Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : % 4,50

Größe: px
Ab Seite anzeigen:

Download "Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50"

Transkript

1 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15% von 30? W = 30 15% oder Dreisatz 30 : 100 W = 4,50 1% % 4,50 Übung Berechne die fehlenden Prozentwerte G P 40% 61% 85% 110% 62% 300% 75% W 2. Berechnung von Grundwerten G = W Bs. 15% vom Grundwert sind 12. Wie groß ist der Grundwert? 12 G = 15% oder Dreisatz 15% 12,00 :15 G= 80 1% ,00

2 Übung Berechne die fehlenden Grundwerte. Runde, wenn nötig, sinnvoll. W 50m kg 5t mm 400ha P 2% 40% 200% 35% 75% 18% 450% G 3. Berechnung von Prozentsätzen P= W G Bs. Wie viel Prozent sind 5m von 40m? P = 5m 40m oder Dreisatz 40m :100 P = 12,5% 1% 0,4m 12,5 Berechne die fehlenden Prozentsätze. Runde, falls nötig, sinnvoll. 12,5% 5m W G Übung Berechne nun die fehlenden Größen der Tabelle. Runde auf zwei ommastellen. G 7,5m ,5t 99,5cm P 32,5% 33% 120% 62,5% 0,5% W kg cm 45ha Weitere Übungen findest du im Bereich Arithmetik in lasse 6 unter

3 Vermehren und Vermindern von Grundwerten Beisiel- Vermindern eines Grundwertes Ein Handy kostet im Geschäft 300. Beim auf gibt es 12% Rabatt. Wie teuer ist das Handy dann? Es gibt zwei Möglichkeiten der Berechnung. 1. Überlegung: a) Man berechnet 12% von % von 300 = 36 b) Man subtrahiert dem errechneten Betrag von = Überlegung: Man überlegt, dass man dann nur noch 88% des aufreises bezahlen muss. - 12% = 88% Man berechnet 88% von % von 300 = 264 Das Handy kostet noch 264. Beisiel- Vermehren eines Grundwertes Das Urlaubszimmer kostet am Tag 120. Da es in einem urort liegt kommen noch einmal 2% urtaxe dazu. Wie teuer ist das Zimmer ro Tag? 1. Überlegung: a) Man berechnet 2% von % von 120 = 2,40 b) Man addiert den errechneten Betrag zu ,40 = 122,40 2. Überlegung: Man überlegt, dass man dann 102% des ursrünglichen Preises zahlt. + 2% = 102% Man berechnet 102% von 120 = 122,40. Der komlette Preis ro Tag beträgt 122,40. Du solltest auch wissen, dass die Mehrwertsteuer in Deutschland für viele Güter 19% beträgt und zwischen dem Nettoreis ( ohne Mehrwertsteuer ) und dem Bruttoreis ( mit Mehrwertsteuer ) unterschieden wird. Beisiel: Der Verkaufsreis ( Bruttoreis ) einer Hose beträgt 53,55. Wie hoch ist der Nettoreis? Überlegung: 53,55 sind 119% des gesuchten Wertes Geg: W = 53,55 Ges: G G = 53,55 119% P = 119% G = 45 Der Nettoreis ist 45.

4 Übungen- Sachaufgaben (weitere unter Mathematik lasse 6 und lasse 7 ) 1. Ein Grundstück hat eine Größe von 500m 2. Das Haus, welches gebaut werden soll, nimmt 22% des Grundstücks ein. Wie groß ist die bebaute Fläche dann? 2. 60% der Schüler eines Gymnasiums sind Mädchen, das sind 390 Schülerinnen. Wie viele Schüler und Schülerinnen besuchen insgesamt das Gymnasium? von 30 Schüler der lasse 7a haben bei der Wahl des Schülersrechers für Anne gestimmt. Wie viel Prozent der lasse waren das? 4. In die lasse 7b gehen 30 Schüler. 12 Schüler kommen mit der Bahn, 8 Schüler kommen mit dem Rad, 6 Schüler kommen zu Fuß, der Rest wird mit dem Auto gebracht. Stelle in einem reisdiagramm die rozentualen Anteile dar. 5. Die Miete von Herrn Müller von 380 wurde um 10% erhöht. Wie viel muss Herr Müller jetzt zahlen? 6. Das Taschengeld von Sonja wurde von 12 auf 15 erhöht. a) Um wie viel Prozent wurde das Taschengeld erhöht? b) Auf wie viel Prozent wurde das Taschengeld erhöht? 7. Beim Schlussverkauf wird ein Mantel um 35% reduziert. Er kostet jetzt noch 455. Wie hoch war der Preis vorher? 8. Im Preis von 1 Liter Benzin sind 70% Mineralölsteuer enthalten. Herr Meier tankt 55 Liter Benzin für 1,56 je Liter. Wie viel Euro vom Gesamtreis beträgt die Mineralölsteuer? 9. Im Schlussverkauf wurde ein Mantel von 150 erst um 20% reduziert und anschließend in einer zweiten Aktion noch einmal um 12%. Wie hoch ist der Preis nach der zweiten Aktion? 10. Der Preis eines Waschmittels wurde von 14,99 auf 11,99 gesenkt. Um wie viel Prozent sank der Preis? 11. Rabatt und Skonto Herr Müller bekommt für die Renovierung seines Bades einen ostenvorabschlag von 8000 Bruttoreis. Der Anbieter gewährt ihm einen Rabatt von 5% auf den Nettoreis. Sollte er nach Der Renovierung den verbleibenden Betrag innerhalb von 7 Tagen zahlen kann er noch 2% Skonto Vom verbleibenden Betrag ziehen. Wie viel müsste er dann noch bezahlen?

5 Lösungen Berechnung von Prozentwerten G P 40% 61% 85% 110% 62% 300% 75% W , Berechnung von Grundwerten W 50m kg 5t mm 400ha P 2% 40% 200% 35% 75% 18% 450% G 2500m kg 14,29t 2666, mm 88,89ha Berechnung von Prozentsätzen W G % 7,16% 800% % 84,4% 18,75% 20% Übung G 7,5m ,76kg 34,5t 1126,40 99,5cm 9000ha P 32,5% 120,74% 33% 120% 62,5% 42,21% 0,5% W 2,44m kg 41,4t cm 45ha

6 Sachaufgaben m Schüler 3. 73,3% 4. Bahn Rad Zu Fuß Auto 40% % 20% % Bahn Rad zu Fuß Auto a) um 25% b) auf 125% ,56 85,80 Mineralölsteuer: 60, Aktion: Aktion: 105, % 11. Nettoreis: 6722,69 5% Rabatt: 336, ,13 = 7663,87 2% Skonto: 153,28 zu zahlender Betrag: 7510,59

7 Zinsrechnung Begriffe: Zinsen Z entsricht dem Prozentwert W Zinssatz entsricht dem Prozentsatz aital entsricht dem Grundwert G Deshalb lässt sich folgenden Gleichung formulieren: Z Damit lassen sich die Jahreszinsen wie folgt berechnen: Z = Für die Berechnung von Monatszinsen gilt: Für die Berechnung von Tageszinsen gilt: Beisiele: Jahreszinsen Z Z m m- Anzahl der Monate 12 t t- Anzahl der Tage aital von 200 soll für ein Jahr zu einem Zinssatz von 3% angelegt werden. Wie hoch sind die Zinsen nach einem Jahr? Z = 200 3% Z = 6 2. Für einen Anlagebetrag von 5000 wurden nach einem Jahr 55 Zinsen gezahlt. Wie hoch war der Zinssatz? Z = P = 1,1% 3. Bei einem Zinssatz von 2,5% wurden nach einem Jahr 120 Zinsen gezahlt. Wie hoch war das aital? Z = 120 2,5% = 4800

8 Beisiele Monats- und Tageszinsen Ein aital von soll bei einem Zinssatz von 4% a) für 5 Monate, b) für 120 Tage angelegt werden. Berechne die jeweiligen Zinsen. a) % 5 Z b) 12 Z % Z = 166,67 Z = 133,33 ( Rundung nach Rundungsregeln ) Zinsesszinsrechnung Bei der Zinseszinsrechnung werden dem Ausgangskaital am Ende des Jahres die Zinsen dazugerechnet und es entsteht für das nächste Jahr ein verändertes aital. Beisiel: Wie groß ist das aital, das entsteht, wenn man für drei Jahre zu einem Zinssatz von 5% anlegt? % 1. Jahr: Z % 2. Jahr Z % 3. Jahr Z , , ,50 Nach drei Jahren beträt das aital 23152,50.

9 Übungen Berechnung von Tages- Monats- und Jahreszinsen Ergänze folgende Tabelle. Runde, falls nötig. in P 4% 6% 2% 4,5% 3,4% 8,3% 15% 12% Z in Zeit t 1 Jahr 1 Jahr 1 Jahr 7 Monate 65 Tage 1 Jahr 1 Jahr 30 Tage 8 Monate Sachaufgaben 1. Zum Ausbau eines Geschäftes nimmt Herr Müller ein Darlehen von 7500 auf. Nach einem Jahr soll er 607,50 Zinsen zahlen. Zu welchem Zinssatz wurde das Darlehen gewährt? 2. Wie viel Zinsen bringt ein aital von 5600 bei einem Zinssatz von 3,5% in einem Jahr? 3. Welches aital müsste man mit 7,5% verzinsen, um nach einem Jahr 300 Zinsen zu bekommen? 4. Sven sart 560. Auf das onto bekommt er 1,2% Zinsen. Wie viel Geld hat er nach einem Jahr? 5. Wie hoch ist ein redit, wenn bei einer Verzinsung von 5% nach einem Jahr 2250 Zinsen zu zahlen sind? 6. Eine Bank zahlt für ein aital von ,5% Zinsen. Für einen redit in gleicher Höhe verlangt sie 8,4% ro Jahr. Wie groß ist der Gewinn der Bank? 7. Für 1200 bekommt Alex nach einem Jahr 76,80 Zinsen. Wie muss sich der Zinssatz ändern, enn Alex 6 mehr bekommen will? 8. Frau Müller braucht für den auf einer üche Die Hälfte hat sie gesart. Für die andere Hälfte nimmt sie einen redit für 6 Monate zu einem Zinssatz von 5,5%. Wie viel Geld muss sie nach einem halbe Jahr zurück zahlen? 9. Sabine hat ein onto bei einer Bank und 450 eingezahlt. Welchen Zinssatz bekommt sie, wenn sie nach einem Jahr 466,65 zurück bekommt? 10. Ein aital von soll bei einer Bank für 3 Jahre angelegt werden. Die Bank bietet 2 Varianten an: a) Verzinsung desselben Grundkaitals für 3 Jahre bei einem Zinssatz von 8%( kein Zinseszins), b) Verzinsung mit Zinseszins und steigenden Zinssätzen: 1. Jahr 7,5%, 2. Jahr 8%, 3. Jahr 8,5%. Welches Angebot sollte angenommen werden? Weitere Übungen unter

10 Lösungen Zinsrechnung in , , P 4% 6% 2% 2% 4,5% 3,4% 8,3% 15% 12% Z in ,17 65, Zeit t 1 Jahr 1 Jahr 1 Jahr 7 Monate 65 Tage 1 Jahr 1 Jahr 30 Tage 8 Monate Sachaufgaben- Antwortsätze nicht vergessen 1. 8,1% Z = 6,72 = 566, Z 1 = 1350 Z 2 = 2520 Gewinn: = 6,9% ,7% 10. Angebot a: = Angebot b: = 62984,25 Angebot b sollt angenommen werden.

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung In der Prozentrechnung kommen drei Größen vor: Grundwert G Prozentsatz p Prozentwert W p W Aus der Grundgleichung der Prozentrechnung

Mehr

Wochenplanarbeit Name:... % % Prozentrechnen % %

Wochenplanarbeit Name:... % % Prozentrechnen % % Inhaltsverzeichnis 1. Darstellung von Prozentwerten... 2 2. Veranschaulichen von Prozentwerten... 3 3. Prozent - / Bruch - / Dezimalschreibweise... 4 4. Grundaufgaben der Prozentrechnung... 4 5. Kreisdiagramme...

Mehr

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz R. Brinkmann http://brinkmann-du.de Seite 1 18.01.2008 Musterbeispiele zur Prozentrechnung p W W W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz Beispiele Prozentrechnung: 1.

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Prozent- und Promillerechnung

Prozent- und Promillerechnung Prozent- und Promillerechnung 1.) Ein PC kostet im Großhandel 850. Dazu kommen 19% Mehrwertsteuer. Wie viel Euro beträgt die Mehrwertsteuer? 2.) Auf einer anderen Rechnung für ein Gerät ist eine Mehrwertsteuer

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

1. Kopfrechnen. 10. 467 178 = 11. 9 = 12. 19 f 13 = 13.

1. Kopfrechnen. 10. 467 178 = 11. 9 = 12. 19 f 13 = 13. Aufgaben Im Folgenden haben wir verschiedene Aufgabentypen zusammengestellt, an denen Sie sich ausprobieren können. Bedenken Sie: Die Bearbeitungszeit ist immer äußerst knapp gehalten. 1. Kopfrechnen A.

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen DOWNLOAD Günther Koch Freiarbeit: Prozent- und Zinsrechnen Materialien für die 9. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Rentenrechnung und Annuitätentilgung

Rentenrechnung und Annuitätentilgung Rentenrechnung und Annuitätentilgung Wiederholung: Zinseszinsen Es soll ein Kaital K0) von 0 e zu einem jährlichen Zinssatz a ) von 3,5 % angelegt werden Nach einem Jahr kommen zu den 0 e also Zinsen von

Mehr

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ =LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten

Mehr

6 Anwendungen im Mathematikunterricht der Sekundarstufe I Prozent- und Zinsrechnung

6 Anwendungen im Mathematikunterricht der Sekundarstufe I Prozent- und Zinsrechnung Pädagogische Hochschule Heidelberg Sommersemester 2008 Fakultät III, Fach Mathematik A. Filler Zusammenfassende Notizen zur Vorlesung Mathematik-Didaktik 5-10, Teil 6 6 Anwendungen im Mathematikunterricht

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

Inhalt. Stichwortverzeichnis 125

Inhalt. Stichwortverzeichnis 125 5 Inhalt Vorwort 6 Dreisatz 7 Währungsrechnen 11 Durchschnitts- und Verteilungsrechnen 16 Prozentrechnen 19 Zinsrechnen 25 Effektivzins 36 Aktien kaufen und verkaufen, Rendite 45 Anleihen 54 Diskontierung

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Aufgaben zum Zinsrechnen, Nr. 1

Aufgaben zum Zinsrechnen, Nr. 1 Aufgaben zum Zinsrechnen, Nr. 1 1.) Berechnen Sie die jährlichen Zinsen! a) 42 T zu 9 % d) 36 T zu 6¾ % b) 30 T zu 7½ % e) 84 T zu 9¼ % c) 12 T zu 7¼ % f) 24 T zu 9¼ % 2.) Berechnen Sie Z! a) 2.540 zu

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

8. PROZENTRECHNUNG, ZINSENRECHNUNG

8. PROZENTRECHNUNG, ZINSENRECHNUNG 8. PROZENTRECHNUNG, ZINSENRECHNUNG 8.1. Prozentrechnung (a) Definition In fast allen Bereichen des Lebens sind Angaben in Prozenten oder Promillen weit verbreitet; so z.b. 20% USt., 3% Skonto bei Barzahlung,

Mehr

1. Dreisatz (Buch Seite 33-39)

1. Dreisatz (Buch Seite 33-39) 1. Dreisatz (Buch Seite 33-39) Aufgabe 1 direkte Proortionalität 1 Behälter X Behälter 4000 Portionen 170 Portionen 4000 Portionen 1 Behälter X Behälter 4000 Portionen 170 Portionen 1 X 4000 23,5 170 Also

Mehr

1 Zahl und Zahlbereiche

1 Zahl und Zahlbereiche 1 Zahl und Zahlbereiche 1.2 Prozent- und Zinsrechnung Informationen und Tests Teste dich! Teste dich! Prozent- und Zinsrechnung Arbeitsblätter in zwei Niveaustufen Lernscheibe Bruchprozent Prozentschreibweise

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

DOWNLOAD. Lernbausteine: Einführung in die Zinsrechnung. 7 Lernbausteine zum Thema Zinsrechnung. Eva Brandenbusch

DOWNLOAD. Lernbausteine: Einführung in die Zinsrechnung. 7 Lernbausteine zum Thema Zinsrechnung. Eva Brandenbusch DOWNLOAD Eva Brandenbusch Lernbausteine: Einführung in die Zinsrechnung 7 Lernbausteine zum Thema Zinsrechnung Eva Brandenbusch Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: 7. 10.

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

DOWNLOAD. Lernbausteine: Zinsrechnung unterjährig. 11 Lernbausteine zum Thema unterjährige Zinsrechnung. Eva Brandenbusch

DOWNLOAD. Lernbausteine: Zinsrechnung unterjährig. 11 Lernbausteine zum Thema unterjährige Zinsrechnung. Eva Brandenbusch DOWNLOAD Eva Brandenbusch Lernbausteine: Zinsrechnung unterjährig 11 Lernbausteine zum Thema unterjährige Zinsrechnung Eva Brandenbusch Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel:

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Dreisatz 5 Einfacher Dreisatz 5 Zusammengesetzter Dreisatz 7. Währungsrechnen 9 Umrechnung von Wechselkursen 9 Devisenbörsen und Devisenkurse 11

Dreisatz 5 Einfacher Dreisatz 5 Zusammengesetzter Dreisatz 7. Währungsrechnen 9 Umrechnung von Wechselkursen 9 Devisenbörsen und Devisenkurse 11 2 Inhalt Dreisatz 5 Einfacher Dreisatz 5 Zusammengesetzter Dreisatz 7 Währungsrechnen 9 Umrechnung von Wechselkursen 9 Devisenbörsen und Devisenkurse 11 Durchschnitts- und Verteilungsrechnen 15 Durchschnittsrechnung

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Übungsaufgaben Prozentrechnung und / oder Dreisatz

Übungsaufgaben Prozentrechnung und / oder Dreisatz Übungsaufgaben Prozentrechnung und / oder Dreisatz 1. Bei der Wahl des Universitätssprechers wurden 800 gültige Stimmen abgegeben. Die Stimmen verteilten sich so auf die drei Kandidat/innen: A bekam 300,

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

3 Prozent- und Zinsrechnen

3 Prozent- und Zinsrechnen 3 Prozent- und Zinsrechnen Übersicht 1 Prozentrechnen Thema: Diagramme am PC 2 Vermehrter und verminderter Grundwert Thema: Was bleibt vom Lohn? 3 Zinsrechnen Thema: Ratenkredit Üben Wiederholen Test Aufbau

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H Der Auto-Report Prozent Rechnen Autozählen Verbrauch - Abschreibung 1. Thematik: Autozählung auf der Autobahn Der Staatsrat gibt im Auftrag der Umweltkommission eine Autozählung in Auftrag. Das Ziel dieser

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung 1 Zentrische Streckung Bauzeichnungen 8 vergrößern und verkleinern einfache nutzen Geometriesoftware zum Erkunden Maßstäbliches Vergrößern und Verkleinern 10 Figuren maßstabsgetreu inner- und außer- Ähnliche

Mehr

Musteraufgaben Jahrgang 10 Realschule

Musteraufgaben Jahrgang 10 Realschule Mathematik Musteraufgaben für Jahrgang 0 (Realschule) 4 Musteraufgaben Jahrgang 0 Realschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des Faches

Mehr

Finanzmathematik mit Excel 1

Finanzmathematik mit Excel 1 Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Einblicke Mathematik 5 Stoffverteilungsplan Zeitraum Woche Leitidee Kompetenzstandards Schülerinnen und Schüler können...

Einblicke Mathematik 5 Stoffverteilungsplan Zeitraum Woche Leitidee Kompetenzstandards Schülerinnen und Schüler können... 1 logische Schlüsse ziehen, den mathematischen Gehalt von Texten analysieren, mathematisches Wissen sinnvoll nutzen; räumliches Vorstellungsvermögen üben; Startrunde, Basiswissen Training Startrunde Aufgaben

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einsatz von IT - Übungsbuch Informatik 2: 9. bis 12.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einsatz von IT - Übungsbuch Informatik 2: 9. bis 12. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Einsatz von IT - Übungsbuch Informatik 2: 9. bis 12. Klasse Das komplette Material finden Sie hier: Download bei School-Scout.de Liebe

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Verfasser: Dipl.-Hdl. Willi Richard Studiendirektor Dipl.-Betriebswirt Hans Werner

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

Beschreibung der einzelnen Berechnungsarten

Beschreibung der einzelnen Berechnungsarten Beschreibung der einzelnen Berechnungsarten 1.0 Historische Wertentwicklungen 1.1 Berechnung einer Einzelanlage in Prozent Die Berechnung der Wertentwicklung erfolgt nach den Vorgaben des BVI: Die Berechnung

Mehr

Ü b u n g s b l a t t 2

Ü b u n g s b l a t t 2 Mathe B für Wirtschaftswissenschaftler Sommersemester 01 Walter Oevel 4. 4. 001 Ü b u n g s b l a t t Wir bieten an, bearbeitete Aufgaben zu korrigieren, falls sie zum unten angegebenen Zeitunkt abgeliefert

Mehr

Zinssätze. Elisabeth Köhl. 14. Jänner 2009. Technische Universität Graz

Zinssätze. Elisabeth Köhl. 14. Jänner 2009. Technische Universität Graz Technische Universität Graz 14. Jänner 2009 Inhalt der Präsentation: 1 Allgemeines 1 Zinsen und Zinsesrechnung 2 Zinssatz 1 Effektiver Zinssatz 2 Nomineller Zinssatz 2 Verschiedene 1 Schatzzins 2 LIBOR/EURIBOR

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

Einführung in die Betriebswirtschaftslehre

Einführung in die Betriebswirtschaftslehre Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -

Mehr

Das Privatkonto. Buchungssatz: 3000 EK an 3001 P

Das Privatkonto. Buchungssatz: 3000 EK an 3001 P Das Privatkonto Zwischen dem Privatvermögen und dem Betriebsvermögen eines Einzelunternehmens muss klar getrennt werden. Dies geschieht buchungstechnisch mit dem Konto 3001 Privat. Das Konto 3001 Privat

Mehr

6.3 Zusammengesetzter Dreisatz

6.3 Zusammengesetzter Dreisatz 6.3 Zusammengesetzter Dreisatz Beispiel: In 15 Stunden können 4 Arbeitskräfte 900 Geschenkpackungen Pralinen herrichten. Für einen Großauftrag werden 1 260 Geschenkpackungen benötigt, außerdem fällt eine

Mehr

Hischer Tiedtke Warncke Kaufmännisches Rechnen

Hischer Tiedtke Warncke Kaufmännisches Rechnen Hischer Tiedtke Warncke Kaufmännisches Rechnen Johannes Hischer Jürgen Tiedtke Horst Warncke Kaufmännisches Rechnen Die wichtigsten Rechenarten Schritt für Schritt Mit integriertem Lösungsbuch 3., überarbeitete

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Walter Klinger (BG/BRG Stockerau) 1998 Themenbereich Zinseszinsrechnung und Ratenrückzahlung

Mehr

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive 1 Wofür würdest du eigentlich sparen? Endlich 16 Jahre alt! Die Geburtstagsfeier war super, alle waren da. Und Nele hat tolle Geschenke bekommen. Das Beste kam allerdings zum Schluss, als die Großeltern

Mehr

Die wahre Steuerbelastung!

Die wahre Steuerbelastung! Von Anonymus (Österreich) Jan 2010 Die wahre Steuerbelastung! Ich bin selbst Unternehmer und höre von meinen Kunden immer wieder, warum denn diese Dinge alle so viel kosten Warum ich denn für eine Arbeitsstunde

Mehr

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1.

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1. Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 44 ff. In Kraft getreten am 1. September 2000 6 Kredite (1) Bei Krediten sind als Preis die Gesamtkosten als jährlicher

Mehr

Klaus Huber: Arbeitshilfen für Schule und Seminar. Klaus Huber Bruch-, Prozent-, Zinsrechnen MATHE

Klaus Huber: Arbeitshilfen für Schule und Seminar. Klaus Huber Bruch-, Prozent-, Zinsrechnen MATHE Klaus Huber Bruch-, Prozent-, Zinsrechnen MATHE - Klaus Huber Inhalt MATHE 01 Was steht im Lehrplan? 02 Brüche - was ist das? - Sequenzkarte 03 Mit Brüchen rechnen 04 Mit Dezimalbrüchen rechnen 05 Fehler

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Finanzmathematik I: Zins- und Zinseszinsrechnung

Finanzmathematik I: Zins- und Zinseszinsrechnung Dr. habil. Burkhard Utecht Berufsakademie Thüringen Staatliche Studienakademie Studienabteilung Eisenach Studienbereich Wirtschaft Wirtschaftsmathematik Wintersemester 2004/05 Finanzmathematik I: Zins-

Mehr

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet.

Bei der Ermittlung der Zinstage wird der erste Tag nicht, der letzte Tag aber voll mitgerechnet. Zinsrechnung Sofern nicht ausdrücklich erwähnt, werden die Zinsen nach der deutschen Zinsmethode berechnet. Bei der deutschen Zinsmethode wird das Zinsjahr mit 360 Tagen und der Monat mit 30 Tagen gerechnet:

Mehr

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Finanzmathematik (TM/SRM/SM) Tutorium Finanzmathematik Teil 1 1 Zinseszinsrechnung Bei den Aufgaben dieses

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten?

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten? Finanzmathematik Dreisatz Prozentrechnung Zinseszins Der Reichtum gleicht dem Seewasser, je mehr man davon trinkt, desto durstiger wird man. Arthur Schopenhauer 1. Aus einem Wasserhahn fließen in einer

Mehr

Die Systematik der privaten, kapitalgedeckten Rentenversicherungen

Die Systematik der privaten, kapitalgedeckten Rentenversicherungen Die Systematik der privaten, kapitalgedeckten Rentenversicherungen Die Frage, wie diese Versicherungen funktionieren ist nicht einfach zu beantworten, weil es viele Unsicherheiten gibt und vieles undurchsichtig

Mehr

Ferienintensivkurse. Realschule. Programm für das Schuljahr 2012/2013

Ferienintensivkurse. Realschule. Programm für das Schuljahr 2012/2013 Ferienintensivkurse Realschule Programm für das Schuljahr 2012/2013 Akademie für Innovative Bildung und Geschäftsführerin Vorsitzender des Bankverbindung Management Heilbronn-Franken Tatjana Linke Verwaltungsrats

Mehr

Aufgaben. Belegorganisation 19.07.2014

Aufgaben. Belegorganisation 19.07.2014 19.07.2014 1 1. Aufgabe (20 Punkte) a) Kontiere den Rechnungsbeleg der Vita Couch OHG. b) Am 26 August 2014 wird die Rechnung durch Banküberweisung bezahlt, 1. ermittle den Zahlungsbetrag. 2. wie hoch

Mehr

Stationenbetrieb Rechnungswesen. Umsatzsteuer. (Infoblatt)

Stationenbetrieb Rechnungswesen. Umsatzsteuer. (Infoblatt) (Infoblatt) Alle Unternehmer sind gesetzlich verpflichtet, ihren Umsatz zu versteuern. (Ein Unternehmer macht immer dann Umsatz, wenn er Waren oder Dienstleistungen verkauft.) Zu bezahlen ist die so genannte.

Mehr

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu.

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu. Kosten für ein Girokonto vergleichen 1. Was passt? Ordnen Sie zu. a. die Buchung, -en b. die Auszahlung, -en c. der Dauerauftrag, - e d. die Überweisung, -en e. die Filiale, -n f. der Kontoauszug, - e

Mehr

Finanzierung Kapitel 4: Der Zeitwert des Geldes

Finanzierung Kapitel 4: Der Zeitwert des Geldes Kapitel 4: Der Zeitwert des Geldes von Sommersemester 2010 Grundlegendes zur Investitionstheorie Jedes Investitionsprojekt kann abstrakt als eine zeitliche Verteilung von Cash-Flows betrachtet werden.

Mehr

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen!

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! 1. Teil Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! Teil 1 Kurzform Kreuze die richtigen Lösungen an bzw. schreibe dein Ergebnis in den Antwortbereich. Für Nebenrechnungen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Dr. M. Zimmermann. Rechnen für die Bürolehre Schlüssel

Dr. M. Zimmermann. Rechnen für die Bürolehre Schlüssel Dr. M. Zimmermann Rechnen für die Bürolehre Schlüssel Liebe Lehrerinnen Liebe Lehrer Wenn man als Verleger seiner Verantwortung gerecht werden will, kommt man nicht darum herum, auch Bücher herauszugeben,

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Dokumentation Themenwochen Geld Schuljahr 11/12 Unterstufe

Dokumentation Themenwochen Geld Schuljahr 11/12 Unterstufe Dokumentation Themenwochen Geld Schuljahr 11/12 Unterstufe Übergeordnetes Thema: Geld Klasse: Planung / Material bei: Thema: Wir lernen die Euro-Münzen und Scheine kennen 2 Sabine Thomas Thema: Wir kaufen

Mehr

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe M 7 Zahlenrechnen Probeunterricht 2013 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 8: Arbeitszeit Teil II (Textrechnen) Seiten 9 bis 13:

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr