Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Größe: px
Ab Seite anzeigen:

Download "Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme"

Transkript

1 Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh 3.Mai Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es um Methoden für das Lösen von konvexen Optimierungsproblemen mit Gleichungsnebenbedingungen der Form Minimiere f(x), so dass Ax = b, mit f : R n R konvex und zweimal stetig differenzierbar und A R p n mit Rang A = p < n. Ein Punkt x dom f ist optimal für (1) genau dann, wenn es ein v R p gibt, sodass gilt (1) Ax = b, f(x ) + A T v = 0. (2) Das Lösen des gleichungsbeschränkten Optimierungsproblems aus (1) ist also äquivalent dazu eine Lösung der KKT-Gleichungen aus (2) zu finden. Die erste Gleichung aus (2) Ax = b nennt man auch primale Zulässigkeitsbedingung und bei der zweiten Gleichung f(x ) + A T v = 0 spricht man von der dualen Zulässigkeitsbedingung. Konvexe quadratische Minimierung mit Gleichungsbeschränkungen Betrachten wir nun ein gleichungsbeschränktes konvexes Optimierungsproblem mit einer quadratischen Funktion: Minimiere f(x) = (1/2)x T P x + q T x + r, so dass Ax = b. Hierbei ist P S n + und A R p n. Die Optimalitätsbedingungen aus (2) für die quadratische Funktion sehen dann wie folgt aus: Ax = b, P x + q + A T v = 0. Seminar Konvexe Optimierung, FSS 2016, Universität Mannheim (3) 1

2 Dies können wir noch umschreiben in die Form [ ] [ ] [ ] P A T x q A 0 v =. (4) b Dieses System der (n + p) linearen Gleichungen mit (n + p) Variablen x, v nennt man das KKT -System für das gleichungsbeschränkte quadratische Optimierungsproblem aus (3). Die Koeffizientenmatrix nennt man auch die KKT -M atrix. 2 Das Newton-Verfahren mit Gleichungsbeschränkungen In diesem Abschnitt geht es um die Erweiterung des Newton-Verfahrens für den gleichungsbeschränkten Fall. Diese Methode funktioniert sehr ähnlich zu dem ungleichungsbeschränkten Fall, bis auf zwei wesentliche Unterschiede: Der Anfangspunkt muss zulässig sein, das heißt es gelten x dom f und Ax = b und weiterhin wird die Definition des Newton-Schrittes so verändert, dass die Gleichheitsbeschränkungen miteinbezogen werden. Wir werden insbesondere sicherstellen, dass der Newton-Schritt x nt eine zulässige Richtung darstellt, das bedeutet es gilt A x nt = 0. Der Newton-Schritt Um den Newton Schritt x nt für das gleichungsbeschränkte Problem an einem gültigen Punkt x herzuleiten ersetzen wir die Zielfunktion mit ihrer Taylorapproximation zweiter Ordnung nahe bei x. Dies ergibt dann die Form Minimiere f(x + v) = f(x) + f(x) T v + (1/2)v T 2 f(x)v, so dass A(x + v) = b, (5) mit der Variablen v. Dies ist möglich wegen dem folgendem Argument: L(x, λ) = f(x) + λ T (Ax b), L = f + A T λ, 2 L = 2 f. Unter den Voraussetzungen ist die zugehörige KKT-Matrix regulär. Wir definieren nun x nt als Lösung des konvexen quadratischen Problems aus (5). Analog zu (4) ist hier der Newton-Schritt x nt charakterisiert durch 2

3 [ 2 f(x) A T ] [ ] [ ] xnt f(x) =, (6) A 0 w 0 wobei w die zugehörige optimale duale Variable für das quadratische Problem ist. Weiter gilt A(x + x) = b, A x = b Ax, = 0, wenn x zulässig ist. Der Newton-Schritt ist nur für die Punkte definiert, für die die KKT-Matrix regulär ist. Das Newton-Dekrement Wir definieren das Newton-Dekrement λ für das gleichungsbeschränkte Problem genau wie für den ungleichungsbeschränkten Fall durch λ(x) = ( x T nt 2 f(x) x nt ) 1/2. (7) Das bedeutet, dass λ die Norm des Newton-Schrittes ist, die von der Hesse- Matrix bestimmt wird. Das Newton-Dekrement spielt eine entscheidende Rolle für das Abbruchkriterium des Newton-Verfahrens. Mit f(x+v) aus (5) gilt nun genau wie im ungleichungsbeschränkten Fall f(x) inf { f(x + v) A(x + v) = b} = λ(x) 2 /2. (8) Anschaulich bedeutet das, dass uns λ(x) 2 /2 eine Schätzung für f(x) p liefert, wobei p den optimalen Wert mit p = inf {f(x) Ax = b} = f(x ) bezeichnet. Damit dient uns λ(x) (oder auch ein Vielfaches von λ(x) 2 ) als Basis für ein gutes Abbruchkriterium unseres Verfahrens. Algorithmus (Newton-Verfahren zur gleichungsbeschränkten Minimierung). Gegeben sei ein Startpunkt x (0) dom f mit Ax (0) = b und Toleranz ɛ > 0. Wiederhole für k = 0, 1, Berechne den Newton-Schritt und das Newton-Dekrement x (k) nt, λ(x(k) ). 2. Abbruchkriterium. Abbrechen, falls λ 2 /2 ɛ gilt. 3. Line Search. Suche die Schrittweite t durch Backtracking Line Search. 3

4 4. Update. x (k+1) := x (k) + t x (k) nt. Dieses Verfahren ist ein zulässiges Abstiegsverfahren, da alle Iterationen zulässig sind mit f(x (k+1) ) < f(x (k) ) (solange bis x (k) optimal ist). Das Newton-Verfahren setzt voraus, dass die KKT-Matrix für jedes x invertierbar ist. Konvergenzanalyse Alles was wir über die Konvergenz des Newton-Verfahrens für das unbeschränkte Problem kennen, lässt sich auch auf den beschränkten Fall übertragen. In der Praxis ist die Performance des Newton-Verfahrens im beschränkten Fall genau gleich zu der Performance des Newton-Verfahrens im unbeschränkten Fall. Sobald x (k) nahe bei x liegt, konvergiert es sehr schnell und mit einer hohen Genauigkeit innerhalb weniger Iterationen. Die Niveaumenge S = {x x domf, f(x) f(x (0) ), Ax = b} sei abgeschlossen, wobei x (0) domf Ax (0) = b erfüllt. Dies ist der Fall, wenn f abgeschlossen ist. Auf der Menge S gelte dann 2 f(x) MI und [ 2 f(x) A T ] 1 K, (9) A 0 2 das bedeutet, dass die Inverse der KKT-Matrix auf S gleichmäßig beschränkt ist, wobei die Inverse existieren muss, damit der Newton-Schritt in jedem Punkt von S definiert ist. Für x, x S genüge 2 f der Lipschitzbedingung 2 f(x) 2 f( x) 2 L x x 2. Mit obigen Annahmen lässt sich folgern, dass die eliminierte Zielfunktion f, zusammen mit dem zugehörigen Anfangspunkt z (0), mit x (0) = ˆx + F z (0), die notwendigen Annahmen für die Konvergenzanalyse des Newton-Verfahrens im unbeschränkten Problem erfüllen (wobei die Konstanten m, M und L unterschiedlich sind). Deshalb konvergiert das Newton-Verfahren mit Gleichungsbeschränkungen gegen x und v. 3 Das Newton-Verfahren für unzulässige Startwerte In diesem Abschnitt geht es um eine Verallgemeinerung des Newton-Verfahrens, welche uns erlaubt, mit unzulässigen Startwerten zu arbeiten. 4

5 Der Newton-Schritt für unzulässige Punkte Wie für das obige Newton-Verfahren beginnen wir mit den Optimalitätsbedingungen: Ax = b, f(x ) + A T v = 0. Der Unterschied hier ist, dass wir mit x den aktuellen Wert bezeichnen, von dem wir nicht annehmen, dass er zulässig ist. Wir nehmen jedoch an, dass gilt x domf. Das Ziel ist es, einen Schritt x zu finden, sodass x + x die Optimalitätsbedingungen mindestens approximativ erfüllt. Dafür ersetzen wir x durch x + x und v durch w in den Optimalitätsbedingungen. Mit der Approximation erster Ordnung für den Gradienten erhalten wir dann f(x + x) f(x) + 2 f(x) x, A(x + x) = b, f(x) + 2 f(x) x + A T w = 0. Wir erhalten nun also ein System von linearen Gleichungen für x und w, [ 2 f(x) A T ] [ ] [ ] x f(x) =. (10) A 0 w Ax b Der Unterschied zu der vorherigen Variante des Newton-Verfahrens aus (6) ist der zweite Ausdruck auf der rechten Seite, nämlich Ax b. Dies stellt den Vektor für das Residuum dar und verschwindet im Falle von zulässigem x. Falls x zulässig ist, wird (10) zu (6). Interpretation als Primal-Dual Newton-Schritt Wir können die Gleichungen aus (10) in Form eines Primal-Dual-Verfahrens für das gleichungsbeschränkte Problem interpretieren. Mit einem Primal-Dual- Verfahren meinen wir ein Verfahren, in dem wir sowohl die primale Variable x als auch die duale Variable v updaten, um die Optimalitätsbedingungen zu erfüllen (oder approximativ zu erfüllen). Wir bezeichnen die Optimalitätsbedingungen mit r(x, v ) = 0, wobei r : R n R p R n R p definiert wird durch r(x, v) = (r dual (x, v), r pri (x, v)). Dabei sind das duale Residuum und das primale Residuum wie folgt definiert: r dual (x, v) = f(x) + A T v, r pri (x, v) = Ax b. 5

6 Die Taylor-Approximation erster Ordnung von r nahe bei unserer aktuellen Schätzung y lautet r(y + z) r(y) + Dr(y)z = ˆr(y + z), wobei Dr(y) R (n+p) (n+p) die Ableitung von r ausgewertet an der Stelle y ist. Wir definieren den Primal-Dual Newton-Schritt y pd als den Schritt z, für den die Taylor-Approximation ˆr(y + z) verschwindet, das bedeutet, es gilt Dr(y) y pd = r(y). (11) Wir berücksichtigen hierbei sowohl x als auch v als Variablen, das heißt y pd = ( x pd, v pd ) gibt uns sowohl den primalen als auch den dualen Schritt. Berechnen wir die Ableitung von r, so können wir (11) in folgende Form umschreiben, [ 2 f(x) A T ] [ ] [ ] [ xpd rdual f(x) + A = = T ] v. (12) A 0 Ax b v pd Ersetzen wir v + v pd mit v +, so erhalten wir [ 2 f(x) A T ] [ ] [ ] xpd f(x) A 0 v + =, (13) Ax b welches exakt das gleiche System an Gleichungen wie in (10) darstellt. Damit erhalten wir für die Lösungen aus (10), (12) und (13) die folgenden Zusammenhänge, r pri x nt = x pd, w = v + = v + v pd. Zulässigkeitseigenschaft bei einem Vollschritt Der Newton-Schritt x nt hat per Konstruktion die Eigenschaft Dies gilt wegen folgender Argumentation: A(x + x nt ) = b. (14) x (k+1) = x (k) + t x (k), A x (k) = (Ax (k) b), Ax (k+1) = Ax (k) + t( Ax (k) + b), Ax (k+1) = Ax (k) tax (k) + tb. 6

7 Für den Vollschritt t = 1 gilt dann schließlich Ax (k+1) = Ax (k) Ax (k) + b, = b, das heißt x (k+1) ist zulässig. Die x (k) bleiben danach für alle weiteren Iterationen zulässig. Der Algorithmus für das Newton-Verfahren bei unzulässigem Startwert Für den Algorithmus benutzen wir den Newton-Schritt x nt aus (10), mit x (0) domf, der nicht notwendigerweise Ax (0) = b erfüllen muss. Weiter benutzen wir den dualen Teil des Newton-Schrittes: v nt = w v, oder äquivalent dazu v nt = v pd. Algorithmus (Das Newton-Verfahren bei unzulässigem Startwert). Seien ein Startpunkt x domf, v, die Toleranz ɛ > 0, α (0, 1/2) und β (0, 1) gegeben. Wiederhole: 1. Berechne den primalen und den dualen Newton-Schritt x nt, v nt. 2. Backtracking Line Search auf r 2. t := 1. while r(x + t x nt, v + t v nt ) 2 > (1 αt) r(x, v) 2, t := βt. 3. Update. x := x + t x nt, v := v + t v nt. bis Ax = b und r(x, v) 2 ɛ. Der Algorithmus ist insgesamt sehr ähnlich zu dem Newton-Verfahren für zulässige Startwerte, aber dennoch gibt es einige Unterschiede: 1. Die Suchrichtungen beinhalten den Korrekturausdruck, welcher abhängig von dem primalen Residuum ist. 2. Die Line Search wird mit der Norm des Residuums statt mit dem Funktionswert von f durchgeführt. 7

8 3. Der Algorithmus terminiert, sobald primale Zulässigkeit erreicht ist und die Norm des (dualen) Residuums klein genug ( ɛ) ist. 4. Der Hauptvorteil dieses Verfahrens liegt in der Initialisierung, da wir bei dieser Variante des Newton-Verfahrens keinen zulässigen Startwert voraussetzen. Einen zulässigen Startpunkt zu berechnen würde zusätzlichen Aufwand bedeuten. Konvergenzanalyse Das Newton-Verfahren mit unzulässigem Startwert konvergiert gegen den optimalen Punkt, wenn einige bestimmte Annahmen erfüllt sind. Der Konvergenzbeweis ist ähnlich zu dem für das Standard-Newton-Verfahren. Es lässt sich zeigen, dass sobald das Residuum klein genug ist, die Zulässigkeit erreicht wird und die Konvergenz quadratisch erfolgt. Weiter lässt sich noch zeigen, dass die Norm des Residuums sich in jeder Iteration um einen bestimmten Betrag verringert, bevor die Region der quadratischen Konvergenz erreicht wird. Da die Norm des Residuums nicht negativ sein kann, bedeutet das, dass das Residuum in einer endlichen Anzahl an Schritten klein genug wird, um quadratische Konvergenz zu garantieren. Literatur [1] S. Boyd, L. Vandenberghe: Convex Optimization, erste Auflage, Cambridge University Press,

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung

MATTHIAS GERDTS. Einführung in die lineare und nichtlineare Optimierung MATTHIAS GERDTS Einführung in die lineare und nichtlineare Optimierung Address of the Author: Matthias Gerdts Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Kap. 6: Iterative Lösung von Gleichungssystemen

Kap. 6: Iterative Lösung von Gleichungssystemen Kap. 6: Iterative Lösung von Gleichungssystemen 6.1 Einleitung In vielen Anwendungen sind Gleichungssysteme zu lösen, in denen die Unbekannten nichtlinear auftreten. Beispiel: Der Betrag der Gravitationskraft

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren Näherungsverfahren zur Berechnung von Nullstellen Das Newtonsche Iterationsverahren. Dieses Verfahren der Nullstellenanäherung macht von der Tatsache Gebrauch, dass der Funktionsgraph einer differenzierbaren

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Optimierung und Variationsrechnung

Optimierung und Variationsrechnung Optimierung und Variationsrechnung Hermann Schichl Sommersemester 2011 Inhalt 1 Einleitung 3 1.1 Terminologie............................... 4 2 Anwendungen 7 2.1 Optimierung der Erzeugnisse einer Firma...............

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr