(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU"

Transkript

1 (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling

2 Einleitung

3 Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 -

4 Darstellung von Oberflächendetails Simulation durch Texturen Beleuchtung Bewegungsparallaxe Verdeckung, Verschattung Modellierung durch Geometrie Eigentlich der korrekte Weg Hoher Detailsgrad = viele Dreiecke S. Müller - 4 -

5 Repräsentation von Oberflächendetails Darstellung des Reliefs als Graustufentextur Relief kommt aus der Textur raus Relative Höhenangaben Keine Überhänge

6 Zusammenfassung Oberflächendetails Darstellung von Oberflächendetails erhöht Realismus Zwei grundlegende Möglichkeiten 1. Bildbasiert Relief als Graustufentextur 2. Durch Geometrie Viele Dreiecke Intelligente Tesselierung Momentaner Trend zu bildbasierten Verfahren

7 Normal Mapping

8 Beleuchtung des Oberflächenreliefs Wiederholung: Phong Beleuchtungsmodell Normale, Richtung des Lichtes Definition per Vertex Berechnung per Fragment Interpolation von Licht und Normalen

9 Beleuchtung des Oberflächenreliefs Beleuchtung hängt im Wesentlichen von der Normalen ab Veränderte Normale veränderte Beleuchtung Oberflächenstruktur wird durch Schattierung wahrgenommen

10 Beleuchtung des Oberflächenreliefs Normal Mapping Beschreibung der Oberflächenstruktur durch Normalen

11 Oberflächenstruktur durch Normalen Normalen werden nicht mehr interpoliert Jedes Fragment bekommt seine eigene Normale Beleuchtung des Fragmentes mit dieser Normalen Normalen ergeben sich aus Oberflächenrelief

12 Normal Maps Speichern der Normalen in Farb-Textur x,y,z-werte der Normalen als RGB-Werte Height-Map kann im Alpha-Kanal gleich mitgespeichert werden (Relief-Map)

13 Erstellen von Normal Maps Viele Wege führen nach Rom... Erzeugen aus Height-Map (1. Ableitung) x,y-richtung N 1 z-koordinate berechnen Graphiksoftware (Photoshop, 3D Studio)

14 Erstellen von Normal Maps Standardmäßig 8 Bit pro Farbkanal Abbildung des Wertebereichs [-1,1] auf [0,255] ARB_texture_float Extension (32 Bit pro Kanal)

15 Zusammenfassung Normal Maps Oberflächendetails durch Normalen Normalen in Textur kodiert Beleuchtung per Fragment Zuordnung über Texturkoordinate

16 Tangent Space

17 Was bedeuten die Koordinaten? RGB (1,0,0): Normale in x-richtung RGB (0,1,0): Normale in y-richtung RGB (0,0,1): Normale in z-richtung Frage In welchem Koordinatensystem sind die Normalen aus der Normalmap definiert?

18 Koordinatensysteme Eckpunkte und Eckpunktnormalen N im Weltkoordinatensystem Lichtvektor L W im Weltkoordinatensystem Normalen der Normalmap im Texturkoordinatensystem

19 Koordinatensysteme Problem: Unterschiedliche Koordinatensysteme So kann man nicht beleuchten Lösung Oberflächennormalen und Lichtvektor bzgl. eines Oberflächenkooordinatensystems ausdrücken

20 Koordinatensysteme Man will Objekte transformieren können Die Normalmap nicht jedes mal neu berechnen Das Oberflächenkoordinatensystem kann das!

21 Koordinatensysteme Warum in Oberlächenkoordinaten beleuchten? Weltkoordinaten? Jeden Wert der Normalmap in Weltkoordinaten transformieren Alternativ: Normalmap gleich in Weltkoordinaten berechnen Initiale Ausrichtung in der Welt muss bekannt sein Neuberechnung der Normalmap bei jeder Rotation und Skalierung des Objektes Objektkoordinaten? Abhängig von Ausrichtung im lokalen Koordinatensystem Statt Mehrfach-Referrenzierung jedes mal eigen Normalmap

22 Koordinatensysteme Transformation jedes Texels ist teuer Einfache Wiederverwendung der Normalmap Einfacher Produktionsprozess Arbeitszeit ist teuer...

23 Tangent Space Oberflächenkoordinatensystem wird als Tangent Space bezeichnet Tangentenvektor T B Bitangentenvektor (wird gerne auch als Binormale bezeichnet) Oberflächennormale Normalenbasis Definition im Koordinatensystem der Objekte / Lichtquellen N

24 Berechnung des Tangent Space Man kennt Lage der Textur auf Dreieck (Texturkoordinaten) Weltkoordinaten der Eckpunkte Oberflächennormale in Weltkoordinaten Man will T B in Weltkoordinaten Transformationsmatrix WK TS

25 Berechnung des Tangent Space T zeigt in aufsteigende u- Richtung B zeigt in aufsteigende v- Richtung T B sind normiert bzgl. Texturkoordinaten P1 s1t t1b P2 s2t t2b mit s 1 =(u 1 u 0 ),s 2 =(u 2 u 0 ) t 1 =(v 1 v 0 ),t 2 =(v 2 v 0 )

26 Berechnung des Tangent Space P1 P 2 s1t t1b s T t B 2 2 Lineares Gleichungssystem 6 Unbekannte 6 Gleichungen lässt sich in Matrix-Form bringen: [(Δ P 1 ) x (Δ P 1 ) y (Δ P 1 ) z z] (Δ P 2 ) x (Δ P 2 ) y (Δ P 2 ) = [ s 1 t 1 2][ T x T y T z z] s 2 t B x B y B

27 Berechnung des Tangent Space Lösung durch Matrixinversion T B müssen normalisiert werden [ T x T y T z B x B y B z] = 1 1[ t 2 t (Δ P 1 1) x (Δ P 1 ) y (Δ P 1 ) z s 1 t 2 s 1 t s 2 s 1 ][ (Δ P 2 ) x (Δ P 2 ) y (Δ P 2 ) z] Ein Vektor fehlt noch... Als dritter Vektor dient die Normale

28 Von Weltkoordinaten in Tangent Space W z y x z y x z y x TBN L N N N B B B T T T L

29 Tangent Space Zusammenfassung Wir haben damit Berechnung einer Normalmap aus Heightmap (1. Ableitung) erwendung der gleichen Normalmap für jedes beliebige Objekt Die Ausgangsbasis für die folgenden Verfahren Bump Mapping Parallax Mapping Relief Mapping

30 Tangent Space Zusammenfassung Die dunkle Seite der Macht Tangentspace muss vorab berechnet werden Übergabe an Shader als Vertex Attribut Definition pro Dreieck Shared Vertices : Mittelung aneinandergrenzender Dreiecke Bei Änderung oder Transformation dre Geometrie neu berechnen

31 Bump Mapping

32 Bump Mapping 1978 erfunden von James Blinn Normal Map und Tangent Space Echtzeitfühig mit programmierbarer Graphikhardware Wird oft DOT3 Bump Mapping, Tangent Space Mapping etc. genannt Grundlegendes Vorgehen 1) Pro Vertex Tangente und Bitangente berechnen (Applikation) 2) Im Vertex Shader wird der Lichtvektor in den Tangentspace transformiert 3) Im Fragment Shader wird mittels des interpolierten Lichtvektors und Normal Map beleuchtet

33 Parallax Mapping

34 Parallax Mapping Bump Mapping sieht ganz gut aus, aber Keine Selbstverdeckung Keine Bewegungsparallaxe Keine Selbstverschattung Parallax Mapping (Kaneko et. al., 2001) als nächster Schritt

35 Parallax Mapping Parallaxe Scheinbare Änderung der Position eines Objektes bei veränderter Blickrichtung Parallax Mapping trägt diesem Effekt Rechnung Räumlicher Eindruck wird verstärkt

36 Parallax Mapping Berechnung pro Fragment Texturkoordinate wird verschoben Abhängig von Blickrichtung Einfache Erweiterung des Bump Mappings

37 Parallax Mapping Für jedes Fragment kennt man Oberflächennormale N (Tangent Space) Höhe h (Height Map, benutzerdefiniert skaliert) Winkel zwischen Blickrichtung und N Daher: u tan h

38 Parallax Mapping - Vorgehen Applikationsebene Zwei Texturen Normalmap Heightmap Tangente pro Vertex Vertex Shader Tangent Space berechnen Blickrichtung in Tangent Space Lichtvektor in Tangent Space Fragment Shader Mit u, v den Wert h auslesen Δu, Δv berechnen u' = u + Δu v' = v + Δv Normalmap und Heightmap können in einer Textur zusammengefasst werden

39 Parallax Mapping - Zusammenfassung Parallax Mapping als Erweiterung von Bump Mapping Einbeziehung der Höheninformation Bewegungsparallaxe Pseudo-Selbstverdeckung Stand der Technik in aktuellen 3D-Engines Fehlt nur noch Selbstverschattung und Selbstverdeckung...

40 Relief Mapping

41 Relief Mapping Erweiterung des Parallax Mappings Selbstverdeckung Selbstverschattung Oliviera et al., 2000 Mittlerweile viele Varianten Grundlegendes Prinzip: Short Distance Raytracing

42 Relief Mapping - Selbstverdeckung Höhenwerte werden auf [0,1] normalisiert Blickrichtung im Tangent-Space Für jedes Fragment: Schnittpunkt P s mit dem Höhenprofil finden Im Prinzip ein Raytracing auf der Textur

43 Relief Mapping - Selbstverdeckung Texturkoordinate des Fragments: Texturkoordinate u v kann man berechnen Projektion von v in T, N B, N bzw. B u, v Ebene Trigonometrie (Höhe ist 1) Der Schnittpunkt muss zwischen A u, v und B u, v liegen Berechnung im Texturraum Wie berechnet man den Schnittpunkt? A,

44 Relief Mapping - Schnittpunktberechnung Binärsuchverfahren Höhenwerte zwischen A und B werden interpoliert Texturkoordinaten zwischen A und B werden interpoliert Vergleich interpolierter Höhenwert mit Heightmap Mit neuem Intervall weitermachen 8 Schritte in der Regel ausreichen Viele Texturzugriffe...

45 Relief Mapping - Selbstverschattung Lichtvektor muss mit einbezogen werden Gleiches vorgehen wie bei Selbstverdeckung Beim ersten Schnittpunkt kann man aufhören

46 Relief Mapping - Zusammenfassung Relief Mapping Verfahren sehen am besten aus sind aber auch sehr teuer Es gibt verschiedene Ansätze Unterschiedliche Art des Schnitttestes Lineare Suche Kombination lineare / binäre suche Sphere Tracing... Steep Parallax Mapping, Parallax Occlusion Mapping etc.

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Szenegraphen, Texturen und Displaylisten. Agenda Beleuchtungsmodelle in OpenGL Bump-Maps zur Erzeugung von Reliefartigen Oberflächen Height-Maps

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen Universität Hamburg Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme Seminar Informatikanwendungen in Nanotechnologien Betreuer: Bernd Schütz Sommersemester 2014 Shadingalgorithmen

Mehr

Seminar Game Development Game Computer Graphics. Einleitung

Seminar Game Development Game Computer Graphics. Einleitung Einleitung Gliederung OpenGL Realismus Material Beleuchtung Schatten Echtzeit Daten verringern Grafik Hardware Beispiel CryEngine 2 Kristian Keßler OpenGL Was ist OpenGL? Grafik API plattform- und programmiersprachenunabhängig

Mehr

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen 2D-Texturen Texturarten Transformationen Generierung Thomas Jung Reflectance Mapping 3D-Texturen Modellierung von Details erfordert Zeit Darstellung ist aufwendig (langsam) Details belegen Speicherplatz

Mehr

Lokale Beleuchtungsmodelle

Lokale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1 Seite 1 1 Transformationen 1.1 Transformationsmatrizen In den folgenden Teilaufgaben sind die Koeffizienten von 4 4 Transformationsmatrizen zur Repräsentation von affinen Abbildungen im R 3 zu bestimmen.

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Licht und Schatten Visualieren mit dem PC. Andreas Asperl

Licht und Schatten Visualieren mit dem PC. Andreas Asperl Licht und Schatten Visualieren mit dem PC Andreas Asperl Visualisieren Grundlagen der Visualisierung Lichteinflüsse Materialien Anwendungen Tipps und Tricks Grundlagen der Visualisierung In der Computergraphik

Mehr

Einführung in die Computergrafik

Einführung in die Computergrafik Einführung in die Computergrafik Proseminar Computergrafik Zuse Institut Berlin 22. November 2007 Organisatorisches Informationen rund um s Seminar. http://www.zib.de/hotz/teaching/currentlectures.htm

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de Überblick Echtzeit-Rendering Uwe Domaratius dou@hrz.tu-chemnitz.de Gliederung 1. Einleitung 2. geometriebasierende Verbesserungen 3. Level-of-Detail 4. Culling 5. Texturen 6. bildbasiertes Rendering Was

Mehr

Non-Photorealistic Rendering

Non-Photorealistic Rendering Übersicht 1. Motivation und Anwendungen 2. Techniken - Cel Shading - Konturlinien - Hatching Einführung Traditionelle Computergraphik Ziel: Fotorealismus Einführung Motivation Bewusste Vermeidung von

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( )

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( ) Universität Osnabrück Fachbereich Mathematik / Informatik 5. Vorlesung (06.05.2013) Prof. Dr. rer. nat. Oliver Vornberger Nico Marniok, B. Sc. Erik Wittkorn, B. Sc. Game Application Layer Rückblick Game

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe Shader für Geometrische Grundprimitive Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe 0. Gliederung Gliederung: 1. Motivation 2. Verwandte Arbeiten 3. Überblick über das Vorgehen 3.1

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

OpenGL als API für Augmented und Virtual Reality

OpenGL als API für Augmented und Virtual Reality OpenGL als API für Augmented und Virtual Reality Tobias Lang langt@cip.ifi.lmu.de Hausarbeit im Hauptseminar Augmented und Virtual Reality Inhaltsverzeichnis 1. Einleitung... 3 2. Was ist OpenGL... 3 3.

Mehr

Skalierbarkeit virtueller Welten

Skalierbarkeit virtueller Welten $86=8*'(5 )2/,(1 9505 9RUOHVXQJ Dr. Ralf Dörner *RHWKH8QLYHUVLWlWÃ)UDQNIXUW *UDSKLVFKHÃ'DWHQYHUDUEHLWXQJ hehueolfn Der Begriff VR Perspektivisches Sehen in 3D Skalierbarkeit virtueller Welten Echtzeitanforderungen

Mehr

Shader und Effekte für AiRmob. Bachelorarbeit

Shader und Effekte für AiRmob. Bachelorarbeit Fachbereich 4: Informatik Shader und Effekte für AiRmob Bachelorarbeit zur Erlangung des Grades eines Bachelor of Science (B.Sc.) im Studiengang Computervisualistik vorgelegt von Philipp Brandt pbrandt@uni-koblenz.de

Mehr

Modellierung von Reflexionseigenschaften verschiedener Stoffe für interaktives Echtzeit-Rendering

Modellierung von Reflexionseigenschaften verschiedener Stoffe für interaktives Echtzeit-Rendering HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK VISUAL COMPUTING Diplomarbeit Modellierung von Reflexionseigenschaften verschiedener Stoffe für interaktives Echtzeit-Rendering Bojko Heinrich 4.

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

4.3 Beleuchtung und Schattierung

4.3 Beleuchtung und Schattierung 4.3 Beleuchtung und Schattierung Die Grundbestandteile des Renderprozesses Atmosphärische Streuung Emission Reflexion/ Transmission/ Emission Oberfläche 4-38 4.3 Beleuchtung und Schattierung Beleuchtung

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Christina Nell 3D-Computergrafik Seminararbeit im Hauptseminar Grafikprogrammierung. Universität Ulm Sommersemester 2008

Christina Nell 3D-Computergrafik Seminararbeit im Hauptseminar Grafikprogrammierung. Universität Ulm Sommersemester 2008 Christina Nell 3D-Computergrafik Seminararbeit im Hauptseminar Grafikprogrammierung Universität Ulm Sommersemester 2008 1 Inhalt 1 Einleitung 3 2 Beleuchtung 2.1 Grundlagen 2.2 Beleuchtung 2.3 Shading

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Tag 3. Zweidimensionale Spielewelten

Tag 3. Zweidimensionale Spielewelten Tag 3 Zweidimensionale Spielewelten Lernziele Grundlagen für eine 2D-Spielewelt Beschreibung von 2D-Welten durch Vektoren Zweidimensionale Welttransformationen durch Matrizen Mögliche Problemstellungen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de Rendering Grundlagen Version 1.0-2009-04-08 Allgemeine Unterschiede bei Renderern Scanline Rendering Raytrace Rendering Renderlayer Einsatz von Renderlayern Overrides Material Overrides Layer Presets Batch

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Farbtiefe. Gängige Farbtiefen

Farbtiefe. Gängige Farbtiefen Farbtiefe Die Anzahl der darstellbaren Farben ist abhängig von den Farbabstufungen, die in einem Pixel gespeichert werden. Die Anzahl der darstellbaren Farbtöne wird als Farbtiefe bezeichnet. Die Farbtiefe

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

VU Einführung in Visual Computing 1. Test Gruppe A

VU Einführung in Visual Computing 1. Test Gruppe A 09.04.2014 186.822 VU Einführung in Visual Computing 1. Test Gruppe A Matrikelnummer: Nachname: Punkte: Studienkennzahl: Vorname: Bitte tragen sie Ihre Matrikelnummer, Studienkennzahl sowie Vor- und Nachname

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

Jörn Loviscach Hochschule Bremen

Jörn Loviscach Hochschule Bremen Programmierbare Hardware-Shader Jörn Loviscach Hochschule Bremen Überblick Vertex- und Pixel-Shader Anwendungsbeispiele fx-dateien Anwendungsbeispiele Zusammenfassung Puffer Vertex- und Pixel-Shader Hardware-Renderpipeline

Mehr

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 von Enrico Leonhardt 28 45 669 TU Dresden Medieninformatik 29. März 2005 Graphische Datenverarbeitung WS 04/05 Einführung Dieser Raytracer entstand

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Raytracing und Computergraphik Überblick Raytracing Typen von Raytracern z-buffer Raytracing Lichtstrahlen-Verfolgung (engl. ray tracing): Berechnung von Lichtstrahlen

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1.

Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1. I. Thema und Aufgabenstellung Lineare Algebra / Analytische Geometrie Aufgaben Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 3. Achse 2. Achse 1. Achse Die Sonne scheint

Mehr

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken 3D-Computergrafik und animation Shading und globale Beleuchtungsverfahren, Animationstechniken 1 Von 2D nach 3D Weiter: Modell für eine Sichtbeschreibung 2 Kameramodell Reale Kamera als Orientierung und

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Beleuchtungsberechnung Graphische DV und BV, Regina Pohle, 21. Beleuchtungsberechnung 1 Einordnung in die Inhalte der Vorlesung

Mehr

3.3 Beleuchtung und Schattierung

3.3 Beleuchtung und Schattierung 3.3 Beleuchtung und Schattierung Die Beleuchtung einer Szenerie kann lokal oder global modelliert werden Ein lokales Beleuchtungsmodell berechnet die Intensität bzw. Farbe eines Objektpunkts abhängig vom

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Rendering: Lighting & Shading

Rendering: Lighting & Shading Hauptseminar How to make a Pixar Movie WS 2010 / 2011 Rendering: Lighting & Shading von Manuel Schmidt Gliederung: 1 Einführung 1.1 Rendering 1.2 Reflektionsmodelle 1.2.1. Diffuse Reflektion 1.2.2. Spieglende

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen 3D-Rendering Ulf Döring, Markus Färber 07.03.2011 1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen Anzeigefläche (a) Worin besteht das Sichtbarkeitsproblem?

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

er erste Workshop-Teil widmete sich der Konzeption und Modellierung des CryENGINE-Tempels. Im

er erste Workshop-Teil widmete sich der Konzeption und Modellierung des CryENGINE-Tempels. Im Grafik-Workshop Bau eines CryENGINE-Tempels Teil 2: UV-Mapping und Texturierung Im zweiten Teil der Workshop-Reihe beschreibt Martin Teichmann die Erstellung des HighpolyMeshes, das Baken sowie die Texturierung

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Inhaltsverzeichnis - Themen

Inhaltsverzeichnis - Themen Inhaltsverzeichnis - Themen 1 Hardwaregrundlagen 2 Transformationen und Projektionen 3 Repräsentation und Modellierung von Objekten 4 Visibilität und Verdeckung 5 Rasterung 6 Rendering 7 Abbildungsverfahren

Mehr

Gameprogramming WS2013/14 Futurella von Pavel Belskiy und Felix Niemeyer Betreuer: Stefan Buschmann

Gameprogramming WS2013/14 Futurella von Pavel Belskiy und Felix Niemeyer Betreuer: Stefan Buschmann Gameprogramming WS2013/14 Futurella von Pavel Belskiy und Felix Niemeyer Betreuer: Stefan Buschmann Futurella Spielprinzip & Demo - Raumschiffe - Asteroiden - Zielplaneten - LAN Multiplayer Wettrennen

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Konzepte für 3D Produktionen

Konzepte für 3D Produktionen Konzepte für 3D Produktionen»Luxo Jr.«(Pixar 1986)»Tin Toy«(Pixar 1988)»Geri s Game«(Pixar 1997) FHTW Berlin»Studiengang Internationale Medieninformatik«Doz. Michael Herzog/Stephan Hübener 1 Konzepte 3D

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Inhaltsverzeichnis. V Vorwort 17. V.1 An wen richtet sich dieses Buch? 18. V.2 Ansprüche an den Computer 18. V.4 Bildergalerie 19.

Inhaltsverzeichnis. V Vorwort 17. V.1 An wen richtet sich dieses Buch? 18. V.2 Ansprüche an den Computer 18. V.4 Bildergalerie 19. V Vorwort 17 V.1 An wen richtet sich dieses Buch? 18 V.2 Ansprüche an den Computer 18 V.3 Website 19 V.4 Bildergalerie 19 V.5 Über den Autor 20 1 Einführung 21 1.1 Installation 21 1.2 Projekttypen 22 1.3

Mehr

Abbildung. Auf der Netzhaut entsteht ein zwei-dimensionales (umgekehrtes) Abbild der Umwelt

Abbildung. Auf der Netzhaut entsteht ein zwei-dimensionales (umgekehrtes) Abbild der Umwelt Tiefensehen Der uns umgebende drei-dimensionale Raum wird auf die zwei-dimensionale Netzhaut abgebildet Auf diesem Bild berechnet das visuelle System die 3D Distanz der Objekte Dazu dienen viele verschiedene

Mehr

Asteroids3D Seminar: Game Programming. Anita Dieckhoff, Pedro Flemming, Jan Ole Vollmer Betreuung: Christine Lehmann

Asteroids3D Seminar: Game Programming. Anita Dieckhoff, Pedro Flemming, Jan Ole Vollmer Betreuung: Christine Lehmann Asteroids3D Seminar: Game Programming Anita Dieckhoff, Pedro Flemming, Jan Ole Vollmer Betreuung: Christine Lehmann Gliederung 2 1. Live-Demo und Spielidee 2. Softwarearchitektur und Szenengraph Übersicht

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

TI-89-Funktionen TI-89. Funktionen. Johann Berger

TI-89-Funktionen TI-89. Funktionen. Johann Berger TI-89 Funktionen Johann Berger 2005 www.johnny.ch Hans Berger Seite 1 2005 Achten Sie darauf, dass der Rechner so eingestellt ist, wie in der Einleitung angegeben. Insbesondere muss im MODE unter Graph

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Mathematische Funktionen

Mathematische Funktionen Mathematische Funktionen Viele Schüler können sich unter diesem Phänomen überhaupt nichts vorstellen, und da zusätzlich mit Buchstaben gerechnet wird, erzeugt es eher sogar Horror. Das ist jedoch gar nicht

Mehr

Seminar: Programmierung von Grafikkarten (SS 2006)

Seminar: Programmierung von Grafikkarten (SS 2006) Seminar: Programmierung von Grafikkarten (SS 2006) Shader Christian Niemand (nemojr@gmx.de) Johannes Spohr (jspohr@student.uni-kassel.de) Universität Kassel, FB 16 Research Group Programming Languages

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Shading-Verfahren Graphische DV und BV, Regina Pohle, 22. Shading-Verfahren Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung

Mehr

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R.

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R. Aufgabe 1 Zahlenmengen, quadratische Gleichungen Gegeben ist eine quadratische Gleichung a 0 mit a R. Kreuzen Sie die beiden zutreffenden Aussagen an! Diese Gleichung hat für einige a nur Lösungen aus

Mehr

Die Grundlagen des Texture Mapping

Die Grundlagen des Texture Mapping Die Grundlagen des Texture Mapping Sascha Vöhringer Zusammenfassung In folgender Arbeit werden zusammenfassend die Grundlagen, die Funktionsweise und die Motivation für Texture Mapping erläutert. In Abschnitt

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr