Teil I: Deskriptive Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Teil I: Deskriptive Statistik"

Transkript

1 Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten (Beobachtungsein heiten, Merkmalsträger) werden Werte eines oder mehrerer Merkmale festgestellt. Merkmal (Variable) ist die zu untersuchende Größe einer Untersuchungseinheit. StatBio 24

2 Merkmalsausprägungen sind die möglichen Werte, die von einem Merkmal angenommen werden können. Tabelle 2 1 Merkmale und ihre Ausprägungen Einheit Merkmal Ausprägung Person Geschlecht weiblich, männlich Alter in Jahren 1, 2, 3,... Blutgruppe A, B, AB, 0 Bluthochdruck Werte in mmhg Bakterienkolonie Durchmesser Werte in mm Baum Baumart Eiche, Buche,... Grundgesamtheit (Kollektiv, Population): Menge aller potentiellen Untersuchungseinheiten für eine bestimmte Fragestellung. Totalerhebung: Alle Merkmalsträger einer Grundgesamtheit werden in die Untersuchung einbezogen. StatBio 25

3 Stichprobe: Endliche Teilmenge einer Grundgesamtheit. Hat diese Menge n Elemente, so spricht man von einer Stichprobe vom Umfang n (sample of size n). Daten, Beobachtungen: konkrete Werte der Merkmalsausprägungen einer Stichprobe. Beispiel: Grundgesamtheit: Alle Personen Merkmal: Plasmaalbumingehalt Stichprobe vom Umfang 5: A, B, C, D, E Daten: 3.9, 3.3, 4.6, 4.0, 3.8 Bemerkung: Die Begriffe Stichprobe und Daten werden auch häufig synonym verwendet (so auch im Folgenden). StatBio 26

4 Qualitative (artmäßig erfassbare) Merkmale haben nur endlich viele Ausprägungen, die Namen oder Kategorien sind. Beispiele: Geschlecht Blutgruppe Rhesusfaktor Quantitative (in natürlicher Weise zahlenmäßig erfassbare) Merkmale liegen vor, wenn ihre Ausprägungen eine Größe wiedergeben. Beispiele: Kinderzahl Anzahl zuckerkranker Personen Körpertemperatur Adrenalinkonzentration Körpergewicht Körpergröße StatBio 27

5 Eine andere Unterscheidung ist in diskrete und stetige Merkmale. Diskretes Merkmal (discrete variable): Ein solches Merkmal kann nur endlich viele oder höchstens abzählbar unendlich viele Ausprägungen annehmen (häufig ganzzahlig, also 0, 1, 2,...). Alle qualitativen Merkmale sind trivialerweise diskret. Quantitative Merkmale sind dann diskret, wenn ihre Merkmalsausprägungen durch einen Zählvorgang ermittelt werden (sogenannte Zähldaten). Beispiele für Zähldaten: Anzahl herzkranker Personen Anzahl der Blutspender Anzahl der Pulsschläge Anzahl der Bäume in einer Region StatBio 28

6 Stetiges Merkmal (continuous variable): Die Ausprägungen können (wenigstens dem Prinzip nach) beliebige Werte aus einem Intervall annehmen, alle Werte aus einem Intervall sind also denkbar. Die Ausprägungen werden in der Regel durch einen Messvorgang ermittelt, sogenannte Messdaten. Beispiele für Messdaten: Blutdruck Körpertemperatur Adrenalinkonzentration Laktatkonzentration Zusammenfassung: Merkmal diskret stetig qualitativ ja nein quantitativ ja ja (Zähldaten) (Messdaten) StatBio 29

7 Bemerkung: Stetige Merkmale können nur diskret beobachtet werden (Messgenauigkeit), Angaben z. B. auf zwei Dezimalstellen hinter dem Komma genau (Rundungen). In der Praxis ist die Unterscheidung diskret/stetig vielfach willkürlich. 2.2 Skalenniveau von Merkmalen Für statistische Analysen ist die Einteilung in qualitative und quantitative Merkmale zu grob. Von entscheidender Bedeutung für die Interpretation von Daten und Eignung statistischer Verfahren ist es, wie bzw. nach welchen Kriterien die Merkmalsausprägungen gemessen und geordnet werden können. StatBio 30

8 Grundsätzlich erfolgt die Messung der Merkmalswerte mit Hilfe einer Skala (Messvorschrift). Skala: Anordnung von Zahlen, denen die Merkmalsausprägungen eindeutig zugordnet werden. Skalenwerte: Zahlenwerte, die auf einer Skala Berücksichtigung finden. Man spricht in diesem Zusammenhang auch von Skalierung. Das Skalenniveau gibt an 1. welche Vergleichsaussagen und welche rechnerischen Operationen für die Skalenwerte sinnvoll und somit zulässig sind 2. welche Transformationen von Skalenwerten die Messung erhalten (sogenannte zulässige Transformationen). StatBio 31

9 Die verschiedenen Skalenniveaus (Übersicht): Qualitative Merkmale Quantitative Merkmale Nominalskala Ordinalskala Metrische Skala Intervallskala Verhältnisskala StatBio 32

10 Nominalskala (Skala mit dem niedrigsten Niveau) Charakteristika: keine natürliche Rangordnung der Skalenwerte Zuordnung von Zahlen ist lediglich eine Kodierung der Merkmalsausprägungen Anordnung hat keine inhaltliche Bedeutung Vergleichsaussagen: gleich (=), ungleich ( ) Rechnerische Operationen: Häufigkeiten Zulässige Transformationen: bijektive (eineindeutige) Abbildungen (siehe Aufgabe 3, Blatt 1) StatBio 33

11 Tabelle 2 2 Nominale Merkmale und Kodierungen Merkmal Merkmalsausprägungen Kodierung Baumart Eiche 1 Buche 2 Birke 3 Linde 4 sonstige 5 Geschlecht männlich 0 weiblich 1 Blutgruppe 0 0 A 1 B 2 AB 3 Spezialfall nominalskalierter Merkmale sind binäre Merkmale (dichotome Merkmale): Merkmale mit nur zwei Ausprägungen (häufig 0/1 kodiert). StatBio 34

12 Ordinalskala (Rangskala) Charakteristika: Die Merkmalsausprägungen sind Kategorien, bei denen eine natürliche Rangordnung aufgrund ihrer Größe bzw. Intensität gegeben ist. Vergleichsaussagen: gleich (=), ungleich ( ) sowie kleiner (<), größer (>) Rechnerische Operationen: Häufigkeiten, Ränge Zulässige Transformationen: streng monotone (ordnungserhaltende) Abbildungen (siehe Aufgabe 3, Blatt 1) StatBio 35

13 Tabelle 2 3 Ordinale Merkmale und Kodierungen Merkmal Ausprägung Kodierung Antibiotikaresistenz sehr sensitiv 1 sensitiv 2 intermediär 3 resistent 4 sehr resistent 5 Schmerzen wenig mittel stark Bei nominal und ordinalskalierten Merkmalen haben Abstände (Differenzen) und Verhältnisse (Quotienten) von Skalenwerten keine inhaltliche Bedeutung, sind also nicht vergleichbar. StatBio 36

14 Bei quantitativen Merkmalen verwendet man eine metrische Skala. Hier liegt Messbarkeit im engeren Sinne vor, wobei Skalenwerte im Allgemeinen eine Dimension haben (Celsius, mg/l, mmol, sec, cm, usw.). Charakteristika: Abstände zwischen Skalenwerten sind interpretierbar Natürliche Rangordnung durch Größe der Merkmalswerte. Bei der metrischen Skala wird zwischen Intervall und Verhältnisskala unterschieden. StatBio 37

15 Intervallskala (Differenzenskala) Charakteristika: Bezugspunkt dieser Skala (Nullpunkt, Durchschnittswert) ist willkürlich festgelegt. Konsequenz: Vergleich von Differenzen ist sinnvoll, nicht aber von Quotienten. Vergleichsaussagen: gleich (=), ungleich ( ) sowie kleiner (<), größer (>) Rechnerische Operationen: Häufigkeiten, Ränge, Subtraktionen Zulässige Transformationen: lineare Abbildungen (siehe Aufgabe 3, Blatt 1) Beispiele intervallskalierter Merkmale: Temperatur in Celsius (Gefrierpunkt Wasser ˆ= 0 C) bzw. in Fahrenheit (Körpertemperatur Mensch ˆ= 100 F) (Vgl. Aufgabe 4, Blatt 1) StatBio 38

