STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG"

Transkript

1 STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem Kollektivs (im folgenden: Kontrollgruppe) hinsichtlich einer Reihe von Parametern verglichen. Dabei wurde für den Parameter P, der im zeitlichen Verlauf erhoben wurde, mit Hilfe einer Varianzanalyse für Messwiederholungen untersucht, ob sich Unterschiede im zeitlichen Verlauf, im zeitlichen Durchschnitt sowie zu den jeweiligen Messzeitpunkten zwischen den beiden Gruppen ergeben. Zur Analyse von Messwiederholungsdesigns kann sowohl ein univariater, als auch ein multivariater Ansatz verwendet werden. Im Hinblick auf das jeweilige Verfahren wurden die notwendigen Vorraussetzungen überprüft. War die Voraussetzung der Spherizität für die Anwendung des univariaten Ansatzes nicht gewährleistet wurde alternativ eine Modifikation verwendet, die auf der Multiplikation der Zähler- und Nennerfreiheitsgrade mit Korrekturfaktoren (Epsilons) basiert. In diesem Fall wurde die Grennhouse- Geisser-Korrektur verwandt. Für Parameter, die nicht zeitabhängig erhoben wurden, ist in Abhängigkeit des Skalenniveaus der t- Test für unabhängige Stichproben für metrisch skalierte Parameter angewandt worden. Bei nicht normalverteilten Daten wurde alternativ zum t-test der nichtparametrische Mann-Whitney-U-Test benutzt. Der Chi-Quadrat-Unabhängigkeitstest, oder alternativ der exakte Test von Fisher, wurde für die Analyse kategorialer Parameter im Rahmen von Kontingenztafeln angewandt. Es wurde jeweils untersucht, ob Abhängigkeiten zwischen den Gruppen in bezug auf die untersuchten kategoriealen Parameter vorliegen. Für die Untersuchung des linearen Zusammenhangs, zwischen dem im Zeitverlauf erhobenen Parameter P und weiteren metrisch skalierten Variablen, wurde der Korrelationskoeffiziente nach Pearson verwandt. Literatur: Sachs, L. (1992): Angewandte Statistik, Springer-Verlag, Berlin, Heidelberg. Stevens,J. (1992). Applied multivariate statistics for the social science, Lawrence Erlbaum, New Jersey. 1

2 Muster - Ergebnissteil Darstellung metrisch skalierter Parameter: Auf Wunsch können die in Tabelle 1 gemachten, deskriptiven Angaben um den Median, Minimum, Maximum, usw. erweitert werden. Ordinal skaliert Parameter werden wahlweise als Median mit dem 25%- und 75% Quartil tabellarisch dargestellt, oder, in Abhängigkeit der Anzahl von Kategorien, innerhalb einer Kontingenztafel (siehe Tabelle 2) mit prozentualen Anteilen veranschaulicht. Tabelle 1: Mittelwerte und Standardabweichung der XY- und der Kontrollgruppe. Ein p<0,05 bezeichnet einen signifikanten Unterschied zwischen den beiden Gruppen. Gruppe XY (n=x) Kontrollgruppe (n=y) p Alter (Jahre) 67,3 ± 7,6 65,7 ± 9,1 p=0,64 Größe (cm) 175,7 ± 5,4 170,1 ± 5,6 p<0,05 Gewicht (kg) 83,9 ± 6,9 79,2 ± 8,0 p=0,41 Intensiv-Zeit (Tage) 8,0 ± 4,2 2,3 ± 0,7 p< 0, Interpretationshilfe zu Tabelle 1: Hinsichtlich der Größe und der Liegedauer auf Intensiv ergibt der t- Test für unabhängige Stichproben signifikante Unterschiede zwischen den Gruppen. Bezüglich des Alters und des Gewichtes ergibt sich kein Widerspruch zur Hypothese gleicher Mittelwerte in den Gruppen. Abbildung 1: Balkendiagramm der mittleren Liegedauer auf Intensiv für die beiden Gruppen Liegedauer auf Intensiv [Tage] Gruppe XY (n=x) Kontrollgruppe (n=y) 2

3 Kategoriale Parameter Kategoriale Parameter werden innerhalb einer Kontingenztafel (siehe Tabelle 2) mit prozentualen Anteilen dargestellt. Der Chi-Quadrat-Unabhängigkeitstest, bzw. der exakte Test von Fisher, überprüfen die Hypothese der Unabhängigkeit beider kategorialer Parameter. Im folgenden Beispiel stellen die beiden Gruppen und der Parameter Infektion die kategorialen Variablen dar. Tabelle 2: Abhängigkeit der Gruppen auf eine Infektion. Es besteht ein hochsignifikanter Zusammenhang (p<0,01). Infektion ja nein Gesamt Gruppe XY Anzahl n=x 1 n=x 2 n=x % 88,9% 11,1% 100,0% Kontrolle Anzahl n=y 1 n=y 2 n=y % 12,5% 87,5% 100,0% Gesamt Anzahl n=x 1 +y 1 n=x 2 +y 2 n=x+y % 40,0% 60,0% 100,0% Interpretationshilfe zu Tabelle 2: Hinsichtlich der beiden Gruppen und dem Auftreten einer Infektion ergibt der exakte Test nach Fisher einen hochsignifikanter Zusammenhang (p<0,01). Dieser ergibt sich durch den mit 88,9% hohen Anteil von Infektionen für die Patienten der Gruppe XY, im Vergleich zur Kontrollgruppe mit lediglich 12,5%. 3

4 Messwiederholungsdesigns Im folgenden sind für den im zeitlichen Verlauf, für beide Gruppen erhobenen Parameter P, die Mittelwerte und Standardabweichungen dargestellt. Eine Varianzanalyse für Messwiederholungen untersucht im Anschluss typische Fragestellung, die im Zusammenhang mit einem solchen Design entstehen. Tabelle 3: Mittelwerte und Standardabweichung der XY- und der Kontrollgruppe des Parameters P im zeitlichen Verlauf. Ein p<0,05 bezeichnet einen signifikanten Unterschied zwischen den Gruppen zum jeweiligen Zeitpunkt. Gruppe XY (n=x) Kontrolle (n=y) p P Zeitpunkt 1 460,7 ± 26,7 344,2 ± 30,1 p< 0,01 P Zeitpunkt 2 387,3 ± 30,3 177,3 ± 21,7 p< 0,01 P Zeitpunkt 3 275,5 ± 29,8 96,8 ± 22,0 p< 0,01 P Zeitpunkt 4 177,7 ± 26,5 61,3 ± 17,6 p< 0,01 Interpretationshilfe zu Tabelle 3: Hinsichtlich der beiden Gruppen ergibt sich zu jedem der vier Zeitpunkte ein hochsignifikanter Unterschied (p<0,01) in bezug auf den Parameter P. Das jeweilige Signifikanzniveau kann der Spalte mit der Überschrift p entnommen werden. Da hier jeweils der Parameter P zu einem fixen Zeitpunkt analysiert wird, spricht man von einer univariaten Analyse. Werden für eine statistische Analyse mehrere Variablen simultan analysiert spricht man von einer multivariaten Statistik. In unserem Beispiel überprüft eine Varianzanalyse für Messwiederholungen, als multivariates Verfahren zur Analyse des Parameters P, für die Zeitpunkte 1-4 weiterhin die folgenden drei Hypothesen: H 0 1: Die Messungen des Parameters P verlaufen über die Zeitpunkte 1-4 konstant. (Verlaufs-Effekt) H 0 2: Die Messungen des Parameters P sind im zeitlichen Durchschnitt für beide Gruppen gleich. (Gruppen-Effekt) H 0 3: Zwischen dem zeitlichen Verlauf der Messungen des Parameters P in bezug auf die zwei Gruppen bestehen keine Wechselwirkungen. (Parallelität) Die Varianzanalyse für Messwiederholungen ergab für den Parameter P einen signifikant nicht konstanten Verlauf (H 0 1: p<0,05). Die in Tabelle 3 dargestellten Mittelwerte zeigen in diesem Zusammenhang einen kontinuierlichen Abfall der Messwerte des Parameters P über die Zeit. Im zeitlichen Durchschnitt ergeben sich ebenfalls signifikante Unterschiede der Messwerte des Parameters P zwischen der Gruppe XY und der Kontrollgruppe (H 0 2: p<0,01). Die in Tabelle 3 dargestellten Mittelwerte zeigen für die Gruppe XY, im Vergleich zur Kontrolle, ein deutlich höheres Niveau der Messwerte. 4

5 Hinsichtlich des zeitlichen Verlaufs der Messungen des Parameters P ergeben sich keine signifikanten Unterschiede (H 0 3: p=0,49). Es kann also davon ausgegangen werden, dass keine Wechselwirkungen zwischen den Gruppen und den Messzeitpunkten vorliegen, der Kurvenverlauf der beiden Gruppen also parallel sind. In Abbildung 2 wird deutlich, dass die Verläufe für die Gruppe XY und die Kontrolle annähernd parallel verlaufen und somit keine Wechselwirkungen aufweisen. Abbildung 2: Liniendiagramm des Parameters P im zeitlichen Verlauf für die beiden Gruppen Messverläufe des Parameters P Gruppe XY Kontrollgruppe Maßeinheit des Parameters P Messzeitpunkt 5

6 Korrelationsanalyse Berechnet wurden die Pearsonschen Korrelationskoeffizienten zwischen dem im Zeitverlauf erhobenen Parameter P und der OP-Zeit, der EKZ-Zeit sowie der Ischämie-Zeit. Signifikante Korrelationen wurden mit einem Sternchen (p < 0,05) resp. mit zwei Sternchen (p < 0,01) gekennzeichnet. Tabelle 4: Korrelationen (R) des Parameters P mit der OP-, EKZ- und Ischämie-Zeit OP-Zeit EKZ-Zeit Ischämie-Zeit Parameter P (n=xy) Zeitpunkt 1 0,129 0,165 0,109 Zeitpunkt 2 0,238 0,296 0,154 Zeitpunkt 3 0,584* 0,770** 0,732** Zeitpunkt 4 0,607* 0,802** 0,828** Interpretationshilfe zu Tabelle 4: Über die Gruppen hinweg sind signifikante Korrelationen des Parameters P für die Zeitpunkte 3 und 4 und der OP-Zeit, der EKZ-Zeit sowie der Ischämie-Zeit zu beobachten. Die Korrelationen sind insbesondere für die EKZ-, und die Ischämie-Zeit, mit Werten von R>0,7, besonders stark ausgeprägt. Bemerkung: Auf Wunsch können etwa Streudiagramme mit eingezeichneter Regressionsgerade erstellt werden. 6

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Tabelle 1: Altersverteilung der Patienten (n = 42) in Jahren

Tabelle 1: Altersverteilung der Patienten (n = 42) in Jahren 3. Ergebnisse Die 42 Patienten (w= 16, m= 26) hatten ein Durchschnittsalter von 53,5 Jahren mit einem Minimum von und einem Maximum von 79 Jahren. Die 3 Patientengruppen zeigten hinsichtlich Alters- und

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Phallosan-Studie. Statistischer Bericht

Phallosan-Studie. Statistischer Bericht Phallosan-Studie Statistischer Bericht Verfasser: Dr. Clemens Tilke 15.04.2005 1/36 Inhaltsverzeichnis Inhaltsverzeichnis... 2 Einleitung... 3 Alter der Patienten... 4 Körpergewicht... 6 Penisumfang...

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Was werden wir behandeln? Grundbegriffe der Statistik 2 wesentliche Themen bereits behandelt Wissenschaftliche Studien

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage Elisabeth Raab-Steiner/ Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 3., aktualisierte und überarbeitete Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 13

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Statistik für Psychologen, Pädagogen und Mediziner

Statistik für Psychologen, Pädagogen und Mediziner Thomas Köhler Statistik für Psychologen, Pädagogen und Mediziner Ein Lehrbuch ^~i: Verlag W. Kohlhammer 1 Einführung: Begriffsklärungen und Überblick 11 1.1 Aufgaben und Subdisziplinen der Statistik 11

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

4.1. Körperkondition zum Zeitpunkt der Kalbung

4.1. Körperkondition zum Zeitpunkt der Kalbung 4. Ergebnisse Es werden die Datensätze von 318 Tieren, die in dem Versuchszeitraum abkalben, ausgewertet. Zur Frage nach dem Einfluß der Körperkondition zum Zeitpunkt der Kalbung auf das Fruchtbarkeitsgeschehen

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

3.2.1 Neurogeneserate der magnetfeldbehandelten Tiere aus restriktiver Haltung

3.2.1 Neurogeneserate der magnetfeldbehandelten Tiere aus restriktiver Haltung Eigene Untersuchungen 25 3.2 Ergebnisse 3.2.1 Neurogeneserate der magnetfeldbehandelten Tiere aus restriktiver Haltung Untersucht wurde, ob die Magnetfeldbehandlung mit 1, 8, 12, 29 und 5 Hz einen Einfluss

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Statistik für Psychologen

Statistik für Psychologen Peter Zöfel Statistik für Psychologen Im Klartext Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide Statistik für Psychologen

Mehr

7 Ergebnisse der Untersuchungen zur Sprungfreudigkeit der Rammler beim Absamen und zu den spermatologischen Parametern

7 Ergebnisse der Untersuchungen zur Sprungfreudigkeit der Rammler beim Absamen und zu den spermatologischen Parametern Ergebnisse 89 7 Ergebnisse der Untersuchungen zur Sprungfreudigkeit der Rammler beim Absamen und zu den spermatologischen Parametern 7.1 Einfluß des Lichtregimes 7.1.1 Verhalten der Rammler beim Absamen

Mehr

Tab. 4.1: Altersverteilung der Gesamtstichprobe BASG SASG BAS SAS UDS SCH AVP Mittelwert Median Standardabweichung 44,36 43,00 11,84

Tab. 4.1: Altersverteilung der Gesamtstichprobe BASG SASG BAS SAS UDS SCH AVP Mittelwert Median Standardabweichung 44,36 43,00 11,84 Im weiteren wird gemäß den allgemeinen statistischen Regeln zufolge bei Vorliegen von p=,5 und

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143 Lineare Korrelation Statistik für SozialwissenschaftlerInnen II p.143 Produkt-Moment-Korrelation Der Produkt-Moment-Korrelationskoffizient r von Pearson ist ein Zusammenhangsmaß für metrische Variablen

Mehr

Zur Statistik im neuen Genehmigungsantrag

Zur Statistik im neuen Genehmigungsantrag Zur Statistik im neuen Genehmigungsantrag 21. Essener Informationstreffen, 12. März 2014 PD Dr. Nicole Heussen nheussen@ukaachen.de Institut für Medizinische Statistik RWTH Aachen Zur Statistik im neuen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Test-Finder 1 Test-Finder Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Inhalt 1 Grundlagen... 2 2 Maße der zentralen Tendenz vergleichen Zwei Gruppen... 3 2.1 T-Test für unabhängige Daten...

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 04: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

Regressionsanalysen mit Stata

Regressionsanalysen mit Stata Regressionsanalysen mit Stata Wiederholung: Deskriptive Analysen - Univariate deskriptive Analysen (Häufigkeitsauszählungen einer Variablen) - Multivariate deskriptive Analysen (Untersuchung gemeinsamer

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

'+4 Elisabeth Raab-Steiner / Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 4., aktualisierte und überarbeitete Auflage

'+4 Elisabeth Raab-Steiner / Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 4., aktualisierte und überarbeitete Auflage '+4 Elisabeth Raab-Steiner / Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 4., aktualisierte und überarbeitete Auflage facultas «4 Inhaltsverzeichnis 1 Elementare Definitionen

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Bivariate explorative Datenanalyse in R

Bivariate explorative Datenanalyse in R Bivariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-09 In der LV Statistik 1 haben wir auch den Zusammenhang von 2 Variablen untersucht. Hier werden die dazugehörenden R-Befehle

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Psychologische Methodenlehre Statistik

Psychologische Methodenlehre Statistik RAINER LEONHART Psychologische Methodenlehre Statistik Mit 21 Abbildungen und 40 Tabellen Mit 64 Ubungsfragen Ernst Reinhardt Verlag Miinchen Basel Inhalt Vorwort 9 1 Einfuhrung in die Forschungsmethoden

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Mehrfaktorielle Varianzanalyse

Mehrfaktorielle Varianzanalyse Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Kapitel 6 FRAGESTELLUNG 1.1. Öffne die Datei teenagework.sav.

Kapitel 6 FRAGESTELLUNG 1.1. Öffne die Datei teenagework.sav. Kapitel 6 FRAGESTELLUNG 1.1 Öffne die Datei teenagework.sav. Für eine grafische Darstellung bietet sich ein Boxplot an. Dazu gehe auf Grafiken / Boxplot. Im anschließenden Menü wähle Einfach aus und drücke

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Ferienkurse Mathematik Sommersemester 2009

Ferienkurse Mathematik Sommersemester 2009 Ferienkurse Mathematik Sommersemester 2009 Statistik: Grundlagen 1.Aufgabenblatt mit praktischen R-Aufgaben Aufgabe 1 Lesen Sie den Datensatz kid.weights aus dem Paket UsingR ein und lassen sie die Hilfeseite

Mehr

4.3. Körperkondition zum Zeitpunkt der Wiederbelegung

4.3. Körperkondition zum Zeitpunkt der Wiederbelegung Tabelle 28: Vergleich der maximalen Progesteronwerte der Gruppen 4 bis 6 Maßzahl Gruppe 4 BCS - Differenz 0,00 Gruppe 5 BCS - Differenz < 0,75 Gruppe 6 BCS - Differenz 0,75 Anzahl der Tiere 33 114 52 Mittelwert

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH Biostatistische Studienplanung Dr. Matthias Kohl SIRS-Lab GmbH Ausgangspunkt Fragestellung(en)/Hypothese(n): Hauptfragestellung: Grund für Durchführung der Studie Nebenfragestellung(en): Welche Fragestellungen

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

5 Ergebnisse. 5.1 Überprüfung der Reproduzierbarkeit der Systeme. 5 Ergebnisse 57

5 Ergebnisse. 5.1 Überprüfung der Reproduzierbarkeit der Systeme. 5 Ergebnisse 57 5 Ergebnisse 57 5 Ergebnisse 5.1 Überprüfung der Reproduzierbarkeit der Systeme Das Cadiax III-System hatte für den sagittalen Kondylenbahnwinkel rechts und links gute Variabilitätskoeffizienten (2,1%

Mehr

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,

Mehr

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick Methodenlehre II Thomas Schäfer Thomas Schäfer SS 2009 1 Organisatorisches Wiederholung Methodenlehre I Überblick Methodenlehre II Thomas Schäfer SS 2009 2 1 Organisatorisches Übung zur Vorlesung Friederike

Mehr