Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen

Größe: px
Ab Seite anzeigen:

Download "Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen"

Transkript

1 Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten : Ansätze zur Bewertung von Zinsoptionen A. Arten von Zinsoptionen B. Modelle zur Bewertung von Zinsoptionen 1. Anforderungen an Bewertungsmodelle für Zinsoptionen a) Zinsoptionen im Vergleich zu Aktienoptionen b) Anforderungen aus den spezifischen Eigenschaften von Anleihen c) Generelle Anforderungen an ein Bewertungsmodell 2. Klassifikation der Bewertungsmodelle C. Ausgewählte Modelle zur Bewertung von Zinsoptionen I. Klassische Modelle zur Bewertung von Optionen 1. Binominalmodell 2. Black-Scholes-Modell 3. Black-Modell 4. Eignung klassischer Modelle zur Bewertung von Zinsptionen II. Rendleman-Bartter-Modell III. Hull-White-Modell 1990 IV. Hull-White-Modell 1993 V. Heath-Jarrow-Morton D. Zusammenfassung der Ergebnisse

2 - 2 - Fragen A. Arten von Zinsoptionen a) Was ist eine Zinsoption? b) Erläutern Sie Funktionsweise und Einsatzmöglichkeiten von Caps, Floors und Collars. c) Was ist ein Caplet? d) Erläutern Sie, warum man einen Cap als eine Staffel von Kaufoptionen auf den Referenzzinssatz ansehen kann. Wie kann man einen Cap als eine Staffel von Verkaufsoptionen auf einen Zinstitel interpretieren? e) Nennen Sie weitere Finanzinstrumente, in denen Zinsoptionen vorkommen und erläutern Sie jeweils die Optionskomponente. B. Modelle zur Bewertung von Zinsoptionen 1) Anforderungen an ein Bewertungsmodell für Zinsoptionen. a) Erläutern Sie Unterschiede zwischen Zins- und Aktienoptionen. b) Erläutern Sie Eigenschaften von Zinssätzen und Anleihekursen, die bei der Modellierung der Zeitstruktur der Zinssätze Berücksichtigung finden sollten? c) Diskutieren Sie Mean Reversion bei Zinssätzen. d) Welchen generellen Anforderungen muß ein Bewertungsmodell genügen? 2) Klassifikation der Bewertungsmodelle e) Klassifizieren Sie die Modelle zur Bewertung f) Erläutern Sie Ihre Klassifikation. Nehmen Sie zur Abgrenzung von Modellen mit partiellen und vollständigen Informationen sowie von Inversions- und Evolutionsmodellen Stellung. C. Ausgewählte Modelle zur Bewertung von Zinsoptionen I. Klassische Modelle zur Bewertung von Zinsoptionen 1) Binominalmodell a) Erläutern Sie den Wertebereich von europäischen und amerikanischen Kaufund Verkaufsoptionen. b) Erläutern Sie die Annahmen des Binominalmodells. c) Erläutern Sie den Zusammenhang zwischen Risikoneutralität, Arbitragefreiheit und Duplikationsstrategie. Welche Rendite erwirtschaftet das Duplikationsportfolio? d) Leiten Sie das ein- und zweiperiodige Binominalmodell her und erläutern Sie alle wesentlichen Schritte. e) Warum enthält das Binominalmodell keine Wahrscheinlichkeiten? 2) Black-Scholes-Modell a) Erläutern Sie die Annahmen des Black-Scholes-Modells. b) Wie kann man das Black-Scholes-Modell aus dem Binominalmodell ableiten? c) Erläutern Sie, wie man das Black-Scholes-Modell zur Bewertung von Optionen auf Anleihen nutzen kann. d) Diskutieren Sie die Eignung des Modells zur Bewertung von Zinsoptionen?

3 - 3 - e) Bewerten Sie die folgende Kaufoption mit dem Black-Scholes-Modell: Basisgut: Eine Nullkuponanleihe mit einer Restlaufzeit von 9 Jahren. Der Rückzahlungsbetrag ist 100 Euro. Die Marktrendite für 9 jährige Nullkuponanleihen beläuft sich auf 7%. Basispreis: 60 Euro Optionsfrist: 3 Monate 3-Monats Zins: 4,3% p.a. (kontinuierlich) Volatilität: 17% f) Erläutern Sie die Reaktion des Optionspreises auf die Veränderung seiner Determinanten. 3) Black-Modell a) Wie können Sie Optionen auf Anleihen mit dem Black-Modell bewerten? b) Welche Unterschiede ergeben sich zum Black-Scholes-Modell? c) Diskutieren Sie die Eignung klassischer Modelle für die Bewertung von Zinsoptionen? II. Rendleman-Bartter-Modell a) Was versteht man unter einem stochastischen Prozess? b) Erläutern Sie die Markov-Eigenschaft. c) Was ist ein Wiener-Prozess? Erläutern Sie die Determinanten. d) Erläutern Sie den Ito-Prozess. e) Erläutern Sie die Grundidee des Rendleman-Bartter-Modells, indem Sie i) den Zinssatz beschreiben, dessen stochastischer Verlauf modelliert wird, ii) den kontinuierlichen Prozess darstellen, dem dieser Zinssatz folgt, iii) den Übergang zum zeitdiskreten Prozess darstellen, iv) auf die Entwicklung des Zinssatzes eingehen, v) den Zusammenhang zwischen Zinssatz und Anleihekurs darstellen und vi) den Zusammenhang zwischen Anleihekurs und Optionswert darlegen. f) Stellen Sie Zusammenhänge zwischen dem Rendleman-Bartter-Modell und Modellen zur Bewertung von Aktienoptionen her. g) Erläutern Sie das Rendleman-Bartter-Modell anhand einer Beispielrechnung. Sie möchten eine 2-jährige amerikanische Kaufoption auf eine 3-jährige Anleihe bewerten. i) Modellieren Sie die Entwicklung des einjährigen Zinssatzes (dt=1) über drei Jahre anhand eines Binomialbaums. Es sind folgende Daten gegeben. Kontinuierliche Drift M: 0,03 Standardabweichung S: 0,15 Der momentane kontinuierliche Zinssatz für einjährige Anlagen beträgt 8%.

4 - 4 - ii) Nehmen Sie an, daß die Anleihe, die der Kaufoption zugrunde liegt, folgende Daten aufweist: Restlaufzeit: Rückzahlungsbetrag: Kupon: 3 Jahre 1000 Euro 6% jeweils zum Jahresende Errechnen Sie an jedem Knoten des Binomialbaums aus i) die Anleihekurse. iii) Errechnen Sie den Wert der 2-jährigen amerikanischen Kaufoption zum heutigen Zeitpunkt, indem Sie rekursiv die Werte der Option, beginnend am Ende der Optionsfrist, ermitteln. Gehen Sie davon aus, daß der Basispreis der Option 970 Euro beträgt. Wie wird die Möglichkeit der frühzeitigen Ausübung der amerikanischen Option erfaßt? h) Wovon hängt die Qualität des Rendleman-Bartter-Modells ab? i) Diskutieren Sie die Eignung des Rendleman-Bartter-Modells zur Bewertung III. Hull-White-Modell (1990) a) Erläutern Sie den stochastischen Prozess für den kurzfristigen Zinssatz. Wie wird die Mean-Reversion-Eigenschaft des kurzfristigen Zinssatzes modelliert? b) Erläutern Sie das Hull-White-Modell (1990) anhand einer Beispielrechnung. Sie möchten eine 2-jährige amerikanische Kaufoption auf eine 3-jährige Nullkuponanleihe bewerten. i) Modellieren Sie die Entwicklung des einjährigen Zinssatzes (dt=1) anhand eines Trinomialbaums. Es sind folgende Daten gegeben: Langfristiges Niveau des kurzfristigen Zinssatzes: 15% Mean-Reversion-Rate a: 0,1 Der momentane Zinssatz für einjährige Anlagen beträgt 8% Standardabweichung : 0,014 Gehen Sie zunächst vom Betrachtungszeitpunkt 0 aus. - Bestimmen Sie zunächst die Veränderung der Zinssatzes dr. Ist dr vom Betrachtungszeitpunkt abhängig? - Bestimmen Sie die erwartete Zinsänderung und die Form der Verästelung. Stellen Sie einen Zusammenhang zwischen der Form der Verästelung und der Mean-Reversion-Eigenschaft des einjährigen Zinssatzes her. - Bestimmen Sie die drei einjährigen Zinssätze für die Anlageperiode, die in einem Jahr beginnt. - Bestimmen Sie jeweils die Wahrscheinlichkeiten für die Zinssätze. - Lösen Sie sich vom Betrachtungszeitpunkt 0 und entwickeln Sie den Trinomialbaum der Zinssätze für den Betrachtungszeitraum. ii) Zeigen Sie, wie man den Kurs der 3-jährigen Nullkuponanleihe mit einem Rückzahlungsbetrag von 100 Euro an den einzelnen Knoten des Trinomialbaums analytisch und rekursiv bestimmen kann.

5 - 5 - iii) Errechnen Sie den Wert der 2-jährigen amerikanischen Kaufoption zum heutigen Zeitpunkt, indem Sie rekursiv die Werte der Option, beginnend am Ende der Optionsfrist, ermitteln. Gehen Sie davon aus, daß der Basispreis der Option 75 Euro beträgt. Legen Sie die rekursiv ermittelten Kurse der Nullkuponanleihe zugrunde. Wie wird die Möglichkeit der frühzeitigen Ausübung der amerikanischen Option erfaßt? iv) Leiten Sie die jeweils erwarteten einjährigen Zinssätze ab. Wie ermittelt man hieraus die Zeitstruktur der Kassazinssätze? c) Warum unterscheiden sich analytische und rekursive Berechnung? d) Wovon hängt die Qualität des Hull-White-Modell (1990) ab? e) Diskutieren Sie die Eignung des Hull-White-Modell (1990) zur Bewertung IV. Hull-White-Modell (1993) a) Erläutern Sie die Grundidee des Hull-White-Modells (1993). Inwiefern stellt es eine Erweiterung des Modells von 1990 dar? b) Zeigen Sie, wie die Grundidee formal umgesetzt wird. c) Erläutern Sie das Hull-White-Modell (1993) anhand einer Beispielrechnung. Sie möchten eine 2-jährige amerikanische Kaufoption auf eine 3-jährige Nullkuponanleihe bewerten. i) Die folgende Zeitstruktur der Kassazinssätze ist am Markt beobachtbar: 0R 1 =8%, 0 R 2 =8,5% 0 R 3 =9% 0 R 4 =9,5% ( 0 R 1 ist der Zinssatz für Anlagen in 0 über eine Periode, 0 R 2 ist der Zinssatz für Anlagen in 0 über zwei Perioden...). Modellieren Sie die Entwicklung des einjährigen Zinssatzes (dt=1) anhand eines Trinomialbaums. Es sind ansonsten die gleichen Daten gegeben wie in Aufgabe III.b). ii) Zeigen Sie, wie man die den Kurs der 3-jährigen Nullkuponanleihe mit einem Rückzahlungsbetrag von 100 Euro an den einzelnen Knoten des Trinomialbaums analytisch und rekursiv bestimmen kann. iii) Errechnen Sie den Wert der 2-jährigen amerikanischen Kaufoption zum heutigen Zeitpunkt, indem Sie rekursiv die Werte der Option, beginnend am Ende der Optionsfrist, ermitteln. Gehen Sie davon aus, daß der Basispreis der Option 75 Euro beträgt. Legen Sie die rekursiv ermittelten Kurse der Nullkuponanleihe zugrunde. Wie wird die Möglichkeit der frühzeitigen Ausübung der amerikanischen Option erfaßt? iv) Leiten Sie die jeweils erwarteten einjährigen Zinssätze ab. Überprüfen Sie, ob sich die beobachtete Zeitstruktur der Kassazinssätze mit den modellierten Zinssätzen übereinstimmt, indem Sie die entsprechende Zeitstruktur aus den Modellwerten ermitteln. d) Wovon hängt die Qualität des Hull-White-Modells (1993) ab? e) Diskutieren Sie die Eignung des Hull-White-Modells (1993) zur Bewertung

6 - 6 - V. Heath-Jarrow-Morton-Modell a) Erläutern Sie die Grundidee des Heath-Jarrow-Morton-Modells. b) Wovon hängt die Qualität des Heath-Jarrow-Morton-Modells ab? c) Diskutieren Sie die Eignung des Heath-Jarrow-Morton-Modells zur Bewertung D. Zusammenfassung der Ergebnisse a) Vergleichen Sie die impliziten Zinsstrukturkurven der Modelle mit der realen Zinsstrukturkurve. Diskutieren Sie, welches Modell am geeignetsten für die Bewertung von Zinsoptionen ist. b) Diskutieren Sie die unterschiedlichen Bewertungen der in C. vorgestellten Modelle aus Sicht der Solvenzsicherung und Rechnungslegung.

7 - 7 - Literatur Hull, John [2001]# Optionen, Futures und andere Derivate, 4. Auflage, Wien, 2001, S , , Hull, John und Alan White (1990a)# Valuing derivative securities using the explicit finite difference methode. In: Journal of Financial and Quantitative Analysis, 25. Jg., 1990, S Hull, John und Alan White (1990b)# Pricing interest-rate derivative securities. In: Review of Financial Studies, 3. Jg., 1990, Nr. 4, S Hull, John und Alan White [1993]* One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities. In: Journal of Financial and Quantitative Analysis, Vol. 28, 1993, No. 2, S Jurgeit, Ludwig [1989]# Bewertung von Optionen und bonitätsrisikobehafteten Finanztiteln: Anleihen, Kredite und Fremdfinanzierungsfazilitäten, Hamburg, 1989, S Rendleman, Richard J. und Brit J. Bartter [1980]# The Pricing of Options on Debt Securities. In: Journal of Financial and Quantitative Analysis, Jg. 15, 1980, S * Grundlagenliteratur # wird ausgelegt

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 4: Zinsrisikomanagement mit Zinsderivaten

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 4: Zinsrisikomanagement mit Zinsderivaten Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 7. Februar

Mehr

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler Susanne Kruse Formelsammlung Aktien-, Zins- und Währungsderivate Springer Gabler Inhaltsverzeichnis Notations- und Abkürzungsverzeichnis XI Teil I Finanzmathematische Grundlagen 1 Grundprinzipien der Finanzmathematik

Mehr

Bewertung von Finanzinstrumenten

Bewertung von Finanzinstrumenten Prof. Dr. Arnd Wiedemann Bewertung von Finanzinstrumenten Wintersemester 2013/2014 Financial Engineering Bewertung von Finanzinstrumenten Financial Engineering ist die Kunst der zielgerichteten Konstruktion

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Das theoretische Konzept eines Volatilitätsderivates und seine Anwendung auf die DAX-Optionen

Das theoretische Konzept eines Volatilitätsderivates und seine Anwendung auf die DAX-Optionen Randolf Roth Das theoretische Konzept eines Volatilitätsderivates und seine Anwendung auf die DAX-Optionen Technische Universität Darmstadt Fachbereich 1 Betriebswirtschaftliche Bibliothek Inventar-Nr.

Mehr

Generalthema: Kreditrisikomanagement. Thema 4: CreditRisk+ Gliederung

Generalthema: Kreditrisikomanagement. Thema 4: CreditRisk+ Gliederung Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Zuständiger Mitarbeiter: Dipl.-Kfm. Stefan Krohnsnest

Mehr

A. Das Problem: Welche Regeln zur Abbildung von Absicherungsbeziehungen sind sachgerecht?

A. Das Problem: Welche Regeln zur Abbildung von Absicherungsbeziehungen sind sachgerecht? Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Generalthema: Kreditrisikomanagement. Thema 6: Risikosteuerung mit Kreditderivaten

Generalthema: Kreditrisikomanagement. Thema 6: Risikosteuerung mit Kreditderivaten Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Zuständiger Mitarbeiter: Dipl.-Kfm. Stefan Krohnsnest

Mehr

Generalthema: Organisationsformen des Kreditgeschäfts. Fragen Thema 7: Künftige Organisationsformen des Kreditgeschäfts

Generalthema: Organisationsformen des Kreditgeschäfts. Fragen Thema 7: Künftige Organisationsformen des Kreditgeschäfts Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2004/2005 Zuständiger Mitarbeiter: Dipl.-Kfm. Sandro Zarß Generalthema:

Mehr

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche Optionen Termingeschäfte Bedingte Termingeschäfte bedingte Ansprüche (contingent claims) Optionen Kreditderivate Unbedingte Termingeschäfte, unbedingte Ansprüche Forwards und Futures Swaps 2 Optionen Der

Mehr

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 7: Grenzen des Ansatzes aller Finanztitel zum Marktwert

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 7: Grenzen des Ansatzes aller Finanztitel zum Marktwert Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 3, 4)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 3, 4) Lösungshinweise zur Einsendearbeit 2 zum Kurs 41520, Banken und Börsen, SS 2009 1 Lösungshinweise zur Einsendearbeit 2: SS 2009 Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 3, 4) Rahmenbedingungen

Mehr

Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten

Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten Wintersemester 2012/2013 Universität Siegen Dr. Boris Nöll / BEW II 1 Literatur Cox, John C./Ross, Stephen A./Rubinstein, Mark (1978): Option pricing:

Mehr

Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt

Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Finanzierung. Prof. Dr. Rolf Nagel

Finanzierung. Prof. Dr. Rolf Nagel BWL I - Teil B Finanzierung Kapitel 5 -Instrumente der Risikoabsicherung - Prof. Dr. Rolf Nagel Fachhochschule Düsseldorf Fachbereich Wirtschaft 5.1 Absicherung des Zinsänderungsrisikos 5 5.1.1 Zinsbegrenzungsverträge

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Kalkulation von impliziten Optionsrechten des Kunden in der privaten Wohnungsbaufinanzierung

Kalkulation von impliziten Optionsrechten des Kunden in der privaten Wohnungsbaufinanzierung Kalkulation von impliziten Optionsrechten des Kunden in der privaten Wohnungsbaufinanzierung von Dr. Wolf Christoph Gramatke Fritz Knapp Verlag Frankfurt am Main Abbildungsverzeichnis Tabellenverzeichnis

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

C (Kernmodul) in der Studienrichtung Grundlagen (basic) / Spezialisierung (specialised)

C (Kernmodul) in der Studienrichtung Grundlagen (basic) / Spezialisierung (specialised) Modulbeschrieb Fincancial Investments 29.04.2009 Seite 1/7 Modulcode Leitidee Art der Ausbildung Studiengang Modultyp Modulniveau Dotation Modulkurse Eingangskompetenzen Anschlussmodule Bemerkungen W.SRFBC41.05

Mehr

Aufgabe 1: Bewertung von Derivaten

Aufgabe 1: Bewertung von Derivaten Aufgabe 1: Bewertung von Derivaten Teil I: Allgemeine Bewertungstheorie Am arbitragefreien Kapitalmarkt werden europäische und amerikanische Kauf- und Verkaufsoptionen mit einer Restlaufzeit von jeweils

Mehr

Abschlußklausur am 21. Mai 2003

Abschlußklausur am 21. Mai 2003 Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.671 der Universität Hamburg Grundlagen der Bankbetriebslehre I Prof. Dr. Hartmut Schmidt Sommersemester 2003 Abschlußklausur am 21. Mai 2003 Bearbeitungsdauer:

Mehr

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr.

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Optionen, Futures und andere Derivate 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner 11 Eigenschaften von Aktienoptionen

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Arbitrage Free Pricing

Arbitrage Free Pricing Beim CAPM wurde gezeigt, dass man Finanztitel basierend auf der Verteilung ihres künftigen Preises bewerten kann. Dabei haben wir [unter der Annahme gewisser Präferenzen des Es] den Preis eines Finanztitels

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick

Mehr

Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen.

Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen. 2. Spekulation Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen. Dazu kann auf verschiedene Szenarien spekuliert werden: ( nur eine Auswahl ) Spekulation

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Abschlussklausur am 23. März 2006

Abschlussklausur am 23. März 2006 Aufgabe 1 2 3 4 5 Punkte Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Finanzmanagement (Finanzierung) Prof. Dr. Hartmut Schmidt Wintersemester 2005/2006 Abschlussklausur

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Matr.-Nr.: Name: Vorname:

Matr.-Nr.: Name: Vorname: FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Prüfer: 31521 Banken und Börsen Prof. Dr. Rainer Baule Termin: 06.03.2014 Aufgabe 1 2 3 4 Summe maximale

Mehr

Abschlussklausur am 24. März 2005

Abschlussklausur am 24. März 2005 Aufgabe 1 2 3 4 Punkte Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Finanzmanagement (Finanzierung) Prof. Dr. Hartmut Schmidt Wintersemester 2004/2005 Abschlussklausur

Mehr

Klausur zur Vorlesung Finanz- und Bankmanagement

Klausur zur Vorlesung Finanz- und Bankmanagement Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft [Aufkleber] Klausur zur Vorlesung Finanz- und Bankmanagement Prof. Dr. Marco Wilkens 06. Februar 2012

Mehr

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird.

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird. Zinsoptionen Eine Option ist eine Vereinbarung zwischen zwei Vertragsparteien, bei der die kaufende Partei das Recht hat, ein bestimmtes Produkt während eines definierten Zeitraums zu einem vorher bestimmten

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Generalthema: Organisationsformen des Kreditgeschäfts. Fragen Thema 3: Risikomanagement der Kreditbank

Generalthema: Organisationsformen des Kreditgeschäfts. Fragen Thema 3: Risikomanagement der Kreditbank Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2004/2005 Zuständiger Mitarbeiter: Dipl.-Kfm. Sandro Zarß Generalthema:

Mehr

Matrikel-Nr.: Fachrichtung: Sem.-Zahl: Seminarschein soll ausgestellt werden über ABWL Integrationsseminar BBL

Matrikel-Nr.: Fachrichtung: Sem.-Zahl: Seminarschein soll ausgestellt werden über ABWL Integrationsseminar BBL Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur Allgemeinen Betriebswirtschaftslehre und Bankbetriebslehre Wintersemester 2002/2003 Zuständiger

Mehr

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN von HANS-JüRG BüTTLER In der vorliegenden Notiz werden zuerst Kennziffern des Wechselkurses, die für die lognormale Verteilung

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Abschlussklausur am 12. Juli 2004

Abschlussklausur am 12. Juli 2004 Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Grundkonzeptionen der Finanzierungstheorie (ABWL / Finanzierung) Dr. Stefan Prigge Sommersemester 2004 Abschlussklausur

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14):

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): a. Bruttogewinn 760.000,- $ - Zinszahlungen 100.000,- $ (10 % auf 1 Mio. $) = EBT (Earnings before Taxes) 660.000,- $ - Steuern (35 % auf 660.000,-

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) 1 Lösungshinweise zur Einsendearbeit 1: SS 2012 Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) Fristentransformation 50 Punkte Die Bank B gibt im Zeitpunkt t = 0 einen Kredit mit einer Laufzeit

Mehr

Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes

Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes www.markedskraft.com Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes Diplomarbeit von Florian Frank Arendal Postboks 62 NO-4801 Arendal Norway Tel +47 37 00 97 00 Fax

Mehr

Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten

Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten Dr. Boris Nöll Bewertung von Aktien- und Zinsderivaten Wintersemester 20/202 Universität Siegen Dr. Boris Nöll / BEW II Literatur Cox, John C./Ross, Stephen A./Rubinstein, Mark (978): Option pricing: a

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Prüfungsklausur Kreditwirtschaft

Prüfungsklausur Kreditwirtschaft Prüfungsklausur Kreditwirtschaft 12. März 2009 Hinweise Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jeden Bearbeitungsbogen. Bitte verwenden sie für jede Aufgabe einen neuen Bearbeitungsbogen.

Mehr

- 2-2. a) Definieren Sie kurz Risiko und Risikomanagement?

- 2-2. a) Definieren Sie kurz Risiko und Risikomanagement? Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur Allgemeinen Betriebswirtschaftslehre und Bankbetriebslehre Wintersemester 1999/2000 Zuständiger Mitarbeiter:

Mehr

Die Performance von Stillhaltergeschäften

Die Performance von Stillhaltergeschäften Thomas Schmidt Die Performance von Stillhaltergeschäften Covered Call Writing im Backtest Masterarbeit Schmidt, Thomas: Die Performance von Stillhaltergeschäften: Covered Call Writing im Backtest. Hamburg,

Mehr

Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen. http://www.pd-verlag.de/buecher/68.html

Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen. http://www.pd-verlag.de/buecher/68.html Auf den folgenden Seiten finden Sie das Inhaltsverzeichnis zu dem Buch: Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen Umsetzung numerischer Verfahren mittels MS-EXCEL und Anwendungsmöglichkeiten

Mehr

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage Inhaltsverzeichnis Vorwort zur zweiten Auflage Vorwort zur ersten Auflage v viii 1 Märkte und Produkte 1 1.1 Motivation: Das Gesicht der Finanzkrise............. 1 1.2 Grundlegende Begriffe.......................

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Schriftliche Ausarbeitung zum Thema Optionsbewertung. Von Ralph Schunn und Nina Schieferbein

Schriftliche Ausarbeitung zum Thema Optionsbewertung. Von Ralph Schunn und Nina Schieferbein Schriftliche Ausarbeitung zum Thema Optionsbewertung Von Ralph Schunn und Nina Schieferbein Gliederung I.) Einleitung : (Nina Schieferbein) 1.) Bedeutung der Optionen am Finanzmarkt 2.) Definition von

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Aufgabe 1: Bewertung von Optionen (48 Punkte)

Aufgabe 1: Bewertung von Optionen (48 Punkte) Aufgabe 1: Bewertung von Optionen (48 Punkte) Am arbitragefreien Kapitalmarkt werden europäische und amerikanische nicht dividendengeschützte Verkaufsoptionen auf eine Aktie mit einer Restlaufzeit von

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung Marcus R.W. Martin Stefan Reitz Carsten S. Wehn Kreditderivate und Kreditrisikomodelle Eine mathematische Einführung 2., überarbeitete und erweiterte Auflage ö Springer Spektrum Inhaltsverzeichnis Vorwort

Mehr

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 23. September

Mehr

LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank I, II am 11.02.2004. Teil I: Aufgaben zu Bank I. Aufgabe 1 (Risikoanreiz und Bankgeschäfte; 30P)

LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank I, II am 11.02.2004. Teil I: Aufgaben zu Bank I. Aufgabe 1 (Risikoanreiz und Bankgeschäfte; 30P) Universität Hohenheim Institut für Betriebswirtschaftslehre Lehrstuhl für Bankwirtschaft und Finanzdienstleistungen Matthias Johannsen Stuttgart, 11.02.2004 LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank

Mehr

Inhaltsverzeichnis. TEIL A Sichere Investitionen... 23

Inhaltsverzeichnis. TEIL A Sichere Investitionen... 23 1 Einführung... 1 1.1 Investitionsarten.... 1 Finanzinvestitionen... 1 Realinvestitionen... 5 1.2 VollkommeneFinanzmärkte... 6 Keine profitable Arbitrage... 7 Homogene Einschätzungen.... 10 FriktionsloseFinanzmärkte...

Mehr

Corporate Finance. Unternehmensbewertung, M & A und innovative Kapitalmarktfinanzierung. von

Corporate Finance. Unternehmensbewertung, M & A und innovative Kapitalmarktfinanzierung. von Corporate Finance Unternehmensbewertung, M & A und innovative Kapitalmarktfinanzierung 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to

Mehr

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths KOOTHS BiTS: Finanzmärkte, WS 2004/2005 Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Geld- und Kreditschöpfung 3. Rentenmärkte

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Optionen, Futures und andere Derivate

Optionen, Futures und andere Derivate John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 8., aktualisierte Auflage Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Higher Education München

Mehr

Optionspreistheorie von Black & Scholes

Optionspreistheorie von Black & Scholes Optionspreistheorie von Black & Scholes Vortrag zum Seminar Econophysics Maximilian Eichberger 20. November 2007 Zusammenfassung Nach einer kurzen Erläuterung zu den Grundbegriffen und -prinzipien des

Mehr

1 Die Fisher Gleichung

1 Die Fisher Gleichung Zusammenfassung Die Fisher Gleichung Geldtheorie und Geldpolitik Wintersemester, 2011/12 1 Die Fisher Gleichung Die Unterscheidung zwischen nominalen und realen Größen verändert das Problem der optimalen

Mehr

Änderung des International Financial Reporting Standard 7 Finanzinstrumente: Angaben

Änderung des International Financial Reporting Standard 7 Finanzinstrumente: Angaben Änderung des International Financial Reporting Standard 7 Finanzinstrumente: Angaben Paragraph 27 wird geändert. Die Paragraphen 27A und 27B werden hinzugefügt. Bedeutung der Finanzinstrumente für die

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 2013

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006 TU Bergakademie Freiberg Fakultät für Wirtschaftswissenschaften Matrikel-Nr.: Name (optional): Studienrichtung: Fakultät: Semesterzahl: DIPLOMPRÜFUNG Prüfungsfach: Prüfer: Examen Bankbetriebslehre (PO99-120

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Internationale Finanzierung Sommersemester 2011 (1. Prüfungstermin) Bearbeitungszeit: 60 Minuten Zur Beachtung: 1. Die Klausur

Mehr

Prüfungsklausur Kreditwirtschaft

Prüfungsklausur Kreditwirtschaft Seite 1 von 7 Name: Matrikelnummer: Prüfungsklausur Kreditwirtschaft Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur und auf jeden Bogen. o Legen Sie die Klausur sowie

Mehr

Analysis of Cliquet Options for Index-Linked Life Insurance

Analysis of Cliquet Options for Index-Linked Life Insurance Analysis of Cliquet Options for Index-Linked Life Insurance Zusammenfassung der Masterarbeit an der Universität Ulm Martin Fuchs Alternative (zu) Garantien in der Lebensversicherung, so lautet das Jahresmotto

Mehr

Die Anforderungen der Bankenäufsieht an das haftende Eigenkapital der Kreditinstitute

Die Anforderungen der Bankenäufsieht an das haftende Eigenkapital der Kreditinstitute Die Anforderungen der Bankenäufsieht an das haftende Eigenkapital der Kreditinstitute Eine Untersuchung unter besonderer Berücksichtigung des relevanten Belastungsfalles Von Dr. Jürgen Bauer junstisene

Mehr

Modeling, Pricing and Risk Management of Power Derivatives

Modeling, Pricing and Risk Management of Power Derivatives Diss. ETH No. 17062 Modeling, Pricing and Risk Management of Power Derivatives A dissertation submitted to ETH Zurich for the degree of Doctor of Sciences presented by Martina Wilhelm Dipl. Math. ETH born

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 Einfache Derivate von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 14 Jänner 2009 1 Inhaltsverzeichnis 1 Einleitung 2 2 Begriffsbestimmung

Mehr

3.6Derivate Finanzinstrumente

3.6Derivate Finanzinstrumente 3.6Derivate Finanzinstrumente S.1 Quelle: http://www.eurexchange.com/resources/web_based_training/futures_optionen/index.html S.2 Der Inhaber eines Optionsscheins(Warrant)hat das Recht, während einer bestimmten

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Das Zinsänderungsrisiko variabler Bankgeschäfte

Das Zinsänderungsrisiko variabler Bankgeschäfte Das Zinsänderungsrisiko variabler Bankgeschäfte Risikoanalyse und Bewertung variabler Hypotheken und Spargelder von Dr. Werner Burger Verlag Paul Haupt Bern Stuttgart Wien xi Inhaltsübersicht IX XI Abbildungsverzeichnis

Mehr

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein.

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein. HSBC Zertifikate-Akademie Zeit- und Dividendeneinfluss auf einen amerikanischen Aktien-Call-Optionsschein Liebe Leserinnen und Leser der HSBC Zertifikate-Akademie In den vergangenen Ausgaben wurden verschiedene

Mehr