Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12."

Transkript

1 4/1 Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12. November 2012 Übungen zu Grundlagen der Programmierung Aufgabe 14 (Lösungsvorschlag) Terminierung rekursiver Funktionen Zur Lösung der vier Teilaufgaben suchen wir Eingabewerte, für die es möglich ist Abstiegsfunktionen, wie in der Vorlesung definiert, anzugeben. a) f_a(m,n) terminiert für alle n N: h : Z N N, h(m,n) = n. Es treten nur für n 0 rekursive Aufrufe auf, d.h. der Parameter n-1 des rekursiven Aufrufs ist nichtnegativ und es gilt: h(m + 1,n 1) = h(m + 2,n 1) = n 1 < n = h(n) f_a(m,n) terminiert nicht, falls n Z \ N: Für n Z\N ist n, n-1, n-2, n-3,... eine unendliche Folge, in der 0 nicht auftritt. Die durch den Aufruf f_a(m,n) angestoßene Folge rekursiver Aufrufe f_a(m+1,n-1), f_a(m+2,n-2), f_a(m+3,n-3),... erreicht also niemals den Terminierungsfall f_a(*,0). Dabei steht * für einen belieben Wert des ersten Parameters. b) f_b(m,n) terminiert für alle (m,n) Z Z mit m n: h : Z Z N, h(m,n) = n m. Es treten nur für n m 0, d.h. für n m > 0 im Fall m n, rekursive Aufrufe auf und es gilt: h(m,n 1) = n 1 m = n m 1 = h(m,n) 1 < h(m,n) h(m + 1,n) = n (m + 1) = n m 1 = h(m,n) 1 < h(m,n) f_b(m,n) terminiert nicht, falls m > n: Für m > n ist n,n 1,n 2,n 3,... eine unendliche Folge, in der m nicht auftritt. Die durch den Aufruf f_b(m,n) angestoßene Folge rekursiver Aufrufe f_b(m,n-1), f_b(m,n-2), f_b(m,n-3),... erreicht also niemals den Terminierungsfall m == n. c) f_c(m,n) terminiert für alle (m,n) Z Z mit m n und (n m) mod 2 = 0: h : Z Z N, h(m,n) = n m. Es treten nur für n m 0 rekursive Aufrufe auf und es gilt: h(m + 1,n 1) = n 1 (m + 1) = n 1 m 1 = h(m,n) 2 < h(m,n) (Achtung: Die Voraussetzung (n m) mod 2 = 0 stellt sicher, dass mit h(m,n) auch h(m + 1,n 1) in N liegt.)

2 4/2 f_c(m,n) terminiert nicht, falls m n und (n m) mod 2 = 1: Falls gilt (n m) mod 2 = 1 (d.h. falls die Differenz n m ungerade ist), dann bildet n m, (n 1) (m+1), (n 2) (m+2), (n 3) (m+3),... eine unendliche Folge ungerader Zahlen, in denen die 0 nicht auftritt. Die durch den Aufruf f_c(m,n) angestoßene Folge rekursiver Aufrufe f_c(m+1,n-1), f_c(m+2,n-2), f_c(m+3,n-3),... erreicht also niemals den Terminierungsfall m==n. f_c(m,n) terminiert nicht, falls m > n: Für m > n ist n m, (n 1) (m + 1), (n 2) (m + 2), (n 3) (m + 3),... eine unendliche Folge, in der die 0 nicht auftritt. Die durch den Aufruf f_c(m,n) angestoßene Folge rekursiver Aufrufe f_c(m+1,n-1), f_c(m+2,n-2), f_c(m+3,n-3),... erreicht also niemals den Terminierungsfall m==n. d) f_d(n) terminiert für alle n Z: h : Z N, h(m,n) = 100 n. Es treten nur für n 100 rekursive Aufrufe auf und es gilt: n < 100 h(200 n 1) = 100 (200 n 1) = (200 n 1) 100 = 99 n < 100 n = 100 n = h(n) n > 100 h(200 n + 1) = 100 (200 n + 1) = 100 (200 n + 1) = n < n = 100 n = h(n) Aufgabe 15 (Lösungsvorschlag) a) f(2,-1) f(0,2) f(-1,1) f(1,2) f(0,1) f(0,1) f(-1,0) f(2,2) f(1,1) f(1,1) f(0,0) f(1,1) f(0,0) f(0,0) f(-1,-1) b) Zum Nachweis der Terminierung verwenden wir die Abstiegsfunktion h : Z Z N, h(a,b) = b a. Es treten nur für b-a 0 rekursive Aufrufe auf und es gilt: Fall a < b: linker Aufruf: h(a + 1,b) = b (a + 1) = b (a + 1) = b a 1 < b a = b a rechter Aufruf: h(a,b 1) = (b 1) a = (b 1) a = b a 1 < b a = b a Fall a > b: linker Aufruf: h(b + 1,a) = a (b + 1) = a (b + 1) = a b 1 < a b = a b = b a rechter Aufruf: h(b,a 1) = (a 1) b = (a 1) b = a b 1 < a b = a b = b a Für jeden rekursiven Aufruf gilt also die Abstiegsbedingung. c) Beweis mittels vollständiger Induktion über n = b a

3 4/3 Induktionsanfang (n = 0): Sei b a = 0. Dann gilt a = b und in diesem Fall berechnet sich f(a,b) zu 1 = 2 0 = 2 b a. Induktionsvoraussetzung: Sei n + 1 = b a > 0 und für alle a, b mit n = b a die Behauptung f(a,b ) = 2 n bereits gezeigt. Induktionsschritt (n n + 1): 1. Fall : a < b. Dann gilt f(a,b) = f(a+1,b) + f(a,b-1). Wegen b (a + 1) = b (a + 1) = (b a) 1 = b a 1 = n und (b 1) a = (b a) 1 = b a 1 = n läßt sich die Induktionsvoraussetzung auf beide rekursive Aufrufe anwenden und f(a,b) berechnet sich zu 2 n + 2 n = 2 n+1 = 2 b a. 2. Fall : a > b. Dann gilt f(a,b) = f(b+1,a) + f(b,a-1). Wegen a (b + 1) = a (b + 1) = (a b) 1 = a b 1 = b a 1 = n und (a 1) b = (a b) 1 = a b 1 = b a 1 = n läßt sich auch hier die Induktionsvoraussetzung auf beide rekursive Aufrufe anwenden und f(a,b) berechnet sich wieder zu 2 n + 2 n = 2 n+1 = 2 b a. Aufgabe 16 (Lösungsvorschlag) public class Mathdienste { public int fac (int n) { return (n == 0)? 1 : n * fac (n-1); public double power (double x, int n) { return (n == 0)? 1 : power(x, n-1) * x; public double expn (double x, int n) { return (n == 0)? 1 : power(x,n)/fac(n) + expn(x,n-1); public class TestMath { public static void main (String[] args) { Mathdienste md = new Mathdienste (); System.out.println(md.expN(1,5)); Aufgabe 17 (Lösungsvorschlag) Markov-Algrithmen

4 4/4 a) (i) εaaaaa 5 0aaaaa 1 a1aaaa 2 aaa0aaa 1 aaaa1aa 2 aaaaaa0a 1 aaaaaaa1 4. aaaaaaa (ii) Das Ergebniswort besteht aus n + n/2 Zeichen a. Dabei steht der Operand / für die ganzzahlige Division natürlicher Zahlen. b) (i) 0a a1 (1) 0b b0 (2) 1a a2 (3) 1b b1 (4) 2a b0 (5) 2b b2 (6) 0. ε (7) 1. ε (8) 2. ε (9) ε 0 (10) (ii) Nein, da sich Eingabewort und Ergebniswort vom Alphabet her nicht unterscheiden und somit der Algorithmus immer wieder von vorne beginnen könnte. Aufgabe 18 Türme von Hanoi a) Für n = 0 ist die Lösung klar: Es ist nichts zu tun. Hat man bereits eine Zugfolge für n 1 Scheiben, dann ergibt sich daraus unmittelbar eine Zugfolge für n Scheiben: (A) Verlege n Scheiben von a nach b mittels Platz c wie folgt: Verlege n-1 Scheiben von a nach c mittels Platz b Setze eine Scheibe vom Platz a auf Platz b Verlege n-1 Scheiben von c nach b mittels Platz a Man beachte, dass beim Umlegen der n 1 oberen Scheiben die unterste nicht stört, weil sie größer als alle anderen ist. b) Es wird nur ein elementarer Schritt verwendet: Setze eine Scheibe vom Platz a auf Platz b. c) Die Anzahl Anz(n) der benötigten elementaren Schritte, um einen Turm aus n Scheiben zu versetzen, ist: Anz(1) = 1 Anz(2) = 1+2*Anz(1) = 1+2 Anz(3) = 1+2*Anz(2) = 1+2*(1+2) Anz(4) = 1+2*Anz(3) = 1+2*(1+2*(1+2)) = Anz(n) = 2 n 1 d) Das Verfahren ist deterministisch, weil die Schrittfolge eindeutig festgelegt ist. Es ist determiniert, weil das Ergebnis eindeutig ist, es ist terminierend, weil es nach endliche vielen Schritten endet. Eine andere Lösung: Wir denken uns die drei Plätze im Kreis angeordnet, und zwar, wenn n ungerade ist, so: auf a folgt b, darauf c, dann wieder a

5 4/5 und wenn n gerade ist, so auf a folgt c, darauf b, dann wieder a. Das folgende Verfahren gibt für 0 < n die Schrittfolge als Wiederholung von zwei elementaren Schritten an. (B) Verlege n Scheiben von a nach b mittels Platz c wie folgt: Lege die kleinste Scheibe einen Platz weiter Wiederhole (2^{n-1-1)-mal: Bewege eine Scheibe, aber nicht die kleinste Lege die kleinste Scheibe einen Platz weiter Im folgenden Beispiel sind Scheiben durch Zahlen dargestellt, die ihre Durchmesser wiedergeben. Fett gedruckt ist jeweils die Scheibe, die zuletzt bewegt wurde. Man beachte, wie die Turmspitze wandert, und zwar zunächst die 1 nach b, dann 12 nach c, dann 123 nach b - unabhängig jeweils vom darunterliegenden Rest des Turms: a b c Dieses Verfahren führt zur selben Schrittfolge und zum selben Ergebnis wie Verfahren (A). Es ist somit auch deterministisch, determiniert und terminierend.anmerkung: Der Turm der buddistischen Mönche, der auf diese Weise täglich um einen Stein versetzt wird und die Tage bis zum Weltuntergang zählt, hat eine Höhe von 64 Scheiben. Das Umsetzen wird also mehr als Jahre dauern. Übrigens ist (2 64 1) auch die Zahl der Reiskörner, die jenem König dadurch als Belohnung abverlangt wurde, dass er beginnend bei 1 auf jedes folgende Feld des Schachbretts die doppelte Anzahl Körner legen sollte.

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

12. Rekursion Grundlagen der Programmierung 1 (Java)

12. Rekursion Grundlagen der Programmierung 1 (Java) 12. Rekursion Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 24. Januar 2006 Einordnung im Kontext der Vorlesung

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

Rekursion. Selbstbezug, rekursive Funktionen, rekursive Prozeduren, Terminierung, Effizienz, Korrektheit, Rekursion und Induktion

Rekursion. Selbstbezug, rekursive Funktionen, rekursive Prozeduren, Terminierung, Effizienz, Korrektheit, Rekursion und Induktion Rekursion Selbstbezug, rekursive Funktionen, rekursive Prozeduren, Terminierung, Effizienz, Korrektheit, Rekursion und Induktion Ein kleines Problem Schreiben Sie eine Methode writebin, die eine Dezimalzahl

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Semestralklausur Einführung in die Programmierung, WS 2005/06, Seite 1/6 Name, Vorname, Matrikelnummer: Gruppe A

Semestralklausur Einführung in die Programmierung, WS 2005/06, Seite 1/6 Name, Vorname, Matrikelnummer: Gruppe A Semestralklausur Einführung in die Programmierung, WS 2005/06, 6.2.2006 Seite 1/6 Name, Vorname, Matrikelnummer: Unterschrift: 1 Grundlagen (5+5 Punkte) Gruppe A a) Schreiben Sie eine Klassenmethode mit

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen 1) Rekursion und Induktion: Rechnen mit natürlichen Zahlen Aufbauend auf: "Anwendungen: Sätze, Beweise, Algorithmen und Programme", "Fasern" Aufgaben: 9 > restart; Axiomatik der natürlichen Zahlen Wir

Mehr

Die Ausgangsposition. Der aus drei Scheiben bestehende Turm steht auf Platz 1.

Die Ausgangsposition. Der aus drei Scheiben bestehende Turm steht auf Platz 1. Der Turm von Hanoi 1. Schritt Die Ausgangsposition. Der aus drei Scheiben bestehende Turm steht auf Platz 1. Im ersten Schritt legen wir die oberste Scheibe auf Platz 3. Nun legen wir die mittlere Scheibe

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Nadel 1 Nadel 2 Nadel 3

Nadel 1 Nadel 2 Nadel 3 Die Türme von Hanoi Nadel 1 Nadel 2 Nadel 3 Der französische Mathematiker Edouard Lucas hat 1883 eine kleine Geschichte erfunden, die unter dem Namen Die Türme von Hanoi weltberühmt wurde : Im Großen Tempel

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt

Mehr

Wiederholung Wozu Methoden? Methoden Schreiben Methoden Benutzen Rekursion?! Methoden. Javakurs 2012, 3. Vorlesung

Wiederholung Wozu Methoden? Methoden Schreiben Methoden Benutzen Rekursion?! Methoden. Javakurs 2012, 3. Vorlesung Wiederholung Wozu? Schreiben Benutzen Rekursion?! Javakurs 2012, 3. Vorlesung maggyrz@freitagsrunde.org 5. März 2013 Wiederholung Wozu? Schreiben Benutzen Rekursion?! 1 Wiederholung 2 Wozu? 3 Schreiben

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Algorithmen und Datenstrukturen Tafelübung 4. Jens Wetzl 15. November 2011

Algorithmen und Datenstrukturen Tafelübung 4. Jens Wetzl 15. November 2011 Algorithmen und Datenstrukturen Tafelübung 4 Jens Wetzl 15. November 2011 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

9 Türme von Hanoi Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleine

9 Türme von Hanoi Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleine 9 Türme von Hanoi 1 2 3 Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleineren Ring gelegt werden. 9 Türme von Hanoi 1 2 3 Bewege

Mehr

Das erste Programm soll einen Text zum Bildschirm schicken. Es kann mit jedem beliebigen Texteditor erstellt werden.

Das erste Programm soll einen Text zum Bildschirm schicken. Es kann mit jedem beliebigen Texteditor erstellt werden. Einfache Ein- und Ausgabe mit Java 1. Hallo-Welt! Das erste Programm soll einen Text zum Bildschirm schicken. Es kann mit jedem beliebigen Texteditor erstellt werden. /** Die Klasse hello sendet einen

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 32 Philipp Oppermann 13. November 2013 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (1)

Algorithmen & Programmierung. Rekursive Funktionen (1) Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte:

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte: Seite 1 von 8 Hiermit bestätige ich, dass ich die Übungsleistungen als Voraussetzung für diese Klausur in folgender Übung erfüllt habe. Jahr: Übungsleiter: Unterschrift: 1. Aufgabe ( / 15 Pkt.) Für eine

Mehr

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend:

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend: 1.1.2 Symbolisches Rechnen Taschenrechner und mathematische Software wie Matlab arbeiten in der Regel numerisch, das heißt das Ergebnis eines Rechenausdrucks zum Beispiel der Form (1 1 4 ) 4 9 wird etwa

Mehr

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte:

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte: Klausur Informatik 1 SS 08 Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte Gesamtpunkte: Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

Technische Universität München WS 2011/12 Fakultät für Informatik Lösungsvorschläge zu Blatt 2 Dr. C. Herzog, M. Maalej 31.

Technische Universität München WS 2011/12 Fakultät für Informatik Lösungsvorschläge zu Blatt 2 Dr. C. Herzog, M. Maalej 31. 2/ Technische Universität München WS 20/2 Fakultät für Informatik Lösungsvorschläge zu Blatt 2 Dr. C. Herzog, M. Maalej 3. Oktober 20 Übungen zu Grundlagen der Programmierung Aufgabe 4 (Lösungsvorschlag)

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr

Klassen mit Instanzmethoden

Klassen mit Instanzmethoden Klassen mit Instanzmethoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Vorlesung: Einstieg in die Informatik mit Java 3.12.07 G. Bohlender (IANM UNI Karlsruhe) OOP und Klassen 3.12.07

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

5. Tutorium zu Programmieren

5. Tutorium zu Programmieren 5. Tutorium zu Programmieren Dennis Ewert Gruppe 6 Universität Karlsruhe Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl Programmierparadigmen WS 2008/2009 c 2008 by IPD Snelting

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Javaprogrammierung mit NetBeans. Variablen, Datentypen, Methoden

Javaprogrammierung mit NetBeans. Variablen, Datentypen, Methoden Javaprogrammierung mit NetBeans Variablen, Datentypen, Methoden Programmieren 2 Java Bezeichner Bezeichner: Buchstabe _ $ Buchstabe _ $ Ziffer Groß- und Kleinbuchstaben werden strikt unterschieden. Schlüsselwörter

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Speicher und Adressraum

Speicher und Adressraum Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode

Mehr

1 2 3 Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleineren Ring gelegt we

1 2 3 Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleineren Ring gelegt we 1 2 3 Bewege Stapel von links nach rechts. In jedem Zug darf genau ein Ring bewegt werden. Es darf nie ein größerer auf einen kleineren Ring gelegt werden. 1 2 3 Bewege Stapel von links nach rechts. In

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Schleifen while do-while for Methoden Verfahren: Intervallschachtelung 2 Wo

Mehr

4. Fortgeschrittene Algorithmen 4.1 Rekursion 4.2 Daten und Datenstrukturen 4.3 Bäume

4. Fortgeschrittene Algorithmen 4.1 Rekursion 4.2 Daten und Datenstrukturen 4.3 Bäume 4. Fortgeschrittene Algorithmen 4.1 Rekursion 4.2 Daten und Datenstrukturen 4.3 Bäume 4.1-1 4.1 Rekursion Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines

Mehr

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8 Java 8 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Oktober 2014 JAV8 5 Java 8 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind ausgewählte Teile in Anlehnung an

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Einführung in die Programmiersprache Java (Teil II)... 4-2 4.4 Strukturierte Programmierung... 4-2 4.4.1 Strukturierung im Kleinen... 4-2 4.4.2 Addierer (do-schleife)... 4-3 4.4.3 Ein- Mal- Eins

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung Grundlagen der Programmierung Prof. H. Mössenböck 14. Schrittweise Verfeinerung Entwurfsmethode für Algorithmen Wie kommt man von der Aufgabenstellung zum Programm? Beispiel geg.: Text aus Wörtern ges.:

Mehr

Java Einführung Methoden. Kapitel 6

Java Einführung Methoden. Kapitel 6 Java Einführung Methoden Kapitel 6 Inhalt Deklaration und Aufruf von Methoden Lokale und globale Namen (Bezeichner) Sichtbarkeit und Lebensdauer von Variablen in Methoden Überladen von Methoden 2 Methoden

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Tutoraufgabe 1 (Programmanalyse):

Tutoraufgabe 1 (Programmanalyse): Prof. aa Dr. M. Müller Programmierung WS15/16 C. Aschermann, J. Hensel, J. Protze, P. Reble Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung

Mehr

Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines Gesamtalgorithmus rekursiv verwendet.

Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines Gesamtalgorithmus rekursiv verwendet. 3.6 Rekursion Ein Algorithmus heißt rekursiv, wenn er sich selbst aufruft. Meist werden nur einzelne Module eines Gesamtalgorithmus rekursiv verwendet. Klassisches Beispiel: Berechnung von n! (Fakultät

Mehr

Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011!

Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011! Algorithmen und Datenstrukturen Wintersemester 2012/13 8. Vorlesung Algorithmen in Java Jan-Henrik Haunert Lehrstuhl für Informatik I Übersicht Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe

Mehr

Selbsteinstufungstest Vorkurs Programmieren

Selbsteinstufungstest Vorkurs Programmieren VPR Selbsteinstufungstest Vorkurs Programmieren Zeit 90 Minuten Aufgabe 1: Einzigartig (10 Punkte) Schreiben Sie eine Methode die angibt, ob ein String str1 in einem zweiten String str2 genau einmal vorkommt.

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Repetitorium Informatik (Java)

Repetitorium Informatik (Java) Repetitorium Informatik (Java) Tag 6 Lehrstuhl für Informatik 2 (Programmiersysteme) Übersicht 1 Klassen und Objekte Objektorientierung Begrifflichkeiten Deklaration von Klassen Instanzmethoden/-variablen

Mehr

Große Übung Praktische Informatik 1

Große Übung Praktische Informatik 1 Große Übung Praktische Informatik 1 2005-12-08 fuessler@informatik.uni-mannheim.de http://www.informatik.uni-mannheim.de/pi4/people/fuessler 1: Announcements / Orga Weihnachtsklausur zählt als Übungsblatt,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

6. Iteration (Schleifenanweisungen)

6. Iteration (Schleifenanweisungen) 6. Iteration (Schleifenanweisungen) Java-Beispiel: TemperatureTable.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 9. Nov. 2015 2 Schwerpunkte While-Anweisung: "abweisende"

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002 Prof. H. Herbstreith 30.01.2002 Fachbereich Informatik Leistungsnachweis Informatik 1 WS 2001/2002 Bearbeitungszeit 120 Minuten. Keine Hilfsmittel erlaubt. Aufgabe 1: 20 Punkte Vervollständigen Sie folgende

Mehr

3. Grundlegende Sprachkonstruktionen imperativer Programme

3. Grundlegende Sprachkonstruktionen imperativer Programme 3. Grundlegende Sprachkonstruktionen imperativer Programme Java-Beispiele: Temperature.java Keyboard.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 4. Nov. 2015 2 Schwerpunkte

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

1.2 Attribute und Methoden Aufbau einer Java-Klasse:

1.2 Attribute und Methoden Aufbau einer Java-Klasse: Aufbau einer Java-Klasse: public class Quadrat { int groesse; int xposition; String farbe; boolean istsichtbar; public void sichtbarmachen() { istsichtbar = true; public void horizontalbewegen(int distance){

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren I Dr. Werner Struckmann 7. September 2015 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr

Mehr

5.4 Klassen und Objekte

5.4 Klassen und Objekte 5.4 Klassen und Objekte Zusammenfassung: Projekt Figuren und Zeichner Figuren stellt Basisklassen für geometrische Figuren zur Verfügung Zeichner bietet eine übergeordnete Klasse Zeichner, welche die Dienstleistungen

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte

Mehr

Lösungen zur 3. Projektaufgabe TheGI1

Lösungen zur 3. Projektaufgabe TheGI1 Marco Kunze (makunze@cs.tu-berlin.de) WS 2001/2002 Sebastian Nowozin (nowozin@cs.tu-berlin.de) 21. 1. 2002 Lösungen zur 3. Projektaufgabe TheGI1 Definition: Turing-Aufzähler Ein Turing-Aufzähler einer

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automaten, Spiele, und Logik Woche 13 7. Juli 2014 Inhalt der heutigen Vorlesung Terminationsanalyse Rekursive Funktionnen fact(n)= if n==0 then 1 else n*fact(n-1) fibo(n)= if n

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Vordefinierte Datentypen Übersicht 1 Ganzzahlige Typen 2 Boolscher Typ 3 Gleitkommatypen 4 Referenztypen 5 void Typ 6 Implizite und explizite Typumwandlungen Ganzzahlige Typen Die

Mehr

Programmieren Übung! Meine ersten Schritte als ProgrammiererIn! Prolog 2014 Stefan Podlipnig, TU Wien

Programmieren Übung! Meine ersten Schritte als ProgrammiererIn! Prolog 2014 Stefan Podlipnig, TU Wien Programmieren Übung! Meine ersten Schritte als ProgrammiererIn! Stefan Podlipnig, TU Wien Beispiel 1 Programmierung - Übung! 2 Geben Sie folgende Anweisungen ein size(300, 200); rect(100, 50, 100, 100);

Mehr

Grundlagen der Modellierung und Programmierung, Übung

Grundlagen der Modellierung und Programmierung, Übung Grundlagen der Modellierung und Programmierung Übung Prof. Wolfram Amme LS Softwaretechnik Prof. Klaus Küspert LS Datenbanksysteme Prof. Birgitta König-Ries LS Verteilte Systeme Prof. Dr. Wilhelm Rossak

Mehr

1. Grundzüge der Objektorientierung 2. Methoden, Unterprogramme und Parameter 3. Datenabstraktion 4. Konstruktoren 5. Vordefinierte Klassen

1. Grundzüge der Objektorientierung 2. Methoden, Unterprogramme und Parameter 3. Datenabstraktion 4. Konstruktoren 5. Vordefinierte Klassen 1. Grundzüge der Objektorientierung 2. Methoden, Unterprogramme und Parameter 3. Datenabstraktion 4. Konstruktoren 5. Vordefinierte Klassen II.2.2 Methoden, Unterprogramme und Parameter - 1 - 2. Methoden

Mehr

620.900 Propädeutikum zur Programmierung

620.900 Propädeutikum zur Programmierung 620.900 Propädeutikum zur Programmierung Andreas Bollin Institute für Informatik Systeme Universität Klagenfurt Andreas.Bollin@uni-klu.ac.at Tel: 0463 / 2700-3516 Arrays Wiederholung (1/5) Array = GEORDNETE

Mehr

Übungsblatt 3: Algorithmen in Java & Grammatiken

Übungsblatt 3: Algorithmen in Java & Grammatiken Humboldt-Universität zu Berlin Grundlagen der Programmierung (Vorlesung von Prof. Bothe) Institut für Informatik WS 15/16 Übungsblatt 3: Algorithmen in Java & Grammatiken Abgabe: bis 9:00 Uhr am 30.11.2015

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

public class SternchenRechteckGefuellt {

public class SternchenRechteckGefuellt { Java programmieren: Musterlösungen Konsolen-Aufgaben Aufgabe 1: Gefüllte Rechtecke zeichnen Schreiben Sie ein Programm, das ein durch Sternchen gefülltes Rechteck zeichnet. Der Benutzer soll Breite und

Mehr