flüssigk. b w b w Gas Nu b Nu Gl. 3. w 0,4 Kühlen W fl b w b w wenn Wan- un Fluitemperatur sehr unterschielich, a Stoffwerte temperaturabhängig.

19 3 Erzwungene Konvektion 9 Für Pr <<.h. für flüssige Metalle: Nu 0,65 6,3 0,067Re Pr 0,93 Weitere Gleichungen für Spezialfälle in Vorlesungsunterlagen Seite 5-9 Zusammenfassung a) Einlaufströmung höhere Nu-Zahlen als ausgebilete Strömung b) Nu turbulent > Nu laminar c) Instabilität, an em Übergang laminar turbulent: verwene Nu lam wenn größer als Nu turb.

20 3 Erzwungene Konvektion 0 α A NTU = M c p Wärmeübertragung im Rohr für Pr = 7

21 3 Erzwungene Konvektion Nu Re Wärmeübertragung im Rohr für Pr = 7

22 Beispiel: 3 Erzwungene Konvektion Ein Benzolmassenstrom von kg/s wir urch Wärmeübertragung von bei 45 C konensierenem Kältemittelampf von einer Eintrittstemperatur ein = 0 C auf eine Austrittstemperatur aus von minestens 30 C erwärmt ( 0). Man bestimme ie benötigte Wärmeübertragungsfläche. Stoffwerte von Benzol Dichte: 879 kg/m 3 spez. Wärme:,74 kj/(kg K) Wärmeleitfähigkeit: 0,53 W/(m K) kin. Viskosität: 0, m /s

23 3 Erzwungene Konvektion 3 Zur Verfügung stehen zwei verschieene Rohrbünelwärmeübertragerbauformen. Der Kältemittelampf soll an er Rohraußenseite konensieren, as Benzol soll urch ie Rohre Strömen. Wärmeübertrager Anzahl er Rohrbünel Anzahl er Rohre / Bünel 39 Rohrlänge m Rohrurchmesser x Wanstärke 0 mm x mm Wärmeübertrager Anzahl er Rohrbünel 3 Anzahl er Rohre / Bünel 90 Rohrlänge, m Rohrurchmesser x Wanstärke 5 mm x,5 mm

24 3 Erzwungene Konvektion 4 kon 45 C 69, kw Q soll M c p aus ein 6 35K 5K aus = 30 C Q k A ist T eff ein = 0 C 0 C = fm = ein + aus Im vorliegenen Fall ist T eff = 3,6 K, vgl. Kapitel 8 ) A n Aj z 0,008m m 39,96 m ) A n Aj 3 0,0m, m 90 0,35 m T ein aus eff 3, 6 ein 35 ln aus 355 ln 5 K T ein aus arithm 5 K

25 3 Erzwungene Konvektion 5 w w i i A A A ka 0 0 K m W Wärmeleitung K m W Konensation K m W Konvektion erzwungene für W i i m K W 877 m K W k k i k stets etwas kleiner als kleinstes

26 3 Erzwungene Konvektion 6 Nu f Re, Pr, Pr c p 7,4 Re w M i z turbulent turbulent oer laminar Turbulent: Gnielinski-Gleichung (Gln. (3.) ) aminar: Gln. (3.a)

27 3 Erzwungene Konvektion 7 mit Nu 930 W m K 9 W m K turbulent 48 W m K laminar A A Übertragbare Wärmeströme Q k A Teff A Teff 89, 3kW Q k A T A T 6, eff eff 9 kw Q 3, kw

28 3 Erzwungene Konvektion Nicht - kreisförmige Durchmesser Für laminare Strömung: siehe Gleichungen in en Vorlesungsunterlagen oer Buch von Shah & onon Für turbulente Strömung: verwene Gnielinski Gleichung mit hyraulischem oer äquivalentem Durchmesser: h 4 U A quer benetzt

29 3 Erzwungene Konvektion 9 z.b. Ringspalt: h 4 D 4 D D D in Re, Nu, Übereinstimmung mit einsetzen Messung 0 % Weitere hyraulische Durchmesser siehe Umruck S.3

30 3 Erzwungene Konvektion aminar überströmte Platte w laminar turbulent Re krit 50 5 h laminare Unterschicht x krit Externe Strömung: h x 4,64 Re x keine Krümmung kein Druckgefälle W const keine Auftriebseffekte (keine freie Konvektion) h / ~ x Re x w x

31 3 Erzwungene Konvektion 3 Thermische Grenzschichticke: th ~ h Pr th 0,976Pr h 0,976Pr x4,64re Örtliche Nusselt Zahl: Nu x 0,33Pr (Pohlhausen) 0,33 Re 0,5 x Nu x x Mittlere Nusselt Zahl von x = 0 bis x = : x x 3 x th ~ th th / ~ x Nu m

32 3 Erzwungene Konvektion 3 m x 0 x x m w x 0,33 0,33Pr x x0 x m 0,33Pr 0,33 w 0,5 0,5 0,5 0,33 m 0,664Re Pr Nu 0,5 0,664Re Pr 0,33 (Pohlhausen) (3.3) Stoffwerte mit θ b = θ w + θ Bei mittlerer Filmtemperatur

33 3 Erzwungene Konvektion Turbulent überströmte Platte Übergang laminar turbulent bei Re Krit Hyraulische Grenzschichticke: h x 5 0,37 Re x Örtliche Nusselt-Zahl: Nu x 0,8 0,087Re x Pr 0,33 Bessere Übereinstimmung mit Gleichung von Petukhov un Popov: Nu 0,8 0,037 Re Pr 3 0,,443 Pr Re (3.4)

34 3 Erzwungene Konvektion Überströmte Einzelkörper z.b. Rohre, Kugel, Profile querangeströmter Zyliner: am Staupunkt gilt: m w 0 s p p max p mit zunehmenem : un bzw. w 0 w p x 0 0 bis zu einer bestimmten Stelle in er Nähe von 90, anach p x 0 w bis zum Ablösepunkt p x 0. anach: Wirbelbilung un Rückströmung

35 3 Erzwungene Konvektion 35 von Karman Vortex Street behin a tube for Re=000, calculate with the RNG moel

36 3 Erzwungene Konvektion 36 Übergang laminar turbulent bei Re 5 Krit. 0 Re w Strömungsablösung: laminar bei 80 turbulent bei 40 Ungleichverteilung er lokalen Strömungsgeschwinigkeit. Ungleichverteilung es Wärmeübergangs. Korrelationen an Messwerte angepasst. Den weitesten Gültigkeitsbereich hat Korrelation von Whitaker: Nu 0,4 Re 0,06 Re 3 Pr 0,4 W 4

37 3 Erzwungene Konvektion 37 Beachte: Nu Re Nu w f Re 0,5 ; Pr Außenurchmesser 0,4 Gilt näherungsweise immer bei Anlaufströmung,.h. nur Vorfaktoren änern sich Umströmte Kugel: Whitaker: Nu 0,4 Re 0,06Re 3 Pr 0,4 W 4 Nu min für Kugel, wenn Re 0 Genauigkeit er Gleichungen nach Whitaker: 30 %

38 3 Erzwungene Konvektion Sonstige Querschnitte: siehe Vorlesungsunterlagen bzw. aus VDI Wärmeatlas. Für alle Geometrien: Nu Nu min Nu lam Nuturb (3.5) Nu Nu Nu min lam turb ˆ ˆ für Kugel bzw. 0,3 für Zyliner Gln. (3.3) für laminar überströmte Platte Gln. (3.4) für turbulent überströmte Platte In Gln. (3.3), Gln. (3.4) un (3.5) Überströmlänge einsetzen. wir anstelle von in Nu, Re, (/) verwenet. = A U A U ˆ ˆ Wärmeübertragungsfläche Umfang er Schattenfläche in Strömungsrichtung

39 3 Erzwungene Konvektion 39 Beispiel: Kugel * θ Zyliner * für θ w * w Re > Siehe auch Umruck S.30 Pr für θ b = θ w + θ Nu * Nu-Korrel. von Gnielinski: Überströmlänge Nu-Korrel. von Eckert: Durchmesser

40 3 Erzwungene Konvektion Durchströmte Haufwerke Haufwerk: geornete oer regellose Anornung von mehreren Einzelkörpern. w w Die effektive Strömungsgeschwinigkeit ist größer als, a ie Einzelkörper en Strömungsquerschnitt verringern. w w

41 3 Erzwungene Konvektion 4 Def.: ückenvolumen, Porosität V ücke V Körper V ges V V ücke ges V Körper V ges w V A quer.h. verwene w für Re w eerer Strömungsquerschnitt ohne Körper

42 3 Erzwungene Konvektion 4 Dies gilt nur, solange er Abstan zwischen en Einzelkörpern so groß ist, ass keine Beeinflussung er Grenzschichten vorliegt. In en meisten Fällen führt iese Beeinflussung zu einer Verbesserung es Wärmeübergangs. z.b. Kugelschüttung mit 0,4 : Veroppelung von Nu bei gleichem! Berücksichtigung urch Korrekturfaktor Nu Schüttung Nu Einzelkörp er wobei Nu Einzelkörper mit berechnet wir. w w für 0,4 un 00 Pe 0000,5 w Recht gut solange Re nicht zu nierig (.h. solange Re > ) Ansonsten schleichene Strömung ann φ < möglich urch Ungleichverteilung er Strömung.

43 3 Erzwungene Konvektion 43 Herleitung es Grenzwertes Nu D = für Kugel Bei sehr kleinen Re-Zahlen Re <, kleine Geschwinigkeiten, zähe Fluie Betrachtung als reines Wärmeleitproblem Q Annahme: W D D D a i a i D i a D Wärmeleitung in Kugelschale Q W D i a Definiert als Wärmeübergang Q konv D i a Gleichgesetzt Q Q D W konv D Nu D

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

In x-richtung ein- und austretende Enthalpie und wärmestromdichten an einem Volumenelement. k ab

In x-richtung ein- und austretende Enthalpie und wärmestromdichten an einem Volumenelement. k ab 301 3 Wärmeübertragung urch Konvektion Bei er Wärmeübertragung zischen einem festen Körper un einem Flui fließt Wärme infolge eitung von er Körperoberfläche in as Flui un ir als Enthalpie mit er Strömung

Mehr

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen

Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Schwarz Herwig herwig.schwarz@htl-apfenberg.ac.at Florian Grabner florian.grabner@gmx.at Drucverlust in Rohrleitungen Mathematische / Fachliche

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Aerodynamik von Hochleistungsfahrzeugen. Gliederung.

Aerodynamik von Hochleistungsfahrzeugen. Gliederung. WS10/11, Folie 2.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10... Stirnahnräer, gerae verahnt, Übersicht Stirnahnräer: Aetalhar gespritt gerae verahnt, Stirnahnräer: POM weiß, gefräst gerae verahnt, Stirnahnräer: POM schwar, gefräst gerae verahnt, Stirnahnräer: Kunststoff

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Simulations-Untersuchungen des Entleerungsvorgangs eines adiabaten Behälters durch eine angeschlossene Laval-Düse

Simulations-Untersuchungen des Entleerungsvorgangs eines adiabaten Behälters durch eine angeschlossene Laval-Düse TTS-Labor Prof. Dr.-Ing. Victor Gheorghiu Simulations-Untersuchungen es Entleerungsvorgangs eines aiabaten Behälters urch eine angeschlossene Laval-Düse Die Strömung urch ie Laval-Düse von Länge L un minimalem

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

1-1 Thermally developing, hydrodynamically developed laminar flow (Re < 2300)

1-1 Thermally developing, hydrodynamically developed laminar flow (Re < 2300) 1 Forced Convection Flow Inside a Circular Tube All properties at fluid bulk mean temperature (arithmetic mean of inlet and outlet temperature). Nusselt numbers Nu 0 from sections 1-1 to 1-3 have to be

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10... Stirnzahnräer, gerae verzahnt, Üersicht Stirnzahnräer: Azetalharz gespritzt gerae verzahnt, mit Nae Stirnzahnräer: POM gefräst gerae verzahnt, mit Nae Stirnzahnräer: Kunststoff mit Kern aus Stahl un Eelstahl,

Mehr

Technische Strömungslehre Formelsammlung

Technische Strömungslehre Formelsammlung Formelammlung Strömunglehre Seite von 4 Tehnihe Strömunglehre Formelammlung Komreibilität K von Flüigkeiten E FL V V K E Fl Komreibilität von Gaen V Bei Gaen entriht E V Ga vonϑ C ;, 35bar für den Normzutand

Mehr

Fehlerrechnung mit Hilfe der Differentialrechnung

Fehlerrechnung mit Hilfe der Differentialrechnung HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer pe.fischer@atn.nu Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

7. Schichtenströmung 7-1. Aufgabe 7.1 [3]

7. Schichtenströmung 7-1. Aufgabe 7.1 [3] 7-1 7. Schichtenströmung Aufgabe 7.1 [3] Auf einer Unterlage befindet sich eine Ölschicht der Dicke h = 2 mm, auf der eine Platte mit der Geschwindigkeit v 0 gleitet. Ein Druckanstieg in Bewegungsrichtung

Mehr

Hydraulische Auslegung von Erdwärmesondenanlagen - Grundlage für effiziente Planung und Ausführung

Hydraulische Auslegung von Erdwärmesondenanlagen - Grundlage für effiziente Planung und Ausführung Hydraulische Auslegung von Erdwärmesondenanlagen - Grundlage für effiziente Planung und Ausführung Christoph Rosinski, Franz Josef Zapp GEFGA mbh, Gesellschaft zur Entwicklung und Förderung von Geothermen

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 01. Wärmetransport durch Wärmeleitung und Konvektion Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 200 Versuch 0 ärmetransport durch ärmeleitung und Konvektion in einem Doppelrohrwärmeaustauscher Betreuer: olfgang Rüth (rueth@dechema.de,

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v.

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v. Leicht Leicht Leicht Branschutz ist och ganz leicht Leichteton mit esten Werten Bunesveran Leichteton e.v. 1 Der Branschutz Die für en Branschutz zustänige Norm ist ie DIN 4102. Die gültige Ausgae atiert

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008 Der Bauablauf bei freistehenen Trockenmauern Version Januar 2008 2008 Gerhar Stoll Trockenmaurer / Dipl. Arch. ETH/SIA Hüeblistrasse 28 8636 Wal / Switzerlan +41/55/246'34'55 +41/78/761'38'18 info@stonewalls.ch

Mehr

Formelsammlung Energietechnik

Formelsammlung Energietechnik Formelsammlung Energietechnik Kontinuitätsgleichung: A c A c A c konst. v u D n Bernoulligleichung: Energieform: p p c g h c g h Druckform: p c g h p c g h Höhenform: p c p c h h g g g g Höhendifferenz

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung

Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung orlesung "Grunlagen er Elektrotechnik" Seite von 5 Querschnittsaufgabe: Messung es Magnetfeles unterhalb einer Hochspannungsfreileitung. Ziel Die folgene Aufgabe soll azu ienen, einige Methoen un Kenntnisse

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) 09. 08. 2013

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) 09. 08. 2013 (Name, Matr.-Nr, Unterschrift) Klausur Strömunsmechanik I (Bachelor) & Technische Strömunslehre (Diplom) 1. Aufabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssikeit er Dichteρ 1 efüllten zylinrischen

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

6.5 Bemessung einer Deckenschalung. b) Bemessung mit zulässigen Traglasten F N,zul der Baustützen. Grundriss-Entwurf der Schalung

6.5 Bemessung einer Deckenschalung. b) Bemessung mit zulässigen Traglasten F N,zul der Baustützen. Grundriss-Entwurf der Schalung 6.5 Bemessung einer Deckenschalung 153 A R 7,4 kn B, E, B 3,6 m E 0 7,58 kn/m Die Stellfristen für iese Baustützen als Hilfsstützen wuren in Übungsbeispiel 6.1 ermittelt. b) Bemessung mit zulässigen Traglasten

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Strömung realer inkompressibler Fluide

Strömung realer inkompressibler Fluide 4 STRÖMUNG REALER INKOMPRESSIBLER FLUIDE 4.1 EIGENSCHAFTEN REALER FLUIDE 4.1.1 Fluidreibung und Viskosität Wesentlichstes Merkmal realer Fluide ist die Fluidreibung. Sie wurde erstmals von I. Newton (engl.

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

Rührbehälter. Praktikumsanleitung. Rührbehälter. Name Vorname Semester Matrikel-Nr. Unterschrift

Rührbehälter. Praktikumsanleitung. Rührbehälter. Name Vorname Semester Matrikel-Nr. Unterschrift sanleitung Gruppe Nr.: sdatum: Abgabedatum: Name Vorname Semester Matrikel-Nr. Unterschrift Vortestat Haupttestat Inhaltsverzeichnis 1 Grundlagen... 2 1.1 Leistungsaufnahme des Rührers... 3 1.2 Lösezeit

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Arbeitsheft Organische Redoxreaktionen Inhalt Jakob 1 Inhaltsverzeichnis: Seite: Vorkenntnisse:

Arbeitsheft Organische Redoxreaktionen Inhalt Jakob 1 Inhaltsverzeichnis: Seite: Vorkenntnisse: Arbeitsheft Organishe Reoxreaktionen Inhalt Jakob Inhaltsverzeihnis: Seite: Vorkenntnisse: Bestimmung er OZ bei organishen Molekülen Arbeitsheft Reoxreaktionen Verbrennung von Kohlenwasserstoffen. Oxiation

Mehr

1. Erstellen Sie eine Excel-Tabelle, in der auf drei Arten der Sättigungsdruck von Wasser jeweils nach der folgenden Gleichung berechnet wird

1. Erstellen Sie eine Excel-Tabelle, in der auf drei Arten der Sättigungsdruck von Wasser jeweils nach der folgenden Gleichung berechnet wird 1/10 Vorlesung und Übung Informatik Übungsaufgaben Stand: 21.10.2010 1. Erstellen Sie eine Excel-Tabelle, in der auf drei Arten der Sättigungsdruck von Wasser jeweils nach der folgenden Gleichung berechnet

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE.

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE. DRAHTGEWEBE TECHNISCHE LISTE. 0,0 MM BIS 0 MM MASCHENWEITE. Drahtgeebe-Terminologie nach DIN ISO 90 Webarten un Formen Mascheneite, : Abstan zischen zei benachbarten Kett- oer Schussrähten, in er Projektionsebene

Mehr

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN

WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN WÄRMEÜBERGANGSBEDINGUNGEN AN WERKZEUGMA- SCHINENWÄNDEN U. Heisel, G. Popov, T. Stehle, A. Draganov 1. Einleitung Die Arbeitsgenauigkeit und Leistungsfähigkeit von Werkzeugmaschinen hängt zum einen von

Mehr

Name: Klasse: Datum: m = V r. Zur Berechnung der Masse benötigt man also das Volumen V und die Dichte r.

Name: Klasse: Datum: m = V r. Zur Berechnung der Masse benötigt man also das Volumen V und die Dichte r. Formeln un Tabellen Umgang mit Formeln Beispielaufgabe 1 Gegeben ist ein Zyliner aus Aluminium mit einem Durchmesser = 20 mm un er Höhe h = 50 mm. Berechnen Sie ie Masse m in kg es Bauteils. h Schritt

Mehr

Geophysikalische Bohrlochmessverfahren

Geophysikalische Bohrlochmessverfahren Geophysikalische Bohrlochmessverfahren Elektrische und elektromagnetische Bohrlochmessungen Historie Beginn der geophysikalischen Bohrlochmessung mit elektrischen Messungen (Widerstands und Eigenpotentialmessungen)

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben Rudi Marek, Klaus Nitsche Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben ISBN-10: 3-446-40999-8 ISBN-13: 978-3-446-40999-6 Inhaltsverzeichnis Weitere Informationen oder Bestellungen

Mehr

BACHELORARBEIT ENTWICKLUNG EINES ABGASKÜHLERS. Fachbereich Maschinenbau. von Roman Carrillo Forster (Matr. Nr. 725429)

BACHELORARBEIT ENTWICKLUNG EINES ABGASKÜHLERS. Fachbereich Maschinenbau. von Roman Carrillo Forster (Matr. Nr. 725429) BACHELORARBEIT ENTWICKLUNG EINES ABGASKÜHLERS Fachbereich Maschinenbau von Roman Carrillo Forster (Matr. Nr. 725429) am 15/07/2011 2 INHALTSVERZEICHNIS 1. EINLEITUNG... 7 1.1. Motivation... 7 1.2. Ziel

Mehr

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung Hefei Heilbronn Workshop on Research an Eucation in Mechatronics June 17 th 18 th 2010, Heilbronn, Germany Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung er haptischen

Mehr

1. Aufgabe (15 Punkte)

1. Aufgabe (15 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Sommersemester 2009 24. September 2009 Teil II: Wärmetransportphänomene

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Braggsche Reflexion am Einkristall

Braggsche Reflexion am Einkristall Fachhochschule Bielefel Fachbereich Elektrotechnik Physikalisches Praktikum Kurzanleitung Internet: Braggsche Reflexion am Einkristall 1. Physikalische Grunlagen: In er Röntgenröhre weren ie an er Kathoe

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

7. Teile, und beherrsche den Rest

7. Teile, und beherrsche den Rest 7. Teile, un beherrsche en Rest 7.1. Division mit Rest Nicht alle natürlichen Zahlen sin urch 3 teilbar: Es lässt 17 en Rest 2 [17 = 5 3+2] 18 geht auf 1 lässt Rest 1 20 lässt Rest 2 21 geht auf 22 lässt

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n .6 chaltung von Konensatoren. Parallelschaltung von Konensatoren Bei er Parallelschaltung ist ie an en Konensatoren anliegene pannung konstant. s gilt: Die Konensatorgleichung Q C liefert ie sich auf en

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

16 Konus, Anzug und Neigung

16 Konus, Anzug und Neigung D v D 16 Knus, Anzug un Neigung 16.1 Einführung Knizität (Kegelverhältnis) D v 2 Wir ein kegelförmiger Körper auf em Drehbank er er Schleifmaschine hergestellt, s schwenkt man en Oberschlitten um en Einstellwinkel.

Mehr

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1 I DT MC Anwenerbeschreibung SINAMICS S20 Nachweis es Performance Levels e gemäß EN ISO 3849- Dokument Projekt Status: release Organisation: I DT MC Baseline:.2 Ort: Erl F80 Datum: 24.09.2009 Copyright

Mehr

Millikan-Experiment. η: Viskosität von Luft r: Tröpfchenradius v 1 : Tröpfchengeschwindigkeit. = π erhält man. 4 r

Millikan-Experiment. η: Viskosität von Luft r: Tröpfchenradius v 1 : Tröpfchengeschwindigkeit. = π erhält man. 4 r A09 Millikan-Experiment Mit em Versuchsaufbau nach Millikan sollen ie Quantisierung er elektrischen Laung nachgewiesen un ie Größe er Elementarlaung bestimmt weren. 1. Theoretische Grunlagen 1.1 Grunsätzliche

Mehr

Thermodynamik der Atmosphäre

Thermodynamik der Atmosphäre Einführung in ie Meteorologie Teil I Theroynaik er Atosphäre Atospherische Bewegung Dynaik Newton sche zweiter Gesetz F x Masse Beschleunigung = Kraft Theroynaik 2 x t 2 = F Bezieht sich auf Änerungen

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

Kapillarität und Viskosität

Kapillarität und Viskosität Physikalisches Praktikum für das Hauptfach Physik Versuch 05 Kapillarität und Viskosität Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Bachelor-Thesis im Studiengang Prozess-, Energie-, und Umwelttechnik. Untersuchung von Verfahren zur Auslegung und Nachrechnung von Wärmeübertragern

Bachelor-Thesis im Studiengang Prozess-, Energie-, und Umwelttechnik. Untersuchung von Verfahren zur Auslegung und Nachrechnung von Wärmeübertragern Bachelor-Thesis im Studiengang Prozess-, Energie-, und Umwelttechnik Untersuchung von Verfahren zur Auslegung und Nachrechnung von Wärmeübertragern Marius Reich Matrikelnummer 584287 Düsseldorf 29. August

Mehr

Auslegung von Membran Ausdehnungsgefäßen gemäß EN 12828

Auslegung von Membran Ausdehnungsgefäßen gemäß EN 12828 Auslegung von Membran Ausdehnungsgefäßen gemäß E 12828 Allgemeines Die Größe des Membran-Ausdehnungsgefäßes (MAG) hängt ab von: dem Wasservolumen der Anlage system der durch die Aufheizung auf die maximalen

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

CheMin. Wärmeauskopplung in Strahlungszügen am Beispiel der Abfallverbrennung. -Messverfahren und Diagnose - Wärmeauskopplung in Strahlungszügen

CheMin. Wärmeauskopplung in Strahlungszügen am Beispiel der Abfallverbrennung. -Messverfahren und Diagnose - Wärmeauskopplung in Strahlungszügen Wärmeauskopplung in Strahlungszügen am Beispiel der Abfallverbrennung -Messverfahren und Diagnose - Wolfgang Spiegel GmbH 1 : Gutachten und Beratung an Kraftwerksstandorten, 2010 2 Struktur des Beitrags

Mehr