Masse, Kraft und Beschleunigung Masse:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Masse, Kraft und Beschleunigung Masse:"

Transkript

1 Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei die durch einen Prooyp-Körper dargesell wird. Inernaionaler Prooyp 1 Kilogramm Zylinder mi 39 mm Höhe und 39 mm Durchmesser. Legierung von 90% Plain und 10% Iridium Problem: Masse des Prooypen veränder sich langsam im Laufe der Zei. 16

2 Ursprünglich Zurückführung der Masseneinhei auf das Meer: vor 1889 war 1 kg definier als die Masse von 1dm 3 Wasser Heue wird versuch die Definiion des Kilogramms über eine Naurkonsane, die Avogadro-Konsane N A auf eine Aommasse zurückzuführen. 12 Gramm = N A * Masse von 12 C ( N A ) Messen einer Masse hieße dann einfach Zählen von Aomen. Hochauflösende 1-kg-Komparaorwaage Vergleich uner Lufdruck und Vakuum möglich. Die Waage besiz einen Fehler von 10-9 kg. 17

3 Bewegung von Massen: Trägheisprinzip Galileo Galilei ( ) selle fes: Eine geradlinig gleichförmige Bewegung einer Masse mi konsaner Geschwindigkei bedarf keiner Ursache sondern geh aus sich heraus immer weier. Trägheisprinzip Ruhe is nur ein Spezialfall der geradlinig gleichförmigen Bewegung (v = 0) Isaac Newon ( ) formuliere ebenso sein erses Axiom: Jeder Körper verharr in seinem Zusand der Ruhe oder gleichförmigen, gradlinigen Bewegung solange er nich durch eine einwirkende Kraf gezwungen wird, den Zusand zu ändern. 18

4 18b

5 Akionsprinzip: Um die Geschwindigkei einer Masse zu verändern, muss auf die Masse eine Kraf wirken. Isaac Newon ( ) selle folgendes Axiom auf: F = m a Kraf = Masse * Beschleunigung Beschleunigung is die Änderung der Geschwindigkei. Genaugenommen ha Newon das Axiom über die Änderung des Impulses formulier, den wir späer kennen lernen werden. 18c

6 Axiome sind Annahmen, die durch Experimene besäig werden, selbs aber nich aus anderen noch grundlegenderen Gesezmäßigkeien abgeleie werden können. Aus einem Saz von Axiomen können alle übrigen Gesezmäßigkeien einer Theorie bzw. eines Modells im mahemaischen Sinne abgeleie bzw. bewiesen werden. 18d

7 Newons Axiome waren eine herausragende Leisung der Absrakion zu damaliger Zei. Sie widersprechen eigenlich der Allagserfahrung: 1. Durch Reibung komm jeder Körper auf der Erde irgendwann zur Ruhe. 2. Jeder Körper unerlieg der Erdanziehungskraf und wird ggf. auch dadurch beschleunig. Allagsbedingungen: Erdanziehung, Luf-Umgebung, Temperaur 300 K, ec. Idealisier: Keine Graviaionskraf, Vakuum, absoluer Nullpunk Vorsellung zum Versändnis der mechanischen Geseze am besen: kleine Massen, die durchs Welall fliegen Im Experimen: Kompensaion oder Vernachlässigung der Umgebungseinflüsse Versuch: geradlinig gleichförmige Bewegung auf Lufkissenschiene 19

8 Beschleunigung Beschleunigung is die Änderung der Geschwindigkei. Mahemaische Beschreibung durch Ableiungsbegriff. Die Analysis is parallel zur Physik ensanden, um physikalische Phänomene zu beschreiben. Mahemaik biee die Möglichkei physikalische Zusammenhänge mi mahemaisch präzise formulieren Modellen zu beschreiben. Beschreibung einer Änderung, Beispiel: In der Zei von 12:00:00 bis 12:00:02 Uhr änder sich die Geschwindigkei der Masse m von 5,0 m/s auf 5,4 m/s. Beschleunigung = Änderung der Geschwindigkei / Versrichene Zei a = 0,4 m/s / 2 s a = 0,2 m/s 2 Für korreke Berechnung dauernder Veränderungen müssen Zeiinervalle klein sein. 20

9 Graphische Darsellung: Geschwindigkei v 2 v a = v 2 2 v 1 1 v 1 a = v 1 2 Zeisrahl 21

10 Mahemaische Formulierung: Die momenane Geschwindigkei v zu jedem Zeipunk wird durch die Funkion v() beschrieben. Berechnung der Änderung wie eben: a = v( ) 2 v( 2 1) 1 = v Für eine präzise Berechnung muss sehr klein sein. Deshalb Grenzübergang 0 (Mahemaischer Ableiungsbegriff). Wird ausgedrück durch die Schreibweise d dv a = d a is selbs wieder eine Funkion von der Zei: a() Ableiungen nach der Zei werden auch abgekürz geschrieben: a( ) = v ( ) 22

11 Ebenso kann man bei veränderlichen Geschwindigkeien vorgehen: Der momenane Or x zu jedem Zeipunk wird durch die Funkion x() beschrieben. Berechnung der Änderung wie eben (Geschwindigkei = Weg / Zei): Für präzise Berechnung muss sehr klein sein. Grenzübergang 0 Für die Beschleunigung ergib sich: und x x x v = = ) ( ) ( x v d d ) ( = ) ( ) ( x v = ) ( ) ( v a = ) ( ) ( x a = 2 2 d ) ( d ) ( x a = 23

12 Kraf Definiion und Einhei der Kraf leien sich aus Newon s Akionsprinzip ab: F = m a Die Kraf, die eine Masse von 1kg mi 1m/s 2 beschleunig wird als 1 Newon bezeichne. Die Einhei is: Newon = kg m / s 2 Wegen dieser Wahl der Einhei ri keine weiere Proporionaliäskonsane in der Gleichung F = m a auf. Dieses Gesez biee auch eine Messvorschrif für Kräfe. Die Messung wird auf eine Messung von Masse, Länge und Zei zurückgeführ. 24

13 Versuch: Krafmessung durch Beschleunigung auf Lufkissenschiene. An zwei Messsellen wird die Geschwindigkei des Wagens jeweils aus einer Zei und einer Wegmessung besimm. v 1 = x 1 1 v 2 = x 2 2 Zusäzlich wird die Zei zwischen dem Passieren der beiden Messsellen gemessen 3 Die Beschleunigung is dann (näherungsweise): a v = mi v = v 2 v1 3 Bei bekanner Masse erhäl man daraus die Kraf. 25

14 Beache: Wird die Kraf durch ein Gewich am Faden erzeug, dann wird nich nur die Masse des Wagens beschleunig, sondern auch die Masse des Gewiches am Faden. m 1 Wagen Lufkissenschiene F = m + m ) a ( 1 2 m 2 Gewich zur Kraferzeugung 26

15 Reakionsprinzip: Newon formuliere in seinem drien Axiom: Wenn die Kraf F die auf einen Körper (Masse) wirk, ihren Ursprung in einem anderen Körper (Masse) ha, so wirk auf diesen die engegengesez gleiche Kraf ( -F ). Versuch: Feder erzeug absoßende Kraf F -F m 1 m 2 Die Kraf F wirk auf Masse m 1 und ha ihren Ursprung an Masse m 2 Masse m 1 wird durch die Kraf F beschleunig, Masse m 2 wird durch die engegengeseze Kraf F beschleunig. Versuch: Demonsraion auf Lufkissenbahn 27

16 Newon formulier seine Axiome bezogen auf Körper. Körper sind abgegrenze Objeke mi einer Masse. Die ersen beiden Axiome beschreiben die Bewegung eines Körpers, das drie Axiom die Wechselwirkung zwischen zwei Körpern. Auf jeden der beiden Körper wirk eine der beiden engegengesez gleich großen Kräfe. Die Wechselwirkung der beiden Körper kann enweder durch Berührung oder durch Fernkräfe (z.b. Graviaion) erfolgen. 27b

17 Bei saischen Problemen is das Reakionsprinzip nich immer leich zu erkennen, da sich alle Kräfe auf einen Körper zu null addieren. Beispiel: Durchbiegung einer mi Gewich belaseen Plae 1. Kompensaion von Kräfen Die Gewichskraf wirk auf das Gewich (Kraf zeig nach unen) Die Plae üb eine Kraf auf auf das Gewich aus (Kraf zeig nach oben). Beide Kräfe kompensieren sich, so dass keine Beschleunigung aufri und des Gewich in Ruhe bleib. 28

18 1. Kompensaion von Kräfen Das Gewich üb eine Kraf auf die Plae aus (Kraf zeig nach unen). Die Klöze üben eine Kraf auf auf die Plae aus (Kraf zeig nach oben). Beide Kräfe kompensieren sich, so dass keine Beschleunigung aufri und die Plae in Ruhe bleib. 28b

19 1. Kompensaion von Kräfen Die Plae üb eine Kraf auf die Klöze aus (Kraf zeig nach unen). Die Erde üb eine Kraf auf auf die Klöze aus (Kraf zeig nach oben). Beide Kräfe kompensieren sich, so dass keine Beschleunigung aufri und die Klöze in Ruhe bleiben. 28c

20 2. Reakionsprinzip Das Gewich üb eine Kraf auf die Plae aus (Kraf zeig nach unen). Die Plae üb eine Kraf auf auf das Gewich aus (Kraf zeig nach oben). Die Kräfe wirken auf verschiedenen Körper. 28d

21 2. Reakionsprinzip Die Plae üb eine Kraf auf die Klöze aus (Kraf zeig nach unen). Die Klöze üben eine Kraf auf auf die Plae aus (Kraf zeig nach oben). Die Kräfe wirken auf verschiedenen Körper. 28e

22 2. Reakionsprinzip Die Klöze üben eine Kraf auf die Erde aus (Kraf zeig nach unen). Die Erde üb eine Kraf auf die Klöze aus (Kraf zeig nach oben). Die Kräfe wirken auf verschiedenen Körper. 28f

23 2. Reakionsprinzip Die Erde üb eine Kraf auf das Gewich aus (Kraf zeig nach unen). Das Gewich üb eine Kraf auf die Erde aus (Kraf zeig nach oben). Die Kräfe wirken auf verschiedenen Körper. Hier wirk die Graviaion als Fernkraf. 28g

24 Kräfe, die auf einen Körper wirken kann man in zwei Kaegorien eineilen: 1. Volumenkräfe 2. Oberflächenkräfe Fernkräfe wie die Graviaion wirk auf jedes Massenelemen des Volumens. Volumenkräfe haben keinen besimmen Angriffspunk der Kraf, sondern greifen über den ganzen Körper vereil an. Oberflächenkräfe wirken, wenn sich Körper berühren. Sie greifen an der Berührungsfläche an. Volumenkraf Oberflächenkraf 29

25 In der Naur gib es 4 verschiedene Wechselwirkungen die Ursache für die Kräfe zwischen zwei Körpern sein können 1. Graviaion 2. elekro-magneische Wechselwirkung 3. schwache Wechselwirkung 4. sarke Wechselwirkung Im alläglichen Leben verursache Kräfe können auf Graviaion und elekro-magneische Wechselwirkung zurückgeführ werden. Graviaion wirk als Fernkraf (Volumenkraf). Bei der Berührung von Körpern werden Kräfe durch die elekromagneische Wechselwirkung vermiel (Oberflächenkräfe). Sind die Körper elekrisch geladen wirk auch die elekro-magneische Wechselwirkung als Fernkraf. Die sarke und schwache Wechselwirkung spielen nur in der Nähe der Aomkerne eine Rolle. 29b

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung von Teilchenbewegung Kinemaik: Quaniaive

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1

Windenergie + E 2. +... = const. - (physikalische) Arbeit bezeichnet den Prozeß der Umwandlung einer Energieform E 1 Windenergie Grundsäzlich gil: - Energie-Erhalung E ges = E + E +... = cons. - (physikalische) Arbei bezeichne den Prozeß der Umwandlung einer Energieform E in eine andere E ; Energie bedeue auch Arbeisvermögen

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

BIOLOGIE. K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand

BIOLOGIE.  K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand Ruhepoenial 1 A - 0,001 µm 2 0,001 µm 3 0,001 µm 3 0 mvol Fikiver Ausgangszusand 1. Um die Ionenwanderungen an einer Nervenzellmembran anschaulicher verfolgen zu können, sellen wir uns einen winzigen Ausschni

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

Grundwissen Physik am bayerischen Gymnasium (G8)

Grundwissen Physik am bayerischen Gymnasium (G8) Grundwissen Physik am bayerischen Gymnasium (G8) Richard Reindl 004 009 Das Grundwissen is zweispalig dargesell, links die Definiionen, Säze und Beweise, rechs bbildungen und. Es handel sich nich nur um

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt Nachrag Nr. 93 a gemäß 10 Verkaufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fassung) vom 27. Okoer 2006 zum Unvollsändiger Verkaufsprospek vom 31. März 2005 üer Zerifikae auf * ezogen auf opzins

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil)

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil) nur für den inernen Gebrauch Beispiel für eine mündliche Abiurprüfung im Fach Physik MündlicheAbiurprüfung Seie 1 von 6 Hilfsmiel: Zugelassener Taschenrechner, Wörerbuch der deuschen Rechschreibung. 1

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

1 Leitungen, Anlagen, Schutzmaßnahmen 1.1.1 Installationszonen

1 Leitungen, Anlagen, Schutzmaßnahmen 1.1.1 Installationszonen Leiungen, Anlagen, Schuzmaßnahmen.. Insallaionszonen WährendnichsichbareLeiungeninDeckenaufdemkürzesenWeggeführwerdendürfen,müssenLeiungen in Wänden senkrechoderwaagerechverleg werden, bzw.parallelzuden

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

5.5 Transaktionsverwaltung/Fehlerbehandlung. Transaktionsbegriff - Was ist eine Transaktion - Wozu braucht man Transaktionen - ACID-Eigenschaften

5.5 Transaktionsverwaltung/Fehlerbehandlung. Transaktionsbegriff - Was ist eine Transaktion - Wozu braucht man Transaktionen - ACID-Eigenschaften 5.5 Transakionsverwalung/Fehlerbehandlung Transakionsbegriff - Was is eine Transakion - Wozu brauch man Transakionen - ACID-Eigenschafen Fehlerszenarien - Klassifikaion - Fehlerursachen Fehlerbehandlungsmaßnahmen

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

7.3 ABS: Antriebsleistung und Energie Seite 1. Widerstands- und Beschleunigungsleistung

7.3 ABS: Antriebsleistung und Energie Seite 1. Widerstands- und Beschleunigungsleistung 7.3 ABS: Anriebsleisung und Energie Seie 1 Widersands- und Beschleunigungsleisung Von der Arbeismaschine wird für die Widersandskraf bzw. das Widersandsmomen die Leisung pw = fwv bzw. p W = m W ω. (7.3-1)

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

DIGITALTECHNIK 07 FLIP-FLOP S

DIGITALTECHNIK 07 FLIP-FLOP S Seie 1 von 32 DIGITALTECHNIK 07 FLIP-FLOP S Inhal Seie 2 von 32 1 FLIP FLOP / KIPPSCHALTUNGEN... 3 1.1 ZUSAMMENFASSUNG: FLIPFLOP-KLASSIFIZIERUNG... 4 1.2 VEREINBARUNGEN... 4 1.3 STATISCHE / DYNAMISCHE

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

Machen Sie Ihre Kanzlei fi für die Zukunf! Grundvoraussezung für erfolgreiches Markeing is die Formulierung einer Kanzleisraegie. Naürlich, was am meisen zähl is immer noch Ihre fachliche Kompeenz. Aber

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

Physik A VL4 ( )

Physik A VL4 ( ) Physik A VL4 (16.1.1) Beschreibung on Bewegungen - Kinemik in einer Rumrichung II Die beschleunige Bewegung Der Freie Fll Der senkreche Wurf Berchung ungleichförmiger Beschleunigung miels Inegrlrechnung

Mehr

Elektro-Hydrostatisches Betätigungskonzept für das Bugfahrwerk eines,,all Electric Aircraft

Elektro-Hydrostatisches Betätigungskonzept für das Bugfahrwerk eines,,all Electric Aircraft Deuscher Luf- und Raumfahrkongress 003, München, 7.-0. November 003, DGLR-003-33 Elekro-Hydrosaisches Beäigungskonzep für das Bugfahrwerk eines,,all Elecric Aircraf C. Greißner, U. B. Carl Technische Universiä

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

Mechatronische Antriebssysteme. LabVIEW und Motoransteuerung mit maxon

Mechatronische Antriebssysteme. LabVIEW und Motoransteuerung mit maxon Mecharonische Anriebssyseme LabVIEW und Mooranseuerung mi maxon Anriebssysemen Anriebssysem Elekrischer Bereich Maser Elekronik, Sofware Mecharonik Conroller Mechanischer Bereich Las Moor Geriebe Encoder

Mehr

5. sequentielle Schaltungen

5. sequentielle Schaltungen Humbold-Universiä zu Berlin, r. Winkler igiale Syseme (Grundlagen 3) 10.05.2010 5. sequenielle Schalungen sequenielle Schalungen: digiale Schalung mi inneren Rückführungen sie haben eine zeisequenielle

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr