(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU"

Transkript

1 (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling

2 Einleitung

3 Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 -

4 Darstellung von Oberflächendetails Simulation durch Texturen Beleuchtung Bewegungsparallaxe Verdeckung, Verschattung Modellierung durch Geometrie Eigentlich der korrekte Weg Hoher Detailsgrad = viele Dreiecke S. Müller - 4 -

5 Repräsentation von Oberflächendetails Darstellung des Reliefs als Graustufentextur Relief kommt aus der Textur raus Relative Höhenangaben Keine Überhänge

6 Zusammenfassung Oberflächendetails Darstellung von Oberflächendetails erhöht Realismus Zwei grundlegende Möglichkeiten 1. Bildbasiert Relief als Graustufentextur 2. Durch Geometrie Viele Dreiecke Intelligente Tesselierung Momentaner Trend zu bildbasierten Verfahren

7 Normal Mapping

8 Beleuchtung des Oberflächenreliefs Wiederholung: Phong Beleuchtungsmodell Normale, Richtung des Lichtes Definition per Vertex Berechnung per Fragment Interpolation von Licht und Normalen

9 Beleuchtung des Oberflächenreliefs Beleuchtung hängt im Wesentlichen von der Normalen ab Veränderte Normale veränderte Beleuchtung Oberflächenstruktur wird durch Schattierung wahrgenommen

10 Beleuchtung des Oberflächenreliefs Normal Mapping Beschreibung der Oberflächenstruktur durch Normalen

11 Oberflächenstruktur durch Normalen Normalen werden nicht mehr interpoliert Jedes Fragment bekommt seine eigene Normale Beleuchtung des Fragmentes mit dieser Normalen Normalen ergeben sich aus Oberflächenrelief

12 Normal Maps Speichern der Normalen in Farb-Textur x,y,z-werte der Normalen als RGB-Werte Height-Map kann im Alpha-Kanal gleich mitgespeichert werden (Relief-Map)

13 Erstellen von Normal Maps Viele Wege führen nach Rom... Erzeugen aus Height-Map (1. Ableitung) x,y-richtung N 1 z-koordinate berechnen Graphiksoftware (Photoshop, 3D Studio)

14 Erstellen von Normal Maps Standardmäßig 8 Bit pro Farbkanal Abbildung des Wertebereichs [-1,1] auf [0,255] ARB_texture_float Extension (32 Bit pro Kanal)

15 Zusammenfassung Normal Maps Oberflächendetails durch Normalen Normalen in Textur kodiert Beleuchtung per Fragment Zuordnung über Texturkoordinate

16 Tangent Space

17 Was bedeuten die Koordinaten? RGB (1,0,0): Normale in x-richtung RGB (0,1,0): Normale in y-richtung RGB (0,0,1): Normale in z-richtung Frage In welchem Koordinatensystem sind die Normalen aus der Normalmap definiert?

18 Koordinatensysteme Eckpunkte und Eckpunktnormalen N im Weltkoordinatensystem Lichtvektor L W im Weltkoordinatensystem Normalen der Normalmap im Texturkoordinatensystem

19 Koordinatensysteme Problem: Unterschiedliche Koordinatensysteme So kann man nicht beleuchten Lösung Oberflächennormalen und Lichtvektor bzgl. eines Oberflächenkooordinatensystems ausdrücken

20 Koordinatensysteme Man will Objekte transformieren können Die Normalmap nicht jedes mal neu berechnen Das Oberflächenkoordinatensystem kann das!

21 Koordinatensysteme Warum in Oberlächenkoordinaten beleuchten? Weltkoordinaten? Jeden Wert der Normalmap in Weltkoordinaten transformieren Alternativ: Normalmap gleich in Weltkoordinaten berechnen Initiale Ausrichtung in der Welt muss bekannt sein Neuberechnung der Normalmap bei jeder Rotation und Skalierung des Objektes Objektkoordinaten? Abhängig von Ausrichtung im lokalen Koordinatensystem Statt Mehrfach-Referrenzierung jedes mal eigen Normalmap

22 Koordinatensysteme Transformation jedes Texels ist teuer Einfache Wiederverwendung der Normalmap Einfacher Produktionsprozess Arbeitszeit ist teuer...

23 Tangent Space Oberflächenkoordinatensystem wird als Tangent Space bezeichnet Tangentenvektor T B Bitangentenvektor (wird gerne auch als Binormale bezeichnet) Oberflächennormale Normalenbasis Definition im Koordinatensystem der Objekte / Lichtquellen N

24 Berechnung des Tangent Space Man kennt Lage der Textur auf Dreieck (Texturkoordinaten) Weltkoordinaten der Eckpunkte Oberflächennormale in Weltkoordinaten Man will T B in Weltkoordinaten Transformationsmatrix WK TS

25 Berechnung des Tangent Space T zeigt in aufsteigende u- Richtung B zeigt in aufsteigende v- Richtung T B sind normiert bzgl. Texturkoordinaten P1 s1t t1b P2 s2t t2b mit s 1 =(u 1 u 0 ),s 2 =(u 2 u 0 ) t 1 =(v 1 v 0 ),t 2 =(v 2 v 0 )

26 Berechnung des Tangent Space P1 P 2 s1t t1b s T t B 2 2 Lineares Gleichungssystem 6 Unbekannte 6 Gleichungen lässt sich in Matrix-Form bringen: [(Δ P 1 ) x (Δ P 1 ) y (Δ P 1 ) z z] (Δ P 2 ) x (Δ P 2 ) y (Δ P 2 ) = [ s 1 t 1 2][ T x T y T z z] s 2 t B x B y B

27 Berechnung des Tangent Space Lösung durch Matrixinversion T B müssen normalisiert werden [ T x T y T z B x B y B z] = 1 1[ t 2 t (Δ P 1 1) x (Δ P 1 ) y (Δ P 1 ) z s 1 t 2 s 1 t s 2 s 1 ][ (Δ P 2 ) x (Δ P 2 ) y (Δ P 2 ) z] Ein Vektor fehlt noch... Als dritter Vektor dient die Normale

28 Von Weltkoordinaten in Tangent Space W z y x z y x z y x TBN L N N N B B B T T T L

29 Tangent Space Zusammenfassung Wir haben damit Berechnung einer Normalmap aus Heightmap (1. Ableitung) erwendung der gleichen Normalmap für jedes beliebige Objekt Die Ausgangsbasis für die folgenden Verfahren Bump Mapping Parallax Mapping Relief Mapping

30 Tangent Space Zusammenfassung Die dunkle Seite der Macht Tangentspace muss vorab berechnet werden Übergabe an Shader als Vertex Attribut Definition pro Dreieck Shared Vertices : Mittelung aneinandergrenzender Dreiecke Bei Änderung oder Transformation dre Geometrie neu berechnen

31 Bump Mapping

32 Bump Mapping 1978 erfunden von James Blinn Normal Map und Tangent Space Echtzeitfühig mit programmierbarer Graphikhardware Wird oft DOT3 Bump Mapping, Tangent Space Mapping etc. genannt Grundlegendes Vorgehen 1) Pro Vertex Tangente und Bitangente berechnen (Applikation) 2) Im Vertex Shader wird der Lichtvektor in den Tangentspace transformiert 3) Im Fragment Shader wird mittels des interpolierten Lichtvektors und Normal Map beleuchtet

33 Parallax Mapping

34 Parallax Mapping Bump Mapping sieht ganz gut aus, aber Keine Selbstverdeckung Keine Bewegungsparallaxe Keine Selbstverschattung Parallax Mapping (Kaneko et. al., 2001) als nächster Schritt

35 Parallax Mapping Parallaxe Scheinbare Änderung der Position eines Objektes bei veränderter Blickrichtung Parallax Mapping trägt diesem Effekt Rechnung Räumlicher Eindruck wird verstärkt

36 Parallax Mapping Berechnung pro Fragment Texturkoordinate wird verschoben Abhängig von Blickrichtung Einfache Erweiterung des Bump Mappings

37 Parallax Mapping Für jedes Fragment kennt man Oberflächennormale N (Tangent Space) Höhe h (Height Map, benutzerdefiniert skaliert) Winkel zwischen Blickrichtung und N Daher: u tan h

38 Parallax Mapping - Vorgehen Applikationsebene Zwei Texturen Normalmap Heightmap Tangente pro Vertex Vertex Shader Tangent Space berechnen Blickrichtung in Tangent Space Lichtvektor in Tangent Space Fragment Shader Mit u, v den Wert h auslesen Δu, Δv berechnen u' = u + Δu v' = v + Δv Normalmap und Heightmap können in einer Textur zusammengefasst werden

39 Parallax Mapping - Zusammenfassung Parallax Mapping als Erweiterung von Bump Mapping Einbeziehung der Höheninformation Bewegungsparallaxe Pseudo-Selbstverdeckung Stand der Technik in aktuellen 3D-Engines Fehlt nur noch Selbstverschattung und Selbstverdeckung...

40 Relief Mapping

41 Relief Mapping Erweiterung des Parallax Mappings Selbstverdeckung Selbstverschattung Oliviera et al., 2000 Mittlerweile viele Varianten Grundlegendes Prinzip: Short Distance Raytracing

42 Relief Mapping - Selbstverdeckung Höhenwerte werden auf [0,1] normalisiert Blickrichtung im Tangent-Space Für jedes Fragment: Schnittpunkt P s mit dem Höhenprofil finden Im Prinzip ein Raytracing auf der Textur

43 Relief Mapping - Selbstverdeckung Texturkoordinate des Fragments: Texturkoordinate u v kann man berechnen Projektion von v in T, N B, N bzw. B u, v Ebene Trigonometrie (Höhe ist 1) Der Schnittpunkt muss zwischen A u, v und B u, v liegen Berechnung im Texturraum Wie berechnet man den Schnittpunkt? A,

44 Relief Mapping - Schnittpunktberechnung Binärsuchverfahren Höhenwerte zwischen A und B werden interpoliert Texturkoordinaten zwischen A und B werden interpoliert Vergleich interpolierter Höhenwert mit Heightmap Mit neuem Intervall weitermachen 8 Schritte in der Regel ausreichen Viele Texturzugriffe...

45 Relief Mapping - Selbstverschattung Lichtvektor muss mit einbezogen werden Gleiches vorgehen wie bei Selbstverdeckung Beim ersten Schnittpunkt kann man aufhören

46 Relief Mapping - Zusammenfassung Relief Mapping Verfahren sehen am besten aus sind aber auch sehr teuer Es gibt verschiedene Ansätze Unterschiedliche Art des Schnitttestes Lineare Suche Kombination lineare / binäre suche Sphere Tracing... Steep Parallax Mapping, Parallax Occlusion Mapping etc.

Beleuchtung. in Computerspielen

Beleuchtung. in Computerspielen Beleuchtung in Computerspielen Motivation Überblick Licht und Schattierung Lichtquellen Lokale Beleuchtungsmodelle Schattierungsverfahren Oberflächensimulation Beispiele der CryEngine Ausblick Zusammenfassung

Mehr

Christina Nell. 3D-Computergrafik

Christina Nell. 3D-Computergrafik Christina Nell 3D-Computergrafik Was ist 3D-Computergrafik? 3D graphics is the art of cheating without getting caught. (unbekannte Quelle) Folie 2/52 Inhalt Beleuchtung Shading Texturierung Texturfilterung

Mehr

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

3D-Modellierungsprogramme

3D-Modellierungsprogramme 06.06.06 Bastian Schildbach 3D-Modellierungsprogramme mit Gliederung 1. Grundlagen Texture Mapping, Texturkoordinaten, Vertices, Texturaddressierung 2. Mapping-Techniken Bump, Displacement, Normal, Two-Part,

Mehr

Beleuchtung Schattierung Rasterung

Beleuchtung Schattierung Rasterung Beleuchtung Schattierung Rasterung Thomas Jung t.jung@htw-berlin.de Beleuchtung, Schattierung und Rasterung in allen Echtzeit-3D-Umgebungen gleich OpenGL Direct3D 3dsmax,... Letzter Bestandteil der Grafikpipeline

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Szenegraphen, Texturen und Displaylisten. Agenda Beleuchtungsmodelle in OpenGL Bump-Maps zur Erzeugung von Reliefartigen Oberflächen Height-Maps

Mehr

GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni

GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni GPU Programmierung 6. Juli 2004 M. Christen, T. Egartner, P. Zanoni 1 Ablauf GPU Programm Vertex und Fragment Shader 2 3 4 5 Image Processing 6 Ablauf GPU Programm Ablauf GPU Programm Vertex und Fragment

Mehr

(8) Schatten. Vorlesung Computergrafik II Stefan Müller. Dank an Niklas Henrich, Gerrit Lochmann, Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(8) Schatten. Vorlesung Computergrafik II Stefan Müller. Dank an Niklas Henrich, Gerrit Lochmann, Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (8) Schatten Voresung Computergrafik II Stefan Müer Dank an Nikas Henrich, Gerrit Lochmann, Stefan Riing Wiederhoung : Norma Maps Oberfächendetais durch Normaen Normaen in Tetur kodiert Beeuchtung per

Mehr

Prozedurale Texturen >>Was nicht passt wird passend gemacht...<<

Prozedurale Texturen >>Was nicht passt wird passend gemacht...<< Prozedurale Texturen >>Was nicht passt wird passend gemacht...

Mehr

Die Welt der Shader. Fortgeschrittene Techniken III

Die Welt der Shader. Fortgeschrittene Techniken III Die Welt der Shader Fortgeschrittene Techniken III Universität zu Köln WS 14/15 Softwaretechnologie II (Teil 1) Prof. Dr. Manfred Thaller Referent: Lukas Kley Gliederung 1. Was ist ein Shader? 2. Verschiedene

Mehr

Rendering. (illumination/shading) Beleuchtungsmodelle. Schattierung von Polygonen. Lokale Beleuchtungsmodelle

Rendering. (illumination/shading) Beleuchtungsmodelle. Schattierung von Polygonen. Lokale Beleuchtungsmodelle Beleuchtung/Schattierung (illumination/shading) Beleuchtungsmodelle Globale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Schattierung von Polygonen 1. Flat shading 2. Gouraud Shading 3. Phong Shading

Mehr

4.4 Glättung von Kanten

4.4 Glättung von Kanten 4.4 Glättung von Kanten Es wurden verschiedene Aspekte zur Beleuchtung von Modellen und Szenen vorgestellt. Es gibt zwei Arten von Licht, das Hintergrundlicht und Licht von Lichtquellen, wobei hier zu

Mehr

Graphische Datenverarbeitung Visualisierungstechniken. Prof. Dr. Elke Hergenröther

Graphische Datenverarbeitung Visualisierungstechniken. Prof. Dr. Elke Hergenröther Graphische Datenverarbeitung Visualisierungstechniken Prof. Dr. Elke Hergenröther Visualisierungstechniken Visualisierung: Visualisierung bedeutet sichtbar machen, darstellen. Die CG beschränkt sich dabei

Mehr

Shader. Computer Graphics: Shader

Shader. Computer Graphics: Shader Computer Graphics Computer Graphics Shader Computer Graphics: Shader Inhalt Pipeline Memory Resources Input-Assembler Vertex-Shader Geometry-Shader & Stream-Output Rasterizer Pixel-Shader Output-Merger

Mehr

Seminar Game Development Game Computer Graphics. Einleitung

Seminar Game Development Game Computer Graphics. Einleitung Einleitung Gliederung OpenGL Realismus Material Beleuchtung Schatten Echtzeit Daten verringern Grafik Hardware Beispiel CryEngine 2 Kristian Keßler OpenGL Was ist OpenGL? Grafik API plattform- und programmiersprachenunabhängig

Mehr

5 Mapping-Techniken. 5.1 Motivation

5 Mapping-Techniken. 5.1 Motivation 5.1 Motivation Bisher sind alle Oberflächen (polygonale Objekte, später auch parametrisierte Freiformflächen) glatt im Gegensatz zu wirklich existierenden natürlichen Oberflächen. Die explizite Wiedergabe

Mehr

Übungsstunde 8 zu Computergrafik 1

Übungsstunde 8 zu Computergrafik 1 Institut für Computervisualistik Universität Koblenz 14. und 15. Januar 2013 Inhaltsverzeichnis 1 Wiederholung - Beleuchtung Gouraud-Shading Phong-Shading Flat-Shading Vergleich 2 - Idee in OpenGL Texturfilterung

Mehr

(12) Wiederholung. Vorlesung Computergrafik T. Grosch

(12) Wiederholung. Vorlesung Computergrafik T. Grosch (12) Wiederholung Vorlesung Computergrafik T. Grosch Klausur 18.7. 14 16 Uhr, Hörsaal 5 (Physik) 2 Zeitstunden 8 Aufgaben Drei Aufgabentypen Übungsaufgaben Wissensfragen zur Vorlesung Transferfragen Unterschiedlicher

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IX. Texturen und Schatten Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Texture Mapping 1. Texture Pipeline 2. Environment Mapping 3.

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Kapitel 4: Schattenberechnung

Kapitel 4: Schattenberechnung Kapitel 4: Schattenberechnung 1 Überblick: Schattenberechnung Motivation Schattenvolumen Shadow Maps Projektive Schatten 2 Motivation Wesentlich für die Wahrnehmung einer 3D-Szene Eigentlich ein globaler

Mehr

3D - Modellierung. Arne Theß. Proseminar Computergraphik TU Dresden

3D - Modellierung. Arne Theß. Proseminar Computergraphik TU Dresden 3D - Modellierung Arne Theß Proseminar Computergraphik TU Dresden Gliederung Darstellungsschemata direkte Constructive Solid Geometry (CSG) Generative Modellierung Voxelgitter indirekte Drahtgittermodell

Mehr

Lokale Beleuchtungsmodelle

Lokale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-14 Kapitel V: Modeling Transformation & Vertex Shader 5.1 Vertex Definitionen: Vertex Vertex Computergrafik Mathematischer Punkt auf einer Oberfläche

Mehr

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen Universität Hamburg Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme Seminar Informatikanwendungen in Nanotechnologien Betreuer: Bernd Schütz Sommersemester 2014 Shadingalgorithmen

Mehr

Beleuchtung Schattierung Rasterung

Beleuchtung Schattierung Rasterung Thomas Jung t.jung@htw-berlin.de Beleuchtung Schattierung Rasterung 1 Beleuchtung, Schattierung und Rasterung in allen Echtzeit-3D-Umgebungen gleich OpenGL Direct3D 3dsmax,... Letzter Bestandteil der Grafikpipeline

Mehr

Michael Bender Martin Brill. Computergrafik. Ein anwendungsorientiertes Lehrbuch. 2., überarbeitete Auflage HANSER

Michael Bender Martin Brill. Computergrafik. Ein anwendungsorientiertes Lehrbuch. 2., überarbeitete Auflage HANSER Michael Bender Martin Brill Computergrafik Ein anwendungsorientiertes Lehrbuch 2., überarbeitete Auflage HANSER Inhaltsverzeichnis Vorwort XI 1 Einleitung 1 1.1 Die Entwicklung der Computergrafik 1 1.2

Mehr

Teil 7: Beleuchtung Beleuchtungsmodelle, Schattierungsmodelle

Teil 7: Beleuchtung Beleuchtungsmodelle, Schattierungsmodelle Beleuchtungsmodelle, Schattierungsmodelle Einleitung Beleuchtung vs. Schattierung Beleuchtung: Modell auswerten (anschl.) global vs. lokal phsikalisch (photo-realistisch?) vs. empirisch Phong-Modell Schattierung:

Mehr

Beleuchtungsmodelle und Shading

Beleuchtungsmodelle und Shading Beleuchtungsmodelle und Shading Andreas Spillner Computergrafik, WS 2018/2019 Ziel der Modellierung von Beleuchtung Baut auf dem Kapitel zu Licht und Farben auf. In die 3D-Szene werden Lichtquellen eingebracht.

Mehr

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis Computergrafik Michael Bender, Manfred Brill Ein anwendungsorientiertes Lehrbuch ISBN 3-446-40434-1 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40434-1 sowie

Mehr

Beleuchtung Schattierung Rasterung

Beleuchtung Schattierung Rasterung Thomas Jung t.jung@htw-berlin.de Beleuchtung Schattierung Rasterung 1 Beleuchtung, Schattierung und Rasterung in allen Echtzeit-3D-Umgebungen gleich OpenGL Direct3D 3dsmax,... Letzter Bestandteil der Grafikpipeline

Mehr

Echtzeit Videoverarbeitung

Echtzeit Videoverarbeitung Erzeugung von 3D Darstellungen Herbert Thoma Seite 1 Gliederung 3D Transformationen Sichtbarkeit von 3D Objekten Beleuchtung Texturen Beispiele: SGI Infinite Reality 2, PC 3D Hardware Seite 2 3D Transformationen

Mehr

Techniken der Effizienzsteigerung bei 2D-Texturierung:

Techniken der Effizienzsteigerung bei 2D-Texturierung: Techniken der Effizienzsteigerung bei 2D-Texturierung: Mip-Mapping MIP = "Multum in Parvo" = vieles auf kleinem Raum spezielle Texture-Mapping-Erweiterung, häufig bei Echtzeitanwendungen, z.b. Spielen,

Mehr

Zur Erinnerung: Parametrisierung von Dreiecken

Zur Erinnerung: Parametrisierung von Dreiecken Zur Erinnerung: Parametrisierung von Dreiecken Interpolation über Dreiecke Parametrisierung eines Dreiecks p a (b-a) (c-a) p (1 )a b c p( a b c mit Baryzentrische Koordinaten Page 1 Baryzentrische Koordinaten

Mehr

Adaptives Displacement Mapping unter Verwendung von Geometrieshadern

Adaptives Displacement Mapping unter Verwendung von Geometrieshadern Fakultät Informatik Institut für Software- und Multimediatechnik, Professur für Computergraphik und Visualisierung Adaptives Displacement Mapping unter Verwendung von Geometrieshadern Diplomarbeit Timo

Mehr

Speziell-Relativistischer (Flug-) Simulator

Speziell-Relativistischer (Flug-) Simulator Visualisierungsinstitut Universität Stuttgart Speziell-Relativistischer (Flug-) Simulator Wolfgang Knopki, Anton Tsoulos 09. Januar 2015 Wolfgang Knopki, Anton Tsoulos Speziell-Relativistischer (Flug-)

Mehr

BlendaX Grundlagen der Computergrafik

BlendaX Grundlagen der Computergrafik BlendaX Grundlagen der Computergrafik Beleuchtungsmodelle (Reflection Models) 16.11.2007 BlendaX Grundlagen der Computergrafik 1 Rendering von Polygonen Der Renderingprozess lässt sich grob in folgende

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Computergrafik SS 2012 Probeklausur Universität Osnabrück Henning Wenke, M. Sc. Sascha Kolodzey, B. Sc., Nico Marniok, B. Sc.

Computergrafik SS 2012 Probeklausur Universität Osnabrück Henning Wenke, M. Sc. Sascha Kolodzey, B. Sc., Nico Marniok, B. Sc. Computergrafik SS 2012 Probeklausur 1 06.07.2012 Universität Osnabrück Henning Wenke, M. Sc. Sascha Kolodzey, B. Sc., Nico Marniok, B. Sc. Aufgabe 1 (19 Punkte) Beantworten Sie die folgenden Fragen prägnant.

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

2015 Sebastian Wahner - Die teilweise oder vollständige Weiterverbreitung dieses Werkes ist ohne Einverständnis des Autors

2015 Sebastian Wahner -   Die teilweise oder vollständige Weiterverbreitung dieses Werkes ist ohne Einverständnis des Autors 1 Inhalt Einführung... 3 Bumpmapping im Home-Nostruktor... 4 Flächennormalen und die Idee des Bumpmapping... 5 Erstellung der Normalmap... 6 Erstellung der Lightmap... 9 Das Ergebnis... 10 Nachteile von

Mehr

Computergrafik 2008 Oliver Vornberger. Kapitel 19: Texturing

Computergrafik 2008 Oliver Vornberger. Kapitel 19: Texturing Computergrafik 2008 Oliver Vornberger Kapitel 19: Texturing 1 Strukturierte Fläche Beispiel: Steinmauer lege viele kleine rote Rechtecke auf ein großes weißes Rechteck: Nachteil: aufwändige Geometrie 2

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Informatik Fakultät Lehrstuhl für Computergrafik und Visualisierung. René Lützner

Informatik Fakultät Lehrstuhl für Computergrafik und Visualisierung. René Lützner Informatik Fakultät Lehrstuhl für Computergrafik und Visualisierung René Lützner Dresden, 22.05.2013 Motivation Computer Simulationen von dynamischen Molekulardaten Eigenschaften und Verhalten von großen

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Computer Graphics Shader

Computer Graphics Shader Computer Graphics Shader Sven Janusch Inhalt Fixed Function Pipeline Programmable Pipeline Implementierung Applikation Beispiel Sven Janusch 2 Fixed Function Pipeline T&L Pipeline (Transformation and Lighting)

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Name: Musterlösung Seite 2

Name: Musterlösung Seite 2 Name: Musterlösung Seite 2 Beantworten Sie die Fragen in Aufgabe 1 mit einer kurzen, prägnanten Antwort. Die Fragen zu OpenGL beziehen sich auf die in der Vorlesung vorgestellte OpenGL Version 3.1 (core)

Mehr

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben

Mehr

D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen

D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen 2D-Texturen Texturarten Abbildung Transformationen Generierung Thomas Jung Reflectance Mapping 3D-Texturen Modellierung von Details erfordert Zeit Darstellung ist aufwendig (langsam) Details belegen Speicherplatz

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Szenegraphen, Texturen und Displaylisten. Agenda Organisatorisches Das Konzept der Szenegraphen Grundlagen Beispiel eines Szenegraphen Transformationen

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

Computergrafik 1 Beleuchtung

Computergrafik 1 Beleuchtung Computergrafik 1 Beleuchtung Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Lokale Beleuchtungsmodelle Ambiente Beleuchtung Diffuse Beleuchtung (Lambert) Spiegelnde Beleuchtung

Mehr

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen 2D-Texturen Texturarten Transformationen Generierung Thomas Jung Reflectance Mapping 3D-Texturen Modellierung von Details erfordert Zeit Darstellung ist aufwendig (langsam) Details belegen Speicherplatz

Mehr

Teil 7: Beleuchtung. Einleitung. Einleitung. Beleuchtungsmodelle, Schattierungsmodelle

Teil 7: Beleuchtung. Einleitung. Einleitung. Beleuchtungsmodelle, Schattierungsmodelle Beleuchtungsmodelle, Schattierungsmodelle Einleitung Beleuchtung vs. Schattierung Beleuchtung: Modell auswerten (anschl.) global vs. lokal phsikalisch (photo-realistisch?) vs. empirisch Phong-Modell Schattierung:

Mehr

Computergraphik 1 ( )

Computergraphik 1 ( ) 2008 Computergraphik 1 (186.461) Ausarbeitung für die schriftliche Prüfung Die Computergraphik stellt eine abwechslungsreiche und lohnende Schwerpunktbildung im Masterstudium Computergraphik & Digitale

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen XI. Rasterung Füllen von Polygonen Prof. Stefan Schlechtweg Hochschule nhalt Fachbereich Informatik Inhalt Lernziele 1. Zu lösendes Problem 2. Füllen von Pixelmengen 1. Rekursiver

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

Freiwillige Übungsaufgaben zur selbstständigen Bearbeitung

Freiwillige Übungsaufgaben zur selbstständigen Bearbeitung Freiwillige Übungsaufgaben zur selbstständigen Bearbeitung Veranstaltung: Beleuchtung und Rendering, WiSe 2012/2013 Prof. Dr. Marco Block-Berlitz Grundlagen des Beleuchtungsdesigns 1. Nennen Sie fünf klassische

Mehr

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1 Seite 1 1 Transformationen 1.1 Transformationsmatrizen In den folgenden Teilaufgaben sind die Koeffizienten von 4 4 Transformationsmatrizen zur Repräsentation von affinen Abbildungen im R 3 zu bestimmen.

Mehr

HLSL High-Level Shader Language

HLSL High-Level Shader Language HLSL Einführung 1 HLSL High-Level Shader Language High-Level Shader Language ist eine relativ neue Programmiersprache für die Graphic Processing Unit (GPU). Mit HLSL ist das Programmieren von Shadern mit

Mehr

OpenGL und die Fixed-Function-Pipeline

OpenGL und die Fixed-Function-Pipeline OpenGL und die Fixed-Function-Pipeline Proseminar Game Design WS 07/08 Jan-Hendrik Behrmann Einführung In modernen Computerspielen hat sich inzwischen die Darstellung der Spielwelt in dreidimensionaler

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Wiederholung. Vorlesung GPU Programmierung Thorsten Grosch

Wiederholung. Vorlesung GPU Programmierung Thorsten Grosch Wiederholung Vorlesung Thorsten Grosch Klausur 2 Zeitstunden (26.7., 8:30 10:30 Uhr, G29/307) Keine Hilfsmittel Kein Bleistift / Rotstift verwenden 3 Aufgabentypen Wissensfragen zur Vorlesung (ca. 1/3)

Mehr

Allgemeine Kräftesysteme

Allgemeine Kräftesysteme 3 Allgemeine Kräftesysteme Allgemeine Kräftesysteme Allgemeine Kräftesysteme Was ist neu? Zwei Kräfte, die nicht an einem zentralen Punkt angreifen Ist das System im Gleichgewicht? A ja B ja, horizontal

Mehr

Displacement Mapping

Displacement Mapping Displacement Mapping Studienarbeit Vorgelegt von Ruth-Maria Recker Institut für Computervisualistik Arbeitsgruppe Computergraphik Betreuer: Dipl.-Inform. Thorsten Grosch Prüfer: Prof. Dr.-Ing. Stefan Müller

Mehr

Spieleprogrammierung mit DirectX und C++

Spieleprogrammierung mit DirectX und C++ Ulrich Kaiser, Philipp Lensing Spieleprogrammierung mit DirectX und C++ 2D-, 3D- und Netzwerkspiele, viele Spezialeffekte Galileo Press Einleitung 11 Danksagung 13 Vorwort zur zweiten Auflage 14 1 Vorbereitung

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-06-04 Kapitel VIII: Per Primitive Operations Primitive I 3 Primitive II Elementare grafische Grundform Besteht in OpenGL aus Folge von 1-3 Vertices

Mehr

Licht und Schatten Visualieren mit dem PC. Andreas Asperl

Licht und Schatten Visualieren mit dem PC. Andreas Asperl Licht und Schatten Visualieren mit dem PC Andreas Asperl Visualisieren Grundlagen der Visualisierung Lichteinflüsse Materialien Anwendungen Tipps und Tricks Grundlagen der Visualisierung In der Computergraphik

Mehr

Koordinatensysteme und Clipping

Koordinatensysteme und Clipping Koordinatensysteme und Clipping Michael Olp Inhaltsverzeichnis 1 Einführung in die perspektivische Projektion 1 1.1 Projektion von Liniensegmenten....... 1 2 Koordinatensysteme 2 2.1 Modeling....................

Mehr

4.7 Globale Beleuchtungsmodelle

4.7 Globale Beleuchtungsmodelle Erinnerung: - Ein lokales Beleuchtungsmodell berücksichtigt nur das direkt einfallende Licht einer Lichtquelle - Nur lokale Beleuchtung + konstante ambiente Beleuchtung, um reflektiertes und gebrochenes

Mehr

Abbildung von Weltkoordinaten nach Bildkoordinaten

Abbildung von Weltkoordinaten nach Bildkoordinaten Abbildung von Weltkoordinaten nach Bildkoordinaten Werner Mayer 28. Februar 24 Zusammenfassung Dieses Dokument beschreibt die Abbildungsvorschrift von 3D-Punkten nach Pixelkoordinaten eines Bildes. Dabei

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

3D Programmierpraktikum: Szenegraphen und Texturierung

3D Programmierpraktikum: Szenegraphen und Texturierung 3D Programmierpraktikum: Szenegraphen und Praktikum 3D Programmierung Sebastian Boring, Otmar Hilliges Donnerstag, 1. Juni 2006 LMU München Medieninformatik Boring/Hilliges 3D Programmierpraktikum SS2006

Mehr

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe Shader für Geometrische Grundprimitive Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe 0. Gliederung Gliederung: 1. Motivation 2. Verwandte Arbeiten 3. Überblick über das Vorgehen 3.1

Mehr

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Einführung (I) Definition: Image Registration Gegeben: 2 Bilder der gleichen Szene aber aufgenommen aus unterschiedlichen Perspektiven Gesucht: Transformation,

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Arten von Raytracer 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Einleitung Raytracing Lichtstrahlen-Verfolgung

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr.

Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr. The Rendering Pipeline Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr. Volker Schulz Referent: Carsten Kurz Datum 25.10.07

Mehr

0 Einführung. Computergrafik. Computergrafik. Abteilung für Bild- und Signalverarbeitung

0 Einführung. Computergrafik. Computergrafik. Abteilung für Bild- und Signalverarbeitung F1 Inhaltsverzeichnis 1 Hardwaregrundlagen 2 Transformationen und Projektionen 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität und Verdeckung 6 Rendering 7 Abbildungsverfahren

Mehr

JavaFX Koordinaten und Transformationen

JavaFX Koordinaten und Transformationen JavaFX Koordinaten und Transformationen Koordinaten Jedes Node-Objekt hat sein eigenes Koordinatensystem. In Container-Nodes beziehen sich Position und Größe der Kinder immer auf das Koordinatensystem

Mehr

Einführung in die Computergrafik

Einführung in die Computergrafik Einführung in die Computergrafik Proseminar Computergrafik Zuse Institut Berlin 22. November 2007 Organisatorisches Informationen rund um s Seminar. http://www.zib.de/hotz/teaching/currentlectures.htm

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( )

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( ) Universität Osnabrück Fachbereich Mathematik / Informatik 5. Vorlesung (06.05.2013) Prof. Dr. rer. nat. Oliver Vornberger Nico Marniok, B. Sc. Erik Wittkorn, B. Sc. Game Application Layer Rückblick Game

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Software Voraussetzungen für MAP2PDF für GeoMedia

Software Voraussetzungen für MAP2PDF für GeoMedia Software: MAP2PDF für GeoMedia und DCS Version: Thema: Erstellung intelligenter PDF-Dateien Zusammenfassung MAP2PDF ist ein Add-On der Firma TerraGo Technologies für GeoMedia und DCS. Es ermöglicht die

Mehr

Echtzeitfähige hige Verfahren in der Computergrafik. Lehrstuhl für f r Informatik Computer Grafik und Visualisierung TUM

Echtzeitfähige hige Verfahren in der Computergrafik. Lehrstuhl für f r Informatik Computer Grafik und Visualisierung TUM Echtzeitfähige hige Verfahren in der Computergrafik Prof. Dr. Rüdiger R Westermann Lehrstuhl für f r Informatik Computer Grafik und Visualisierung TUM Lehr- und Forschungsinhalte Visualisierung Darstellung

Mehr

VU Einführung in Visual Computing 1. Test Gruppe A

VU Einführung in Visual Computing 1. Test Gruppe A 09.04.2014 186.822 VU Einführung in Visual Computing 1. Test Gruppe A Matrikelnummer: Nachname: Punkte: Studienkennzahl: Vorname: Bitte tragen sie Ihre Matrikelnummer, Studienkennzahl sowie Vor- und Nachname

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr