Statistik I für Betriebswirte Vorlesung 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik I für Betriebswirte Vorlesung 1"

Transkript

1 Statistik I für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 1

2 Organisatorisches Vorlesung: Mo, 11:00-12:30, KKB Übungen: Di, 7:30-9:00, RAM-1085, Dr. Wünsche, 2.BBL, 2.BWLRW. Di, 7:30-9:00, MIB-1113, Dr. Lorz, 2.BBWL. Di, 14:00-15:30, MIB-1113, Dipl.-Math. Baaske, 2.BBWL. Do, 14:00-15:30, LED-1105, Dr. Lorz, 2.BWIW. Selbststudium (Laut Modulbeschreibung zusammen für beide Semester 120h Präsenzzeit und 150h Selbststudium.) Information: Prüfung: Klausur 120 Minuten, zugelassen sind Taschenrechner, Bücher, Mitschriften; nicht zugelassen sind Laptops, Handys. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 2

3 Themen Wahrscheinlichkeitsrechnung (ca. 6 Vorlesungen). Zufällige Ereignisse und Wahrscheinlichkeiten, bedingte Wahrscheinlichkeiten, Unabhängigkeit. Zufallsgrößen, Typen, Charakterisierung und Kenngrößen. Wichtige diskrete Wahrscheinlichkeitsverteilungen. Wichtige stetige Wahrscheinlichkeitsverteilungen. Beschreibende (deskriptive) Statistik (ca. 3 Vorlesungen). Beispiele und Grundbegriffe. Eindimensionale Merkmale. Zweidimensionale Merkmale. Indexzahlen. Schließende (induktive) Statistik (ca. 4 Vorlesungen). Stichproben. Parameterschätzungen. Fortsetzung im folgenden Semester: Statistik für Betriebswirte II. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 3

4 1. Wahrscheinlichkeitsrechnung 1.1 Einleitung Im praktischen Leben, in den Wissenschaften, usw. hat man es oft mit Situationen, Versuchen, Beobachtungen, etc., zu tun, bei denen Ergebnisse nicht genau vorausberechnet werden können, eine Unsicherheit besteht, bei denen aber Aussagen und/oder Entscheidungen getroffen werden sollen. Beispiele: Versicherungswesen (Zeitpunkte von Schadensfällen, Höhe von Einbzw. Auszahlungen). (Statistische) Qualitätskontrolle (notwendige Änderungen von Produktionsparametern wegen zu mangelhafter Qualität der Erzeugnisse). Produktionsplanung (Entwicklung der Nachfrage). Finanzmärkte (Entwicklung von Aktienkursen, Wechselkursen). Wetter- und Klimavorhersagen. Physikalische Grundgesetze (statistische Physik, Quantenphysik). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 4

5 Quantifizierung der Unsicherheit Unterschiedliche Ereignisse haben im Allgemeinen unterschiedliche Chancen einzutreten, das Wissen darüber kann genutzt werden. Eine Möglichkeit der Quantifizierung der Unsicherheit besteht in der Nutzung stochastischer mathematischer Modelle. Die Nutzung derartiger Modelle hat sich in vielen Situationen bewährt. Die Stochastik (Wahrscheinlichkeitstheorie, mathematische Statistik, Theorie der Zufallsfunktionen,... ) als mathematische Disziplin liefert die Grundlagen für konsistente und korrekte Berechnungen im Zusammenhang mit stochastischen Modellen. Ob ein konkretes stochastisches Modell gute Erklärungen und/oder Entscheidungen für eine konkrete reale Situation liefert ist keine mathematische Fragestellung. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 5

6 1.2 Zufällige Ereignisse und Wahrscheinlichkeiten Ideales Zufallsexperiment, zufälliger Versuch, Zufallssituation: Genau festgelegte Bedingungen. Ausgang bzw. Ergebnis des Experiments ist nicht vorhersehbar, die möglichen Ausgänge sind vor Durchführung des Experiments bekannt. Es ist zumindest gedanklich beliebig oft wiederholbar und eine statistische Regularität kann beobachtet oder angenommen werden. In einfachen Fällen: Menge aller möglicher Ergebnisse (Ergebnismenge, Grundmenge) Ω. Elemente ω 1, ω 2,... der Ergebnismenge sind die Elementarereignisse, Versuchsausgänge oder Grundrealisierungen. Die vorfügbare Information spielt eine große Rolle. Beispiele: Würfeln mit einem oder mehreren Würfeln. Bildquelle: de.wikipedia.org/wiki/spielwürfel Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 6

7 Zufällige Ereignisse Zufälliges Ereignis oder kurz Ereignis A zu einem betrachteten Zufallsexperiment: nach Durchführung des Zufallsexperiments muss man mit Sicherheit sagen können, ob das Ereignis A eingetreten ist oder nicht. Im Sinne der (mathematischen) Logik: Das Ereignis A ist eingetreten. ist entweder eine wahre oder falsche Aussage. Im Fall einer Ergebnismenge Ω: Teilmenge A der Ergebnismenge Ω; das Ereignis A tritt ein, falls das realisierte Ergebnis des zufälligen Versuchs in der Menge A enthalten ist. Beispiele: Würfeln mit einem oder mehreren Würfeln. Tägliche DAX-Schlusskurse. Bildquelle: Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 7

8 Wahrscheinlichkeiten Jedem zufälligen Ereignis A zu einem betrachteten Zufallsexperiment wird eine Zahl zwischen 0 und 1 zugeordnet, die sogenannte Wahrscheinlichkeit (für das Eintreten) des Ereignisses P(A). P(A) ist ein quantitatives Maß für die Chancen, dass das zufällige Ereignis A bei einer Realisierung des Experiments eintritt, z.b. P(A) 0 sehr geringe; P(A) 1 sehr große Chancen. Hintergrund sind Eigenschaften von relativen Häufigkeiten h n (A) = H n(a) n P(A) (falls n groß) ; H n (A) Häufigkeit des Eintretens von A in n (unabhängigen) Realisierungen des Zufallsexperiments. Häufigkeitsinterpretation für P(A): bei n Realisierungen des Zufallsexperiments wird (oft) das zufällige Ereignis A ungefähr n P(A) mal eintreten und n (1 P(A)) mal nicht eintreten. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 8

9 Stabilisierung von relativen Häufigkeiten Beispiel Quelle: N.Henze, Stochastik für Einsteiger, 2013, 10.Auflage, Kap.4. Ergebnisse von 300 Würfen einer Reißzwecke auf einen Steinboden mit den beiden möglichen Ergebnissen Spitze nach oben = 1 und Spitze schräg nach unten = 0. Fortlaufend notierte relative Häufigkeiten für 1 : Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 9

10 Einige elementare mathematische Fragestellungen 1. Wie können mathematische Definitionen für Wahrscheinlichkeiten gegeben werden? 2. Wie kann man bei bekannten Wahrscheinlichkeiten für bestimmte zufällige Ereignisse die Wahrscheinlichkeiten für andere zufällige Ereignisse berechnen, welche Rechenregeln und Eigenschaften können genutzt werden? 3. Was ändert sich in der Modellierung, wenn zusätzliche Informationen zu einem Zufallsexperiment verfügbar werden (oder hypothetischerweise angenommen werden)? Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 10

11 Verknüpfungen von Ereignissen Geg.: Zufallsexperiment mit Ergebnismenge Ω und zufälligen Ereignissen A, B. Vereinigung A B : A oder B (oder beide) treten ein. Durchschnitt A B : A und B treten beide ein. Differenz A \ B : A tritt ein, aber B nicht. Das zu A komplementäre (entgegengesetzte) Ereignis A = A c = A : tritt genau dann ein, wenn A nicht eintritt; A = Ω \ A. Unmögliches Ereignis : tritt niemals ein. Sicheres Ereignis Ω : tritt immer ein (gleich Ergebnismenge). A und B sind unvereinbar (sind disjunkt, schließen einander aus) : sie können nicht gemeinsam eintreten, d.h. A B =. Das Ereignis A zieht das Ereignis B nach sich : A B (wenn A eintritt, dann tritt auch B ein). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 11

12 Rechenregeln für Verknüpfungen von Ereignissen Geg.: Zufallsexperiment mit Ergebnismenge Ω und zufälligen Ereignissen A, B, C. Dann gelten wie allgemein für Teilmengen A, B, C einer Menge Ω die folgenden Rechenregeln. Kommutativität : A B = B A, A B = B A. Assoziativität : (A B) C = A (B C), (A B) C = A (B C). Distributivität : (A B) C = (A C) (B C), (A B) C = (A C) (B C). Regeln von de Morgan : A B = A B, A B = A B. ( ) A A = Ω, A A =, A \ B = A B, A = A, A = A, A =, A Ω = Ω, A Ω = A. Entsprechend können auch Vereinigungen und Durchschnitte von mehr als zwei Ereignissen definiert werden und auch die Rechenregeln können entsprechend verallgemeinert werden. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 12

13 Übungsbeispiel Entwicklung von 3 konkreten Aktienkursen in einem festen Zeitraum an einer bestimmten Börse. S i = {Wert der Aktie i steigt}. Ges.: Darstellung der folgenden Ereignisse durch die Ereignisse S i. A = {Wert aller 3 Aktien steigt}. B = {Wert keiner der 3 Aktien steigt}. C = {Wert mindestens einer der 3 Aktien steigt}. D = {Wert genau einer der 3 Aktien steigt}. E = {Wert aller 3 Aktien fällt oder bleibt gleich}. Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 13

14 Axiomatische Wahrscheinlichkeitsdefinition (Kolmogorow) Mathematisches Modell für ein Zufallsexperiment ist ein Wahrscheinlichkeitsraum (Ω, A, P). Ω ist eine nichtleere Menge (Grundraum, Ergebnismenge), sie wird in komplizierteren Situationen oft nicht explizit angegeben. A ist eine Menge von Teilmengen von Ω, so dass endlich viele oder abzählbar unendliche Verknüpfungen von Elementen aus A wieder zu einem Ergebnis in A führen (Ereignisalgebra, σ Algebra). Die Wahrscheinlichkeitsfunktion P ordnet jeder Menge A aus A die reelle Zahl P(A) zu, so dass die folgenden Axiome gelten: 1. 0 P(A) P(Ω) = P(A 1 A 2 = P(A 1 ) + P(A 2 ) falls A 1 A 2 =. ( ) 4. P A i = P(A i ) falls die Ereignisse A i paarweise unvereinbar i=1 i=1 sind, d.h. A i A j = (i j). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 14

15 Bemerkungen zu und Folgerungen aus den Axiomen Man benutzt oft weiter die Wahrscheinlichkeitsterminologie (z.b. Ereignis statt Teilmenge ). Axiome spiegeln Eigenschaften der relativen Häufigkeiten wider. Alle Zuordnungen von Wahrscheinlichkeiten die den Axiomen genügen sind mathematisch gesehen erst einmal korrekt (insbesondere auch subjektive Zuordnungen). P( ) = 0. P(A 1 A 2... A n ) = P(A 1 ) + P(A 2 ) P(A n ) falls die Ereignisse A i paarweise unvereinbar sind. P(A) = 1 P(A), P(A) = 1 P(A). (Oft sehr nützlich!) A B P(A) P(B), P(B \ A) = P(B) P(A). Additionsgesetz: P(A B) = P(A) + P(B) P(A B). Siebformel: P(A B C) = P(A)+P(B)+P(C) P(A B) P(A C) P(B C)+P(A B C). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 15

16 Übungsbeispiel Für die Ereignisse A und B zu einem Zufallsexperiment seien folgende Wahrscheinlichkeiten bekannt: P(A) = 0.25, P(B) = 0.45, P(A B) = 0, 5. Berechnen Sie P ( A B ), P ( A B ) und P (( A B ) ( A B ))! Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 16

17 Klassische Wahrscheinlichkeitsdefinition (Laplace-Modell) Gilt für Zufallsversuche mit endlich vielen möglichen Versuchsergebnissen (n elementare Versuchsausgänge oder Elementarereignisse), die alle gleichwahrscheinlich sind (keines wird bevorzugt, alle haben dieselbe Chance einzutreten). Beispiele: Würfeln mit einem fairen oder gerechten Würfel, n = 6, Elementarereignisse sind 1, 2, 3, 4, 5, 6. Zahlenlotto 6 aus 49, n = Anzahl der möglichen Tipps mit 6 aus 49 Zahlen. Aus den Axiomen für Wahrscheinlichkeiten folgt dann die einzige mögliche Definition von Wahrscheinlichkeiten in dieser Situation (die sogenannte klassische Wahrscheinlichkeitsdefinition). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 17

18 Klassische Wahrscheinlichkeitsdefinition Für jedes der n Elementarereignisse gilt unter obigen Bedingungen: P(Elementarereignis) = 1 n. Für ein beliebiges Ereignis A gilt unter obigen Bedingungen: P(A) = Anzahl der Elementarereignisse in A n bzw. P(A) = Anzahl der für A günstigen Fälle Anzahl aller möglichen gleichwahrscheinlichen Fälle. Bei Wahrscheinlichkeitsberechnungen im Zusammenhang mit der klassischen Wahrscheinlichkeitsdefinition werden oft kombinatorische Formeln genutzt (siehe später). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 18

19 1.3 Bedingte Wahrscheinlichkeiten Sind zusätzliche Informationen zu einem Zufallsexperiment verfügbar (oder werden diese hypothetisch angenommen), können sich die Wahrscheinlichkeiten für die zufälligen Ereignisse ändern. Geg.: Zufallsexperiment mit Ereignissen A, B wobei P(B) > 0. Es sei jetzt zusätzlich bekannt, dass B eingetreten ist. Def.: Bedingte Wahrscheinlichkeit von A unter der Bedingung B: P(A B) = P(A B) P(B). Auch diese Begriffsbildung basiert auf den Eigenschaften der relativen Häufigkeiten. Beispiel: C = {Neugeborenes wird 5 Jahre alt}, z.b. P(C) = D = {Neugeborenes wird 50 Jahre alt}, z.b. P(D) = Ges.: P(D C). Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung 1 19

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung 2 Wahrscheinlichkeitsrechnung 2.1 Grundbegriffe Wir betrachten zwei Beispiele, um erste Grundbegriffe anschaulich einzuführen. Beispiel 2.1.1. In einem Elektronikmarkt liegen 50 MP3-Player auf einem Tisch,

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Bernoullikette und Binomialverteilung. Binomialverteilung

Bernoullikette und Binomialverteilung. Binomialverteilung Binomialverteilung Inhaltsverzeichnis Vorbemerkungen... 3 Listen und Mengen... 3 Beispiele für Ergebnisräume... 3 Bernoulliketten... 3 Binomialverteilung... 3 Aufgabe... 3 Graphische Veranschaulichung...

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

4b. Wahrscheinlichkeit und Binomialverteilung

4b. Wahrscheinlichkeit und Binomialverteilung b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

Mathematik IV (Stochastik) für Informatiker

Mathematik IV (Stochastik) für Informatiker Bausteine zur Vorlesung von Prof. Dr. Bernd Hofmann Mathematik IV (Stochastik) für Informatiker Fakultät für Mathematik der Technischen Universität Chemnitz Sommersemester 2016 Dieser Text soll die Nacharbeit

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde. 10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik)

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) 1. Einleitung Deskriptive Statistik: Allgemeine und spezielle

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Bayessche Netzwerke und ihre Anwendungen

Bayessche Netzwerke und ihre Anwendungen Bayessche Netzwerke und ihre Anwendungen 1. Kapitel: Grundlagen Zweiter Schwerpunktanteil einer Vorlesung im Rahmen des Moduls Systemplanung und Netzwerktheorie (Modul-Nr.: 1863) Fakultät für Informatik

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Stochastik für Bioinformatiker

Stochastik für Bioinformatiker Stochastik für Bioinformatiker Prof. Dr. Leonhard Held Ludwig-Maximilians-Universität München Institut für Statistik Tel. 089-2180-6407 1 INHALTSVERZEICHNIS i Inhaltsverzeichnis 1 Einleitung 1 2 Laplace-Verteilungen

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 07/08 UNIVERSITÄT KARLSRUHE Blatt 4 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen Aufgabe

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Fehlerbäume. Beispiel Kuchenbacken. Beispiel Kuchenbacken. Beispiel Kuchenbacken. der Kuchen gelingt nicht. der Kuchen.

Fehlerbäume. Beispiel Kuchenbacken. Beispiel Kuchenbacken. Beispiel Kuchenbacken. der Kuchen gelingt nicht. der Kuchen. Beispiel Kuchenbacken Fehlerbäume es waren nur noch 2 Eier übrig Kuchenform war unauffindbar Präsentation im Fach Computervisualistik Sylvia Glaßer sieht seltsam aus gelingt nicht schmeckt komisch das

Mehr

Beschreibende Statistik anhand realer Situationen

Beschreibende Statistik anhand realer Situationen Beschreibende Statistik anhand realer Situationen Paula Lagares Barreiro Frederico Perea Rojas-Marcos Justo Puerto Albandoz MaMaEuSch Management Mathematics for European Schools 94342 - CP - 1-2001 - 1

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr. 30 Stand 29. März 200 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Zufallsexperimente, Ereignisse

Mehr

Hauptprüfung Fachhochschulreife 2014. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2014. Baden-Württemberg Hauptprüfung Fachhochschulreife 2014 Baden-Württemberg Aufgabe 6 Stochastik Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com September 2014 1 Ein Glücksrad

Mehr

Statistik nach der Grundausbildung

Statistik nach der Grundausbildung Statistik nach der Grundausbildung Andreas Handl Torben Kuhlenkasper 8. Januar 2016 1 Grundlage des vorliegenden Skripts sind Aufzeichnungen von Andreas Handl, die er bis zum Jahr 2007 an der Universität

Mehr

Definition der Entropie unter Verwendung von supp(p XY )

Definition der Entropie unter Verwendung von supp(p XY ) Definition der Entropie unter Verwendung von supp(p XY ) Wir fassen die Ergebnisse des letzten Abschnitts nochmals kurz zusammen, wobei wir von der zweidimensionalen Zufallsgröße XY mit der Wahrscheinlichkeitsfunktion

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

5. Stochastische Modelle I: Diskrete Zufallsvariablen

5. Stochastische Modelle I: Diskrete Zufallsvariablen 5. Stochastische Modelle I: Diskrete Zufallsvariablen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Zufallsgrößen Eine Zufallsgröße X ist eine Größe, deren Wert wir nicht exakt kennen

Mehr

Zufallsversuche. Christine Hartmann

Zufallsversuche. Christine Hartmann Zufallsversuche Christine Hartmann Ausarbeitung zum Vortrag im Seminar Mathematische Modellierung (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Der Vortrag zum Thema Zufallsversuche

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 Inhalt A Grundlegende Begriffe 6 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 2 Relative Häufigkeit und abstrakter Wahrscheinlichkeitsbegriff 13 Aufgaben 16 3 Laplace scher Wahrscheinlichkeitsbegriff

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Stochastik für Wirtschaftswissenschaftler

Stochastik für Wirtschaftswissenschaftler Stochastik für Wirtschaftswissenschaftler Vorlesungsskript Wintersemester 03/4 von Markus Kunze ii Inhaltsverzeichnis Diskrete Wahrscheinlichkeitsräume. Beschreibung von Zufallsexperimenten.......................

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Beispielaufgaben Binomialverteilung Lösungen

Beispielaufgaben Binomialverteilung Lösungen L. Schmeink 05a_beispielaufgaben_binomialverteilung_lösungen.doc 1 Beispielaufgaben Binomialverteilung Lösungen Übung 1 Der Würfel mit zwei roten (A) und vier weißen Seitenflächen (B) soll fünfmal geworfen

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

Peter P. Eckstein. Statistik für. Wirtschaftswissenschaftler. Eine realdatenbasierte. Einführung mit SPSS. 4., aktualisierte und erweitete Auflage

Peter P. Eckstein. Statistik für. Wirtschaftswissenschaftler. Eine realdatenbasierte. Einführung mit SPSS. 4., aktualisierte und erweitete Auflage Peter P. Eckstein Statistik für Wirtschaftswissenschaftler Eine realdatenbasierte Einführung mit SPSS 4., aktualisierte und erweitete Auflage Springer Gabler VII 1 Statistik I 1.1 Historisehe Notizen 2

Mehr

Statistik für Wirtschaftswissenschaftler

Statistik für Wirtschaftswissenschaftler Peter R Eckstein Statistik für Wirtschaftswissenschaftler Eine realdatenbasierte Einführung mit SPSS 2., aktualisierte und erweiterte Auflage GABLER HOCHSCHULE LIECHTENSTEIN Bibliothek Inhaltsverzeichnis

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr