Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Größe: px
Ab Seite anzeigen:

Download "Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme"

Transkript

1 Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh 3.Mai Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es um Methoden für das Lösen von konvexen Optimierungsproblemen mit Gleichungsnebenbedingungen der Form Minimiere f(x), so dass Ax = b, mit f : R n R konvex und zweimal stetig differenzierbar und A R p n mit Rang A = p < n. Ein Punkt x dom f ist optimal für (1) genau dann, wenn es ein v R p gibt, sodass gilt (1) Ax = b, f(x ) + A T v = 0. (2) Das Lösen des gleichungsbeschränkten Optimierungsproblems aus (1) ist also äquivalent dazu eine Lösung der KKT-Gleichungen aus (2) zu finden. Die erste Gleichung aus (2) Ax = b nennt man auch primale Zulässigkeitsbedingung und bei der zweiten Gleichung f(x ) + A T v = 0 spricht man von der dualen Zulässigkeitsbedingung. Konvexe quadratische Minimierung mit Gleichungsbeschränkungen Betrachten wir nun ein gleichungsbeschränktes konvexes Optimierungsproblem mit einer quadratischen Funktion: Minimiere f(x) = (1/2)x T P x + q T x + r, so dass Ax = b. Hierbei ist P S n + und A R p n. Die Optimalitätsbedingungen aus (2) für die quadratische Funktion sehen dann wie folgt aus: Ax = b, P x + q + A T v = 0. Seminar Konvexe Optimierung, FSS 2016, Universität Mannheim (3) 1

2 Dies können wir noch umschreiben in die Form [ ] [ ] [ ] P A T x q A 0 v =. (4) b Dieses System der (n + p) linearen Gleichungen mit (n + p) Variablen x, v nennt man das KKT -System für das gleichungsbeschränkte quadratische Optimierungsproblem aus (3). Die Koeffizientenmatrix nennt man auch die KKT -M atrix. 2 Das Newton-Verfahren mit Gleichungsbeschränkungen In diesem Abschnitt geht es um die Erweiterung des Newton-Verfahrens für den gleichungsbeschränkten Fall. Diese Methode funktioniert sehr ähnlich zu dem ungleichungsbeschränkten Fall, bis auf zwei wesentliche Unterschiede: Der Anfangspunkt muss zulässig sein, das heißt es gelten x dom f und Ax = b und weiterhin wird die Definition des Newton-Schrittes so verändert, dass die Gleichheitsbeschränkungen miteinbezogen werden. Wir werden insbesondere sicherstellen, dass der Newton-Schritt x nt eine zulässige Richtung darstellt, das bedeutet es gilt A x nt = 0. Der Newton-Schritt Um den Newton Schritt x nt für das gleichungsbeschränkte Problem an einem gültigen Punkt x herzuleiten ersetzen wir die Zielfunktion mit ihrer Taylorapproximation zweiter Ordnung nahe bei x. Dies ergibt dann die Form Minimiere f(x + v) = f(x) + f(x) T v + (1/2)v T 2 f(x)v, so dass A(x + v) = b, (5) mit der Variablen v. Dies ist möglich wegen dem folgendem Argument: L(x, λ) = f(x) + λ T (Ax b), L = f + A T λ, 2 L = 2 f. Unter den Voraussetzungen ist die zugehörige KKT-Matrix regulär. Wir definieren nun x nt als Lösung des konvexen quadratischen Problems aus (5). Analog zu (4) ist hier der Newton-Schritt x nt charakterisiert durch 2

3 [ 2 f(x) A T ] [ ] [ ] xnt f(x) =, (6) A 0 w 0 wobei w die zugehörige optimale duale Variable für das quadratische Problem ist. Weiter gilt A(x + x) = b, A x = b Ax, = 0, wenn x zulässig ist. Der Newton-Schritt ist nur für die Punkte definiert, für die die KKT-Matrix regulär ist. Das Newton-Dekrement Wir definieren das Newton-Dekrement λ für das gleichungsbeschränkte Problem genau wie für den ungleichungsbeschränkten Fall durch λ(x) = ( x T nt 2 f(x) x nt ) 1/2. (7) Das bedeutet, dass λ die Norm des Newton-Schrittes ist, die von der Hesse- Matrix bestimmt wird. Das Newton-Dekrement spielt eine entscheidende Rolle für das Abbruchkriterium des Newton-Verfahrens. Mit f(x+v) aus (5) gilt nun genau wie im ungleichungsbeschränkten Fall f(x) inf { f(x + v) A(x + v) = b} = λ(x) 2 /2. (8) Anschaulich bedeutet das, dass uns λ(x) 2 /2 eine Schätzung für f(x) p liefert, wobei p den optimalen Wert mit p = inf {f(x) Ax = b} = f(x ) bezeichnet. Damit dient uns λ(x) (oder auch ein Vielfaches von λ(x) 2 ) als Basis für ein gutes Abbruchkriterium unseres Verfahrens. Algorithmus (Newton-Verfahren zur gleichungsbeschränkten Minimierung). Gegeben sei ein Startpunkt x (0) dom f mit Ax (0) = b und Toleranz ɛ > 0. Wiederhole für k = 0, 1, Berechne den Newton-Schritt und das Newton-Dekrement x (k) nt, λ(x(k) ). 2. Abbruchkriterium. Abbrechen, falls λ 2 /2 ɛ gilt. 3. Line Search. Suche die Schrittweite t durch Backtracking Line Search. 3

4 4. Update. x (k+1) := x (k) + t x (k) nt. Dieses Verfahren ist ein zulässiges Abstiegsverfahren, da alle Iterationen zulässig sind mit f(x (k+1) ) < f(x (k) ) (solange bis x (k) optimal ist). Das Newton-Verfahren setzt voraus, dass die KKT-Matrix für jedes x invertierbar ist. Konvergenzanalyse Alles was wir über die Konvergenz des Newton-Verfahrens für das unbeschränkte Problem kennen, lässt sich auch auf den beschränkten Fall übertragen. In der Praxis ist die Performance des Newton-Verfahrens im beschränkten Fall genau gleich zu der Performance des Newton-Verfahrens im unbeschränkten Fall. Sobald x (k) nahe bei x liegt, konvergiert es sehr schnell und mit einer hohen Genauigkeit innerhalb weniger Iterationen. Die Niveaumenge S = {x x domf, f(x) f(x (0) ), Ax = b} sei abgeschlossen, wobei x (0) domf Ax (0) = b erfüllt. Dies ist der Fall, wenn f abgeschlossen ist. Auf der Menge S gelte dann 2 f(x) MI und [ 2 f(x) A T ] 1 K, (9) A 0 2 das bedeutet, dass die Inverse der KKT-Matrix auf S gleichmäßig beschränkt ist, wobei die Inverse existieren muss, damit der Newton-Schritt in jedem Punkt von S definiert ist. Für x, x S genüge 2 f der Lipschitzbedingung 2 f(x) 2 f( x) 2 L x x 2. Mit obigen Annahmen lässt sich folgern, dass die eliminierte Zielfunktion f, zusammen mit dem zugehörigen Anfangspunkt z (0), mit x (0) = ˆx + F z (0), die notwendigen Annahmen für die Konvergenzanalyse des Newton-Verfahrens im unbeschränkten Problem erfüllen (wobei die Konstanten m, M und L unterschiedlich sind). Deshalb konvergiert das Newton-Verfahren mit Gleichungsbeschränkungen gegen x und v. 3 Das Newton-Verfahren für unzulässige Startwerte In diesem Abschnitt geht es um eine Verallgemeinerung des Newton-Verfahrens, welche uns erlaubt, mit unzulässigen Startwerten zu arbeiten. 4

5 Der Newton-Schritt für unzulässige Punkte Wie für das obige Newton-Verfahren beginnen wir mit den Optimalitätsbedingungen: Ax = b, f(x ) + A T v = 0. Der Unterschied hier ist, dass wir mit x den aktuellen Wert bezeichnen, von dem wir nicht annehmen, dass er zulässig ist. Wir nehmen jedoch an, dass gilt x domf. Das Ziel ist es, einen Schritt x zu finden, sodass x + x die Optimalitätsbedingungen mindestens approximativ erfüllt. Dafür ersetzen wir x durch x + x und v durch w in den Optimalitätsbedingungen. Mit der Approximation erster Ordnung für den Gradienten erhalten wir dann f(x + x) f(x) + 2 f(x) x, A(x + x) = b, f(x) + 2 f(x) x + A T w = 0. Wir erhalten nun also ein System von linearen Gleichungen für x und w, [ 2 f(x) A T ] [ ] [ ] x f(x) =. (10) A 0 w Ax b Der Unterschied zu der vorherigen Variante des Newton-Verfahrens aus (6) ist der zweite Ausdruck auf der rechten Seite, nämlich Ax b. Dies stellt den Vektor für das Residuum dar und verschwindet im Falle von zulässigem x. Falls x zulässig ist, wird (10) zu (6). Interpretation als Primal-Dual Newton-Schritt Wir können die Gleichungen aus (10) in Form eines Primal-Dual-Verfahrens für das gleichungsbeschränkte Problem interpretieren. Mit einem Primal-Dual- Verfahren meinen wir ein Verfahren, in dem wir sowohl die primale Variable x als auch die duale Variable v updaten, um die Optimalitätsbedingungen zu erfüllen (oder approximativ zu erfüllen). Wir bezeichnen die Optimalitätsbedingungen mit r(x, v ) = 0, wobei r : R n R p R n R p definiert wird durch r(x, v) = (r dual (x, v), r pri (x, v)). Dabei sind das duale Residuum und das primale Residuum wie folgt definiert: r dual (x, v) = f(x) + A T v, r pri (x, v) = Ax b. 5

6 Die Taylor-Approximation erster Ordnung von r nahe bei unserer aktuellen Schätzung y lautet r(y + z) r(y) + Dr(y)z = ˆr(y + z), wobei Dr(y) R (n+p) (n+p) die Ableitung von r ausgewertet an der Stelle y ist. Wir definieren den Primal-Dual Newton-Schritt y pd als den Schritt z, für den die Taylor-Approximation ˆr(y + z) verschwindet, das bedeutet, es gilt Dr(y) y pd = r(y). (11) Wir berücksichtigen hierbei sowohl x als auch v als Variablen, das heißt y pd = ( x pd, v pd ) gibt uns sowohl den primalen als auch den dualen Schritt. Berechnen wir die Ableitung von r, so können wir (11) in folgende Form umschreiben, [ 2 f(x) A T ] [ ] [ ] [ xpd rdual f(x) + A = = T ] v. (12) A 0 Ax b v pd Ersetzen wir v + v pd mit v +, so erhalten wir [ 2 f(x) A T ] [ ] [ ] xpd f(x) A 0 v + =, (13) Ax b welches exakt das gleiche System an Gleichungen wie in (10) darstellt. Damit erhalten wir für die Lösungen aus (10), (12) und (13) die folgenden Zusammenhänge, r pri x nt = x pd, w = v + = v + v pd. Zulässigkeitseigenschaft bei einem Vollschritt Der Newton-Schritt x nt hat per Konstruktion die Eigenschaft Dies gilt wegen folgender Argumentation: A(x + x nt ) = b. (14) x (k+1) = x (k) + t x (k), A x (k) = (Ax (k) b), Ax (k+1) = Ax (k) + t( Ax (k) + b), Ax (k+1) = Ax (k) tax (k) + tb. 6

7 Für den Vollschritt t = 1 gilt dann schließlich Ax (k+1) = Ax (k) Ax (k) + b, = b, das heißt x (k+1) ist zulässig. Die x (k) bleiben danach für alle weiteren Iterationen zulässig. Der Algorithmus für das Newton-Verfahren bei unzulässigem Startwert Für den Algorithmus benutzen wir den Newton-Schritt x nt aus (10), mit x (0) domf, der nicht notwendigerweise Ax (0) = b erfüllen muss. Weiter benutzen wir den dualen Teil des Newton-Schrittes: v nt = w v, oder äquivalent dazu v nt = v pd. Algorithmus (Das Newton-Verfahren bei unzulässigem Startwert). Seien ein Startpunkt x domf, v, die Toleranz ɛ > 0, α (0, 1/2) und β (0, 1) gegeben. Wiederhole: 1. Berechne den primalen und den dualen Newton-Schritt x nt, v nt. 2. Backtracking Line Search auf r 2. t := 1. while r(x + t x nt, v + t v nt ) 2 > (1 αt) r(x, v) 2, t := βt. 3. Update. x := x + t x nt, v := v + t v nt. bis Ax = b und r(x, v) 2 ɛ. Der Algorithmus ist insgesamt sehr ähnlich zu dem Newton-Verfahren für zulässige Startwerte, aber dennoch gibt es einige Unterschiede: 1. Die Suchrichtungen beinhalten den Korrekturausdruck, welcher abhängig von dem primalen Residuum ist. 2. Die Line Search wird mit der Norm des Residuums statt mit dem Funktionswert von f durchgeführt. 7

8 3. Der Algorithmus terminiert, sobald primale Zulässigkeit erreicht ist und die Norm des (dualen) Residuums klein genug ( ɛ) ist. 4. Der Hauptvorteil dieses Verfahrens liegt in der Initialisierung, da wir bei dieser Variante des Newton-Verfahrens keinen zulässigen Startwert voraussetzen. Einen zulässigen Startpunkt zu berechnen würde zusätzlichen Aufwand bedeuten. Konvergenzanalyse Das Newton-Verfahren mit unzulässigem Startwert konvergiert gegen den optimalen Punkt, wenn einige bestimmte Annahmen erfüllt sind. Der Konvergenzbeweis ist ähnlich zu dem für das Standard-Newton-Verfahren. Es lässt sich zeigen, dass sobald das Residuum klein genug ist, die Zulässigkeit erreicht wird und die Konvergenz quadratisch erfolgt. Weiter lässt sich noch zeigen, dass die Norm des Residuums sich in jeder Iteration um einen bestimmten Betrag verringert, bevor die Region der quadratischen Konvergenz erreicht wird. Da die Norm des Residuums nicht negativ sein kann, bedeutet das, dass das Residuum in einer endlichen Anzahl an Schritten klein genug wird, um quadratische Konvergenz zu garantieren. Literatur [1] S. Boyd, L. Vandenberghe: Convex Optimization, erste Auflage, Cambridge University Press,

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung MATTHIAS GERDTS Einführung in die lineare und nichtlineare Optimierung Address of the Author: Matthias Gerdts Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

Kap. 6: Iterative Lösung von Gleichungssystemen

Kap. 6: Iterative Lösung von Gleichungssystemen Kap. 6: Iterative Lösung von Gleichungssystemen 6.1 Einleitung In vielen Anwendungen sind Gleichungssysteme zu lösen, in denen die Unbekannten nichtlinear auftreten. Beispiel: Der Betrag der Gravitationskraft

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren Näherungsverfahren zur Berechnung von Nullstellen Das Newtonsche Iterationsverahren. Dieses Verfahren der Nullstellenanäherung macht von der Tatsache Gebrauch, dass der Funktionsgraph einer differenzierbaren

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Mathematische Optimierung

Mathematische Optimierung Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG

MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG MATTHIAS GERDTS NICHTDIFFERENZIERBARE OPTIMIERUNG Address of the Author: Matthias Gerdts Mathematisches Institut Universität Bayreuth D-95440 Bayreuth E-Mail: Matthias.Gerdts@uni-bayreuth.de WWW: www.staff.uni-bayreuth.de/

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Optimierung und Variationsrechnung

Optimierung und Variationsrechnung Optimierung und Variationsrechnung Hermann Schichl Sommersemester 2011 Inhalt 1 Einleitung 3 1.1 Terminologie............................... 4 2 Anwendungen 7 2.1 Optimierung der Erzeugnisse einer Firma...............

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen

OPTIMIERUNG I. Christian Clason. Fakultät für Mathematik Universität Duisburg-Essen OPTIMIERUNG I Vorlesungsskript, Sommersemester 2014 Christian Clason Stand vom 1. Juli 2014 Fakultät für Mathematik Universität Duisburg-Essen INHALTSVERZEICHNIS I GRUNDLAGEN 1 theorie der linearen ungleichungen

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr