Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : % 4,50

Größe: px
Ab Seite anzeigen:

Download "Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50"

Transkript

1 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15% von 30? W = 30 15% oder Dreisatz 30 : 100 W = 4,50 1% % 4,50 Übung Berechne die fehlenden Prozentwerte G P 40% 61% 85% 110% 62% 300% 75% W 2. Berechnung von Grundwerten G = W Bs. 15% vom Grundwert sind 12. Wie groß ist der Grundwert? 12 G = 15% oder Dreisatz 15% 12,00 :15 G= 80 1% ,00

2 Übung Berechne die fehlenden Grundwerte. Runde, wenn nötig, sinnvoll. W 50m kg 5t mm 400ha P 2% 40% 200% 35% 75% 18% 450% G 3. Berechnung von Prozentsätzen P= W G Bs. Wie viel Prozent sind 5m von 40m? P = 5m 40m oder Dreisatz 40m :100 P = 12,5% 1% 0,4m 12,5 Berechne die fehlenden Prozentsätze. Runde, falls nötig, sinnvoll. 12,5% 5m W G Übung Berechne nun die fehlenden Größen der Tabelle. Runde auf zwei ommastellen. G 7,5m ,5t 99,5cm P 32,5% 33% 120% 62,5% 0,5% W kg cm 45ha Weitere Übungen findest du im Bereich Arithmetik in lasse 6 unter

3 Vermehren und Vermindern von Grundwerten Beisiel- Vermindern eines Grundwertes Ein Handy kostet im Geschäft 300. Beim auf gibt es 12% Rabatt. Wie teuer ist das Handy dann? Es gibt zwei Möglichkeiten der Berechnung. 1. Überlegung: a) Man berechnet 12% von % von 300 = 36 b) Man subtrahiert dem errechneten Betrag von = Überlegung: Man überlegt, dass man dann nur noch 88% des aufreises bezahlen muss. - 12% = 88% Man berechnet 88% von % von 300 = 264 Das Handy kostet noch 264. Beisiel- Vermehren eines Grundwertes Das Urlaubszimmer kostet am Tag 120. Da es in einem urort liegt kommen noch einmal 2% urtaxe dazu. Wie teuer ist das Zimmer ro Tag? 1. Überlegung: a) Man berechnet 2% von % von 120 = 2,40 b) Man addiert den errechneten Betrag zu ,40 = 122,40 2. Überlegung: Man überlegt, dass man dann 102% des ursrünglichen Preises zahlt. + 2% = 102% Man berechnet 102% von 120 = 122,40. Der komlette Preis ro Tag beträgt 122,40. Du solltest auch wissen, dass die Mehrwertsteuer in Deutschland für viele Güter 19% beträgt und zwischen dem Nettoreis ( ohne Mehrwertsteuer ) und dem Bruttoreis ( mit Mehrwertsteuer ) unterschieden wird. Beisiel: Der Verkaufsreis ( Bruttoreis ) einer Hose beträgt 53,55. Wie hoch ist der Nettoreis? Überlegung: 53,55 sind 119% des gesuchten Wertes Geg: W = 53,55 Ges: G G = 53,55 119% P = 119% G = 45 Der Nettoreis ist 45.

4 Übungen- Sachaufgaben (weitere unter Mathematik lasse 6 und lasse 7 ) 1. Ein Grundstück hat eine Größe von 500m 2. Das Haus, welches gebaut werden soll, nimmt 22% des Grundstücks ein. Wie groß ist die bebaute Fläche dann? 2. 60% der Schüler eines Gymnasiums sind Mädchen, das sind 390 Schülerinnen. Wie viele Schüler und Schülerinnen besuchen insgesamt das Gymnasium? von 30 Schüler der lasse 7a haben bei der Wahl des Schülersrechers für Anne gestimmt. Wie viel Prozent der lasse waren das? 4. In die lasse 7b gehen 30 Schüler. 12 Schüler kommen mit der Bahn, 8 Schüler kommen mit dem Rad, 6 Schüler kommen zu Fuß, der Rest wird mit dem Auto gebracht. Stelle in einem reisdiagramm die rozentualen Anteile dar. 5. Die Miete von Herrn Müller von 380 wurde um 10% erhöht. Wie viel muss Herr Müller jetzt zahlen? 6. Das Taschengeld von Sonja wurde von 12 auf 15 erhöht. a) Um wie viel Prozent wurde das Taschengeld erhöht? b) Auf wie viel Prozent wurde das Taschengeld erhöht? 7. Beim Schlussverkauf wird ein Mantel um 35% reduziert. Er kostet jetzt noch 455. Wie hoch war der Preis vorher? 8. Im Preis von 1 Liter Benzin sind 70% Mineralölsteuer enthalten. Herr Meier tankt 55 Liter Benzin für 1,56 je Liter. Wie viel Euro vom Gesamtreis beträgt die Mineralölsteuer? 9. Im Schlussverkauf wurde ein Mantel von 150 erst um 20% reduziert und anschließend in einer zweiten Aktion noch einmal um 12%. Wie hoch ist der Preis nach der zweiten Aktion? 10. Der Preis eines Waschmittels wurde von 14,99 auf 11,99 gesenkt. Um wie viel Prozent sank der Preis? 11. Rabatt und Skonto Herr Müller bekommt für die Renovierung seines Bades einen ostenvorabschlag von 8000 Bruttoreis. Der Anbieter gewährt ihm einen Rabatt von 5% auf den Nettoreis. Sollte er nach Der Renovierung den verbleibenden Betrag innerhalb von 7 Tagen zahlen kann er noch 2% Skonto Vom verbleibenden Betrag ziehen. Wie viel müsste er dann noch bezahlen?

5 Lösungen Berechnung von Prozentwerten G P 40% 61% 85% 110% 62% 300% 75% W , Berechnung von Grundwerten W 50m kg 5t mm 400ha P 2% 40% 200% 35% 75% 18% 450% G 2500m kg 14,29t 2666, mm 88,89ha Berechnung von Prozentsätzen W G % 7,16% 800% % 84,4% 18,75% 20% Übung G 7,5m ,76kg 34,5t 1126,40 99,5cm 9000ha P 32,5% 120,74% 33% 120% 62,5% 42,21% 0,5% W 2,44m kg 41,4t cm 45ha

6 Sachaufgaben m Schüler 3. 73,3% 4. Bahn Rad Zu Fuß Auto 40% % 20% % Bahn Rad zu Fuß Auto a) um 25% b) auf 125% ,56 85,80 Mineralölsteuer: 60, Aktion: Aktion: 105, % 11. Nettoreis: 6722,69 5% Rabatt: 336, ,13 = 7663,87 2% Skonto: 153,28 zu zahlender Betrag: 7510,59

7 Zinsrechnung Begriffe: Zinsen Z entsricht dem Prozentwert W Zinssatz entsricht dem Prozentsatz aital entsricht dem Grundwert G Deshalb lässt sich folgenden Gleichung formulieren: Z Damit lassen sich die Jahreszinsen wie folgt berechnen: Z = Für die Berechnung von Monatszinsen gilt: Für die Berechnung von Tageszinsen gilt: Beisiele: Jahreszinsen Z Z m m- Anzahl der Monate 12 t t- Anzahl der Tage aital von 200 soll für ein Jahr zu einem Zinssatz von 3% angelegt werden. Wie hoch sind die Zinsen nach einem Jahr? Z = 200 3% Z = 6 2. Für einen Anlagebetrag von 5000 wurden nach einem Jahr 55 Zinsen gezahlt. Wie hoch war der Zinssatz? Z = P = 1,1% 3. Bei einem Zinssatz von 2,5% wurden nach einem Jahr 120 Zinsen gezahlt. Wie hoch war das aital? Z = 120 2,5% = 4800

8 Beisiele Monats- und Tageszinsen Ein aital von soll bei einem Zinssatz von 4% a) für 5 Monate, b) für 120 Tage angelegt werden. Berechne die jeweiligen Zinsen. a) % 5 Z b) 12 Z % Z = 166,67 Z = 133,33 ( Rundung nach Rundungsregeln ) Zinsesszinsrechnung Bei der Zinseszinsrechnung werden dem Ausgangskaital am Ende des Jahres die Zinsen dazugerechnet und es entsteht für das nächste Jahr ein verändertes aital. Beisiel: Wie groß ist das aital, das entsteht, wenn man für drei Jahre zu einem Zinssatz von 5% anlegt? % 1. Jahr: Z % 2. Jahr Z % 3. Jahr Z , , ,50 Nach drei Jahren beträt das aital 23152,50.

9 Übungen Berechnung von Tages- Monats- und Jahreszinsen Ergänze folgende Tabelle. Runde, falls nötig. in P 4% 6% 2% 4,5% 3,4% 8,3% 15% 12% Z in Zeit t 1 Jahr 1 Jahr 1 Jahr 7 Monate 65 Tage 1 Jahr 1 Jahr 30 Tage 8 Monate Sachaufgaben 1. Zum Ausbau eines Geschäftes nimmt Herr Müller ein Darlehen von 7500 auf. Nach einem Jahr soll er 607,50 Zinsen zahlen. Zu welchem Zinssatz wurde das Darlehen gewährt? 2. Wie viel Zinsen bringt ein aital von 5600 bei einem Zinssatz von 3,5% in einem Jahr? 3. Welches aital müsste man mit 7,5% verzinsen, um nach einem Jahr 300 Zinsen zu bekommen? 4. Sven sart 560. Auf das onto bekommt er 1,2% Zinsen. Wie viel Geld hat er nach einem Jahr? 5. Wie hoch ist ein redit, wenn bei einer Verzinsung von 5% nach einem Jahr 2250 Zinsen zu zahlen sind? 6. Eine Bank zahlt für ein aital von ,5% Zinsen. Für einen redit in gleicher Höhe verlangt sie 8,4% ro Jahr. Wie groß ist der Gewinn der Bank? 7. Für 1200 bekommt Alex nach einem Jahr 76,80 Zinsen. Wie muss sich der Zinssatz ändern, enn Alex 6 mehr bekommen will? 8. Frau Müller braucht für den auf einer üche Die Hälfte hat sie gesart. Für die andere Hälfte nimmt sie einen redit für 6 Monate zu einem Zinssatz von 5,5%. Wie viel Geld muss sie nach einem halbe Jahr zurück zahlen? 9. Sabine hat ein onto bei einer Bank und 450 eingezahlt. Welchen Zinssatz bekommt sie, wenn sie nach einem Jahr 466,65 zurück bekommt? 10. Ein aital von soll bei einer Bank für 3 Jahre angelegt werden. Die Bank bietet 2 Varianten an: a) Verzinsung desselben Grundkaitals für 3 Jahre bei einem Zinssatz von 8%( kein Zinseszins), b) Verzinsung mit Zinseszins und steigenden Zinssätzen: 1. Jahr 7,5%, 2. Jahr 8%, 3. Jahr 8,5%. Welches Angebot sollte angenommen werden? Weitere Übungen unter

10 Lösungen Zinsrechnung in , , P 4% 6% 2% 2% 4,5% 3,4% 8,3% 15% 12% Z in ,17 65, Zeit t 1 Jahr 1 Jahr 1 Jahr 7 Monate 65 Tage 1 Jahr 1 Jahr 30 Tage 8 Monate Sachaufgaben- Antwortsätze nicht vergessen 1. 8,1% Z = 6,72 = 566, Z 1 = 1350 Z 2 = 2520 Gewinn: = 6,9% ,7% 10. Angebot a: = Angebot b: = 62984,25 Angebot b sollt angenommen werden.

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600. Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28.

Demo: Mathe-CD. Prozentrechnung Zinsrechnung. Aufgabensammlung zum Üben- und Wiederholen. Datei Nr. 10570. Friedrich Buckel. Stand 28. Mathematik für Klasse 7 Prozentrechnung Zinsrechnung Aufgabensammlung zum Üben- und Wiederholen Datei Nr. 10570 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Teil 1 17 Übungsaufgaben

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Wochenplanarbeit Name:... % % Prozentrechnen % %

Wochenplanarbeit Name:... % % Prozentrechnen % % Inhaltsverzeichnis 1. Darstellung von Prozentwerten... 2 2. Veranschaulichen von Prozentwerten... 3 3. Prozent - / Bruch - / Dezimalschreibweise... 4 4. Grundaufgaben der Prozentrechnung... 4 5. Kreisdiagramme...

Mehr

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des Anteile als Darstellung von n Berechnung des Prozentsatzes Berechnung des Rabatt und Mehrwertsteuer Prozentwertes Berechnung des Grundwertes 8 Zinsen mehr als Jahr K K (+ Das magisches Dreieck decke die

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit 30 % 25 % 37 % Universität Regensburg 4. Prozent-, Promille- und Zinsrechnung 4.1. Grundbegriffe der Prozentrechnung Die Prozent, Promille- und Zinsrechnung ist ein Teil der Bruchrechnung mit dem vorgegebenen

Mehr

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:

Mehr

Wir wiederholen für die Mathematikprüfung

Wir wiederholen für die Mathematikprüfung Wir wiederholen für die Mathematikprüfung A. Kopfrechnen: 4 7 = 7 2 + 4 = 6 + 9 5 = 5 000 200 = 200 4 = 7 7 + 6 = 3 500 2= 2 500 3 = 6 000 4 = 35 000 : 5 = 72 : 9 = 43 + 28 = 42 000 : 6 = 7,2 + 2,6 = 360

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Zinsrechnung 2 mittel 1

Zinsrechnung 2 mittel 1 Zinsrechnung 2 mittel 1 Berechne jeweils das Kapital! a) Zinsen: 42 Zinssatz: 1,5 % Zeitraum: 8 Monate b) Zinsen: 687,50 Zinssatz: 2,5 % Zeitraum: 11 Monate H2 Zinsrechnung 2 mittel 2 Berechne jeweils

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz

Musterbeispiele zur Prozentrechnung. W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz R. Brinkmann http://brinkmann-du.de Seite 1 18.01.2008 Musterbeispiele zur Prozentrechnung p W W W = G p = 100 G = 100 100 G p G = Grundwert W = Prozentwert p = Prozentsatz Beispiele Prozentrechnung: 1.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 15.02.2013 SEK I Lösungen zur Prozentrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Prozenten I Prozentrechenaufgaben zur Vorbereitung

Mehr

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung In der Prozentrechnung kommen drei Größen vor: Grundwert G Prozentsatz p Prozentwert W p W Aus der Grundgleichung der Prozentrechnung

Mehr

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27 Prozentrechnung I Anteile - Berechnung des Prozentsatzes In der Klasse 8a mit 30 Schülern sind 12 Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse 12 6 2 beträgt also = =. 30 15 5 Um die Größe

Mehr

Prozent- und Promillerechnung

Prozent- und Promillerechnung Prozent- und Promillerechnung 1.) Ein PC kostet im Großhandel 850. Dazu kommen 19% Mehrwertsteuer. Wie viel Euro beträgt die Mehrwertsteuer? 2.) Auf einer anderen Rechnung für ein Gerät ist eine Mehrwertsteuer

Mehr

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%.

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen zur Prozent und Zinsrechnung I se: E1 E E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E13 E14 E15 Nach 9 Monaten und 10 Tagen belaufen sich die anfallenden

Mehr

2 Terme 2.1 Einführung

2 Terme 2.1 Einführung 2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.

Mehr

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat.

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat. 0.2.2003 Klassenarbeit 2 Klasse 7k Mathematik Lösung Teil Öffne die Datei Aufgabe und 2 auf deiner CD. Dort findest du diese beiden Texte, allerdings sind dort die richtigen Werte eingesetzt und nicht

Mehr

Prozent (pro cento) - ganz einfach

Prozent (pro cento) - ganz einfach Prozent (pro cento) - ganz einfach p p% 100 Übungen: 7% 12,5% 25% 100% 7 100 0,07 12,5 125 100 1000 25 1 0,25 100 4 100 1 100 0,125 p% ist nur eine andere Schreibweise für p 100 oder p:100 Übung zu Prozentzahlen:

Mehr

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8%

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8% Prozentrechnung Lösungen 1. Schreibe als Prozent. 4 5 21 88 b) c) d) = % = % = 4% = 5% = 21% = 88% 2. Schreibe als Prozent. 4 b) 50 c) 10 d) 450 85 540 200 700 400 00 500 00 = 2% = 80% = 40% = 50% = 17%

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Mathematik Orientierungsarbeiten Grundrechenarten, schriftliche Rechenverfahren

Mathematik Orientierungsarbeiten Grundrechenarten, schriftliche Rechenverfahren Leistungsfeststellungen 8. Klasse 006 Name: Datum: Mathematik Orientierungsarbeiten Grundrechenarten, schriftliche Rechenverfahren Es darf nicht mit Taschenrechner gearbeitet werden! Punkte ) a. 6 b. 90

Mehr

Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule

Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule Naturwissenschaft Lisa Müller Prozent- und Zinsrechnung. Mathematik 8. Klasse Realschule Unterrichtsentwurf Lerngruppe: 8a Fach: Mathematik Unterrichtsentwurf Thema der Unterrichtseinheit: Prozent- und

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40 % ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Mathematik. Erich und Hildegard Bulitta. Nachhilfe Mathematik. Teil 5: Zins- und Promillerechnen Gesamtband (Band 1 + 2) Übungsheft

Mathematik. Erich und Hildegard Bulitta. Nachhilfe Mathematik. Teil 5: Zins- und Promillerechnen Gesamtband (Band 1 + 2) Übungsheft Mathematik Erich und Hildegard Bulitta Nachhilfe Mathematik Teil 5: Zins- und Promillerechnen (Band 1 + 2) Übungsheft Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

Rentenrechnung und Annuitätentilgung

Rentenrechnung und Annuitätentilgung Rentenrechnung und Annuitätentilgung Wiederholung: Zinseszinsen Es soll ein Kaital K0) von 0 e zu einem jährlichen Zinssatz a ) von 3,5 % angelegt werden Nach einem Jahr kommen zu den 0 e also Zinsen von

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"

.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ =LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten

Mehr

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2008 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten

Mehr

Übungsblatt Proportionale Zuordnungen (Einführung) Klasse 7

Übungsblatt Proportionale Zuordnungen (Einführung) Klasse 7 Übungsblatt Proportionale Zuordnungen (Einführung) Klasse 7 Jan möchte Computerkabel kaufen. Er sieht weit und breit keinen Verkäufer. Nur folgendes Diagramm gibt angeblich Auskunft über die Preise bei

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

Zinsrechnung % leicht 1

Zinsrechnung % leicht 1 Zinsrechnung % leicht 1 Berechne den Zinssatz im Kopf! a) b) c) d) Kapital: 1 000 Kapital: 500 Kapital: 20 000 Kapital: 5 000 Zinsen: 20 a) p = 2 % b) p = Zinsen: 1 % 5 c) p = 4 % d) p = Zinsen: 3 % 800

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten.

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten. Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 1 40% (a) Benenne die Folgenden Zeichen: /5 G: Grundwert 1 G neu : neuer 1 W: Prozentwert 1 G alt : alter 1 : Prozentsatz oder -Zahl 1 (b) Jedes

Mehr

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst?

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? Üben für die 1. Schularbeit Mathematik 3 TEIL 2 (1) Rationale Zahlen ordnen a) ANGABE: In welche Richtung musst du auf dem Zahlenstrahl gehen, wenn du von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? von

Mehr

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I.

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Prozentrechnung I se: E1 E2 E E4 E5 E6 E7 E8 E9 E10 E11 E12 E1 E14 E15 Der Anteil der Jungen beträgt 68%, der der Mädchen 2%. Der Kaufpreis

Mehr

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.

Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10. Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

Zinsrechnung Z leicht 1

Zinsrechnung Z leicht 1 Zinsrechnung Z leicht 1 Berechne die Jahreszinsen im Kopf! a) Kapital: 500 Zinssatz: 1 % b) Kapital: 1 000 Zinssatz: 1,5 % c) Kapital: 20 000 Zinssatz: 4 % d) Kapital: 5 000 Zinssatz: 2 % e) Kapital: 10

Mehr

Aufgaben zum Zinsrechnen, Nr. 1

Aufgaben zum Zinsrechnen, Nr. 1 Aufgaben zum Zinsrechnen, Nr. 1 1.) Berechnen Sie die jährlichen Zinsen! a) 42 T zu 9 % d) 36 T zu 6¾ % b) 30 T zu 7½ % e) 84 T zu 9¼ % c) 12 T zu 7¼ % f) 24 T zu 9¼ % 2.) Berechnen Sie Z! a) 2.540 zu

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille?

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 1 RE 8.711 Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 8,02% 80,2 2 Spannungsverbrauch Auf einer mit Gleichspannung betriebenen

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente

Mehr

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum.

Lösungen. Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Lösungen Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl

Mehr

1. Kopfrechnen. 10. 467 178 = 11. 9 = 12. 19 f 13 = 13.

1. Kopfrechnen. 10. 467 178 = 11. 9 = 12. 19 f 13 = 13. Aufgaben Im Folgenden haben wir verschiedene Aufgabentypen zusammengestellt, an denen Sie sich ausprobieren können. Bedenken Sie: Die Bearbeitungszeit ist immer äußerst knapp gehalten. 1. Kopfrechnen A.

Mehr

Prozentrechnung 1. Name: Klasse: Blatt: 9 Grundlagen. in Worten als Kürzel als Beispiel. Grundwert Prozentwert Gw 100% Prozentsatz % Gw % Ps % 100% 1%

Prozentrechnung 1. Name: Klasse: Blatt: 9 Grundlagen. in Worten als Kürzel als Beispiel. Grundwert Prozentwert Gw 100% Prozentsatz % Gw % Ps % 100% 1% Prozentrechnung 1 Name: Klasse: Blatt: 9 Grundwert Prozentwert Gw Pw 250 2,50 100% Prozentsatz % Gw % Ps % 100% 1% Aufgaben mit Grundwert = 100 % 1. Berechnen Sie den jeweiligen Prozentwert! a ) 10 % von

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Über die Autorin 11. Teil I Zum Start: Einfache Berechnungen für Kaufleute 29

Über die Autorin 11. Teil I Zum Start: Einfache Berechnungen für Kaufleute 29 Inhaltsverzeichnis Über die Autorin 11 Einleitung 23 Über dieses Buch 23 Konventionen in diesem Buch 24 Was Sie nicht lesen müssen 24 Törichte Annahmen über den Leser 24 Wie dieses Buch aufgebaut ist 25

Mehr

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen

DOWNLOAD Freiarbeit: Prozent- und Zinsrechnen DOWNLOAD Günther Koch Freiarbeit: Prozent- und Zinsrechnen Materialien für die 9. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

Übungsaufgaben Prozentrechnung und / oder Dreisatz

Übungsaufgaben Prozentrechnung und / oder Dreisatz Übungsaufgaben Prozentrechnung und / oder Dreisatz 1. Bei der Wahl des Universitätssprechers wurden 800 gültige Stimmen abgegeben. Die Stimmen verteilten sich so auf die drei Kandidat/innen: A bekam 300,

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Übersicht und Wiederholung Proportionalität / Antiproportionalität

Übersicht und Wiederholung Proportionalität / Antiproportionalität Björn Schulz 18. Juli 2001 1/16 L e r n m a u s. d e Übersicht und Wiederholung Proportionalität / Antiproportionalität Antiproportionalität Bei einem Losgewinn erhält eine Person 28 DM. Wieviel erhalten

Mehr

OJB - Test Mathe (schwer)

OJB - Test Mathe (schwer) OJB - Test Mathe (schwer) Offene Jugendberufshilfe Kölner Str. 1 1 Leverkusen Tel. 011 - Web: www.ojb-lev.de E-Mail: ojb-lev@kjde 1 I. Grundrechenarten 1,11 + 6,1 +, Lösung: b. 8, + 1 1, +,6 +,00 Lösung:

Mehr

Bruttopreis Rabatt Nettopreis a) CHF CHF % CHF %

Bruttopreis Rabatt Nettopreis a) CHF CHF % CHF % 1 Bruttopreis Rabatt Nettopreis a) CHF 1568. CHF 250.90 16% CHF 1317.10 84% b) CHF 309.10 CHF 68. 22% CHF 241.10 78% c) CHF 38'931. CHF 7007.60 18% CHF 31'923.40 82% d) CHF 546.25 CHF 27.30 5% CHF 518.95

Mehr

Einkäufe Dreisatz...18 Marmelade, verputzte Häuser und Geschwindigkeit auf dem Schulweg...19 Wer geht mir shoppen?...20 Prospekte und Wolle...

Einkäufe Dreisatz...18 Marmelade, verputzte Häuser und Geschwindigkeit auf dem Schulweg...19 Wer geht mir shoppen?...20 Prospekte und Wolle... Inhaltsverzeichnis: Einfaches Rechnen bei Familie Baumann mit Zeit, Geld und Gewichten Von der Uhrzeiten und vom Einkaufen...6 Vom Komponieren und französischen Vokabeln...7 Schwere Gewichte...8 Von Flugreisen

Mehr

Qualiaufgaben Zinsrechnung

Qualiaufgaben Zinsrechnung Qualiaufgabe 2008 Aufgabengruppe I Der 17- Jährige Ferdinand hat 3000 gespart und möchte dieses Geld für 9 Monate anlegen. Hierfür hat er zwei Angebote. BANK A BANK B Sonderaktion für Jugendliche Taschengeldkonto

Mehr

Saarland Ministerium für Bildung, Kultur und Wissenschaft

Saarland Ministerium für Bildung, Kultur und Wissenschaft Abschlussprüfung 2004 2003/2004 2001 Saarland Ministerium für Bildung, Kultur und Wissenschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

c) 1 % von kg... b) 100 % = 360 m 1 % =... m 2 % =... m 10 % =... m

c) 1 % von kg... b) 100 % = 360 m 1 % =... m 2 % =... m 10 % =... m 1 Überlege Drei Freunde vergleichen die Höhe des Taschengeldes. Stefan erhält wöchtenlich 5 Euro. Kevin bekommt monatlich 20 Euro und Simon erhält monatlich 1 % vom Lohn seines Vaters. Simons Vater verdient

Mehr

Prozent- und Zinsrechnung

Prozent- und Zinsrechnung 2 Prozent- und Zinsrechnung Bei vielen Schülern ist der Wunsch nach einem Tablet-PC sehr groß. Da diese sehr teuer sind, reicht das ersarte Geld meistens nicht aus. Im Folgenden findest du Möglichkeiten,

Mehr

7 Mathematik. Übungsaufgaben mit Lösungen Brandenburg

7 Mathematik. Übungsaufgaben mit Lösungen Brandenburg 7 Mathematik Übungsaufgaben mit Lösungen Brandenburg 2 Natürliche und gebrochene Zahlen Natürliche und gebrochene Zahlen Rechne vorteilhaft. a) 75 + 6 + 25 + 84 b) 87 + 2 7 + 9 c) 6 + (4 + 7) d) + (2 +

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse Matheheft 7. Klasse Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Lernplan von 1 Seite Prozent- und Zinsrechnung bearbeiten am Anteile

Mehr

Korrigenda Wirtschaft DHF/DHA umfassend repetiert

Korrigenda Wirtschaft DHF/DHA umfassend repetiert Korrigenda Wirtschaft DHF/DHA umfassend repetiert 1. Auflage 2012, ISBN 978-3-905726-45-9 7. Rechnen und Statistik 7.10 Zinsrechnen Der Zins (census, Abgabe) ist die Entschädigung für das Ausleihen von

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit 4. Prozent-, Promille- und Zinsrechnung 4.1. Grundbegriffe der Prozentrechnung Die Prozent, Promille- und Zinsrechnung ist ein Teil der Bruchrechnung mit dem vorgegebenen Nenner 100 bzw. 1000. Wir legen

Mehr

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% =

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% = Prozentrechnung Aufgabe: In einer Klasse 7 mit 32 Schülern haben sich 25% für das Fach Latein entschieden. Wie viele Schüler sind das? Prozent bedeutet: von hundert; bezogen auf die Anzahl 25% = 25 Man

Mehr

Finanzmathematik. Zinsrechnung I 1.)

Finanzmathematik. Zinsrechnung I 1.) Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Muster! Nicht kopieren!

Muster! Nicht kopieren! Dreisatz, Prozent & Zinsen - Ausgabe B - (ZweiPLUS für den Mathematikunterricht) Auszugsweise! F. Rothe Rothe, Frank: Dreisatz, Prozent & Zinsen, - Ausgabe B -, (ZweiPLUS für den Mathematikunterricht),

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Das Thema verlangt von dir die Berechnung von Preisauf- bzw. Preisabschlägen, Mehrwertsteuerberechnungen usw. Vom Prinzip ist dieses Kapitel der Prozentrechnung zuzuordnen. Du musst hierbei

Mehr

Anwendung 1: Rabatt und Skonto

Anwendung 1: Rabatt und Skonto Anwendung 1: Rabatt und Skonto Herr Gerber kauft sich ein Mountainbike. Dieses kostet gemäss Katalogpreis 2400. Franken. Weil Herr Gerber Stammkunde ist, gewährt ihm der Velohändler 15% Rabatt. Somit muss

Mehr

DOWNLOAD. Zinsrechnen 9./10. Klasse. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Zinsrechnen 9./10. Klasse. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel: DOWNLOAD Brigitte Penzenstadler 9./10. lasse Mathetraining in 3 ompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht. Der

Mehr

1 Zahl und Zahlbereiche

1 Zahl und Zahlbereiche 1 Zahl und Zahlbereiche 1.2 Prozent- und Zinsrechnung Informationen und Tests Teste dich! Teste dich! Prozent- und Zinsrechnung Arbeitsblätter in zwei Niveaustufen Lernscheibe Bruchprozent Prozentschreibweise

Mehr

VORSCHAU. zur Vollversion. Umfänge messen und berechnen. Die Länge der Randlinie nennt man Umfang.

VORSCHAU. zur Vollversion. Umfänge messen und berechnen. Die Länge der Randlinie nennt man Umfang. 1 Umfänge messen und berechnen 1. Aus wie vielen Streichhölzern besteht der Umfang? Zähle sie. 2. Wie viele cm beträgt der Umfang der Figuren? Zähle oder miss nach. cm cm cm 3. Nehmt eine Handvoll Büroklammern.

Mehr