16 Intelligenzquotient nach Wechsler (Durchschnittswert = 100) Verhältnisskala (Ratioskala) Charakteristika: Natürlicher (absoluter) Nullpunkt ist gegeben, Vergleich von Verhältnissen (Quotienten) ist daher sinnvoll. Gleiche Quotienten drücken einen gleich großen Unterschied aus. Vergleichsaussagen: gleich (=), ungleich ( ) sowie kleiner (<), größer (>) Rechnerische Operationen: Häufigkeiten, Ränge, Subtraktionen, Divisionen Zulässige Transformationen: lineare homogene Abbildungen (siehe Aufgabe 3, Blatt 1) StatBio 39

17 Beispiele verhältnisskalierter Merkmale: Alter in Jahren Länge Gewicht Temperatur in Kelvin (0 Kelvin ˆ= Celsius). Die verschiedenen Skalenniveaus stellen eine Hierachie dar: Tabelle 2 4 Sinnvoll interpretierbare Berechnungen Skala zählen ordnen subtrahieren dividieren Nominal ja nein nein nein Ordinal ja ja nein nein Intervall ja ja ja nein Verhältnis ja ja ja ja StatBio 40

18 Bemerkung: Statistische Methoden, die für ein niedriges Skalenniveau geeignet sind, können auch für ein höheres Skalenniveau verwendet werden (zählen und ordnen ist stets für metrische Merkmale durchführbar). Die Umkehrung gilt nicht! Für metrische Merkmale kann etwa der Durchschnittswert (arithmetisches Mittel) berechnet werden, was für ordinal und nominalskalierte Merkmale im Allgemeinen völlig sinnlos ist. StatBio 41

19 Skalentransformationen Für die statistische Analyse kann es sinnvoll sein, metrische Daten so zu transformieren, dass ihre Ausprägungen ordinalskaliert sind, auch wenn solche Transformationen immer mit einem gewissen Informationsverlust verbunden sind (denn aus der Kenntnis der transformierten Werte können die ursprünglichen Werte nicht mehr zurückgewonnen werden). Die wichtigsten Transformationen sind der Übergang zu Kategorien, Klassen (Klassenbildung,,von... bis,,,klassierung der Daten ) Rängen (Daten werden der Größe nach geordnet, der kleinste Wert erhält Rang 1, der zweitkleinste Wert Rang 2, usw.) StatBio 42

20 Beispiel 2.1: Von 20 Blutproben wurde der Plasmaalbumingehalt (in g/dl) bestimmt, wobei sich folgende Werte ergaben: 3.9, 3.3, 4.6, 4.0, 3.8, 3.8, 3.6, , 3.9, 4.1, 3.7, 3.6, , 4.0, Die Merkmalsausprägung Plasmaalbumingehalt wird auf der Verhältnisskala gemessen. Ordnet man die Werte in aufsteigender Reihenfolge, so lassen sich die Rangpositionen zuordnen. Des Weiteren wird die Kategorie 1,,Plasmaalbumingehalt 4.0 und die Kategorie 2,,Plasmaalbumingehalt > 4.0 betrachtet. StatBio 43

21 Tabelle 2 5 Skalen Transformation der Plasma Daten Patient Wert geordnete Rang Kategorie Nr. Werte StatBio 44

22 Durchschnittsrang Der Beobachtungswert 3.6 kommt zweimal vor. Es sind die Ränge 2 und 3 zu vergeben. Bilden des Durchschnittsrangs: Rang(3.6) = = 2.5 Der Beobachtungswert 3.8 kommt dreimal vor. Es sind die Ränge 5, 6 und 7 zu vergeben: Bilden des Durchschnittsrangs: Rang(3.8) = = 6 etc. StatBio 45

23 2.3 Geordnete Stichproben und Ränge Gegeben seien Daten x 1, x 2,..., x n Bezeichne x (1) die kleinste der n Zahlen x 1,..., x n x (2) die zweitkleinste der n Zahlen x 1,..., x n. x (n) die größte der n Zahlen x 1,..., x n x (k) heißt k te Ordnungsgröße. Per Definition gilt stets x (1) x (2)... x (n) x (1),..., x (n) heißt geordnete Stichprobe. StatBio 46

24 Tabelle 2 6 Geordnete Plasma Daten i x i x (i) i x i x (i) Der Rang einer Zahl x i innerhalb einer Stichprobe gibt an, die wie vielt kleinste Zahl sie ist. Um den Rang einer Beobachtung zu bestimmen ist es sinnvoll, die Daten der Größe nach zu ordnen. Formaler versteht man unter einem Rang folgendes: StatBio 47

25 1. Fall: Der Beobachtungswert x i kommt in der Stichprobe nur einmal vor. Dann ist der Rang von x i gleich 1 plus Anzahl der Beobachtungen die kleiner als x i sind: Rang(x i ) = 1 + Anzahl der x j mit x j < x i 2. Fall: Der Beobachtungswert x i kommt in der Stichprobe k mal vor, k 2 (man spricht von einer Bindung der Länge k). Dann hat man für diese k gleichen Beobachtungswerte die Ränge zu vergeben, wobei r i, r i + 1,..., r i + (k 1) r i = 1 + Anzahl der x j mit x j < x i Käme der Beobachtungswert x i nur einmal vor, so wäre die Zahl r i der Rang von x i. StatBio 48

26 Diese k gleichen Beobachtungswerte bekommen alle den gleichen Rang, den Durchschnittsrang. Dieser ist definiert als das arithmetische Mittel der zu vergebenden Ränge: Rang(x i ) = r i + (r i + 1) [r i + (k 1)] k (2.1) Formel (2.1) lässt sich vereinfachen (Aufgabe 6, Blatt 1). Beachte: Die Rang Transformation x i Rang(x i ) einer Beobachtung x i ist immer nur in Bezug auf die Daten x 1,..., x n festgelegt! (Vgl. Aufgabe 7, Blatt 1) StatBio 49

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 16.04.2013 Gegenstand der Vorlesung und Grundbegriffe der

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Grundbegriffe. Bibliografie

Grundbegriffe. Bibliografie Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit.

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit. Kapitel 1 Beschreibende Statistik Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Gesucht: Übersichtliche Beschreibung Die gegebene Menge heißt auch Grundgesamtheit. Beispiele

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet.

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 1 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 1 Die Statistik besitzt drei Grundaufgaben im Rahmen der

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

Müssen Texte statistisch anders ausgewertet werden als Menschen?

Müssen Texte statistisch anders ausgewertet werden als Menschen? CROCO LINGUISTIC PROPERTIES OF TRANSLATIONS A CORPUS-BASED INVESTIGATION FOR THE LANGUAGE PAIR ENGLISH-GERMAN Müssen Texte statistisch anders ausgewertet werden als Menschen? Stella Neumann Grundüberlegung

Mehr

Ich wollte einige Dinge klären, die mir noch unklar sind:

Ich wollte einige Dinge klären, die mir noch unklar sind: Ich wollte einige Dinge klären, die mir noch unklar sind:. Unterschied Transformation/Kodierung: Kann man sagen, dass Transformation die Verwandlung von Merkmalen ist während die Kodierung die Verschlüsselung

Mehr

Grundbegriffe. Worum geht es in diesem Modul?

Grundbegriffe. Worum geht es in diesem Modul? Grundbegriffe Worum geht es in diesem Modul? Einführung Merkmale Merkmalstyp Skalenniveaus Skalentransformation Erhebung Erhebungsarten Datenmatrix Exkurs, Indexnotation Resümee Worum geht es in diesem

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten

Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Einleitung 2. Lorenzkurve

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Datenerhebung, Skalenniveaus und Systemdatei

Datenerhebung, Skalenniveaus und Systemdatei Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Phasen des Forschungsprozesses (hypothesenprüfende Studie)

Phasen des Forschungsprozesses (hypothesenprüfende Studie) Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Herzlich willkommen zum Thema SPSS

Herzlich willkommen zum Thema SPSS Herzlich willkommen zum Thema SPSS (SUPERIOR PERFORMING SOFTWARE SYSTEM) Qualitative und quantitative Forschungsmethoden Qualitative Methoden: Qualitative Verfahren werden oft benutzt, wenn der Forschungsgegenstand

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

2 Grundzüge der Datenerhebung

2 Grundzüge der Datenerhebung 2 Grundzüge der Datenerhebung 2.1 Merkmale, statistische Einheit, statistische Masse Vor jeder statistischen Analyse muss das Untersuchungsziel genau angegeben sein. Obwohl die Vorgabe dieses Zieles nicht

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung Was heißt messen? Ganz allgemein: Eine Eigenschaft eines Objektes wird ermittelt, z.b. die Wahlabsicht eines Bürgers, das Bruttosozialprodukt eines Landes, die Häufigkeit von Konflikten im internationalen

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

2 Häufigkeitsverteilungen

2 Häufigkeitsverteilungen 14 Häufigkeitsverteilungen 2 Häufigkeitsverteilungen Lernziele In diesem Kapitel geht es um beschreibende Statistik. Nach erfolgreicher Bearbeitung sind Sie in der Lage, eine zunächst unübersichtliche

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Einführung in die Statistik Einführung

Einführung in die Statistik Einführung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einführung Professur E-Learning und Neue Medien www.tu-chemnitz.de/phil/imf/elearning

Mehr

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1 FHManagement & IT Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen Mehrfachantworten

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Hypothesen in der Psychologie Variablen Zusammenhänge und Unterschiede Messen und Messtheorie Skalen und Skalenniveaus Stichproben und Population

Hypothesen in der Psychologie Variablen Zusammenhänge und Unterschiede Messen und Messtheorie Skalen und Skalenniveaus Stichproben und Population DAS THEMA: HYPOTHESEN VARIABLEN MESSEN Hypothesen in der Psychologie Variablen Zusammenhänge und Unterschiede Messen und Messtheorie Skalen und Skalenniveaus Stichproben und Population Nehmen wir einmal

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012 Antwortkategorien und Skalen Jasmin Hügi Herbstschule 2012 Übersicht Zeit 09h00 09h10 09h10 09h40 09h40 10h30 10h30 11h00 11h00 11h20 11h20 12h15 12h15 13h30 13h30 14h00 14h00 15h00 15h00 15h30 15h30 15h50

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm Histogram / Histogramm / histogram Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik I Deskriptive und Explorative Datenanalyse 2010 Übungsaufgaben und Lösungen Erkenntn nisgewinnung und Datenerhebung in der Psychologie [Übungsaufgaben

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 9

Stochastik und Statistik für Ingenieure Vorlesung 9 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 9 4. Dezember 2012 Einige Grundbegriffe Merkmalsträger, statistische Einheit,

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1

Dr. Barbara Lindemann. Fragebogen. Kolloquium zur Externen Praxisphase. Dr. Barbara Lindemann 1 Dr. Barbara Lindemann Fragebogen Kolloquium zur Externen Praxisphase Dr. Barbara Lindemann 1 Überblick 1. Gütekriterien quantitativer Forschungen 2. Fragebogenkonstruktion 3. Statistische Datenanalyse

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Empirische Wirtschaftsforschung und Ökonometrie III

Empirische Wirtschaftsforschung und Ökonometrie III Empirische Wirtschaftsforschung und Ökonometrie III Prof. Dr. Robert Jung Lehrstuhl für Ökonometrie Staatswissenschaftliche Fakultät Universität Erfurt http://www.uni-erfurt.de/oekonometrie SS 2009 BA

Mehr

Messung. Mariem Ben Rehouma 14.04.2009

Messung. Mariem Ben Rehouma 14.04.2009 Messung Mariem Ben Rehouma Gliederung Motivation Definition von Messung Metriken Klassifikation von Metriken Beispiele Objektorientierte Metriken Charakteristiken von Messungen Skala-Arten Messungsarten

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage

Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage Elisabeth Raab-Steiner/ Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 3., aktualisierte und überarbeitete Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 13

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Mehrfeldertabellen und Zusammenhangsmaße 1. Mehrfeldertabellen und Zusammenhangsmaße:

Mehr