Skript zum Masterpraktikum Radiochemie. Modul: Radioaktivität - Messmethoden. Detektion von α-, β- und γ-strahlung

Größe: px
Ab Seite anzeigen:

Download "Skript zum Masterpraktikum Radiochemie. Modul: Radioaktivität - Messmethoden. Detektion von α-, β- und γ-strahlung"

Transkript

1 Fakultät Mathematik/Naturwissenschaften Fachbereich Chemie/Lebensmittelchemie Professur für Radiochemie Skript zum Masterpraktikum Radiochemie Modul: Radioaktivität - Messmethoden Detektion von α-, β- und γ-strahlung Stand: Sommersemester

2 Gliederung: 1. Strahlungsarten 2. Strahlungsmessung - Spektrometrie 2.1. α-spektrometrie mit Halbleiterdetektor (PIPS) 2.2. α-,β-spektrometrie mittels Flüssigszintillation 2.3. γ-spektrometrie mit Reinst-Germaniumdetektor 1. Strahlungsarten α-strahlung Abgabe von 2 Protonen und 2 Neutronen. Beispiel: Po 82Pb He Die Nukleonenzahl verringert sich beim α- Zerfall um 4, die Ordnungszahl um 2. Die Reichweite beträgt in Luft wenige cm ( 210 Po: 4 cm), in Flüssigkeiten und Feststoffen wenige µm (abhängig von der Dichte). β-strahlung β - -Strahlung: Abgabe eines Elektrons und eines Antineutrinos Beispiel: Pb Bi e e β + -Strahlung: Abgabe eines Positrons und eines Neutrinos Beispiel: K Ar e Elektroneneinfang aus innerem Orbital (EC) unter Abgabe eines Neutrinos e Beispiel: Fe e 55 Mn 25 e Die Nukleonenzahl bleibt gleich, die Ordnungszahl erhöht sich um 1 (bei β - ) und verringert sich um 1 (bei β + Die Reichweite beträgt wenige cm bis 1 m (abhängig von der Energie). Abschirmung erfolgt mit Plexiglas (2 Größenordnungen). 2

3 γ-strahlung Durchdringendste elektromagnetische Strahlung, die beim Zerfall der Atomkerne vieler radioaktiver Nuklide entsteht. Die Reichweite beträgt in Feststoffen einige cm bis m (abhängig von Dichte und γ-energie) Abschirmung erfolgt mit Blei, Schwerbeton (hohe Dichte) 2. Strahlungsmessung - Spektrometrie Nicht nur die Bestimmung der gesamten Strahlungsmenge ist von Interesse, sondern auch die Art und Herkunft der Strahlung. Dazu ist Spektrometrie notwendig die Unterscheidung nach der Strahlungsenergie α-spektrometrie mit Halbleiterdetektor (PIPS) PIPS: Passivated Implanted Planar Silicon detector Bei diesen Detektoren handelt es sich um n-leitende Siliziumdetektoren, deren Eintrittsseite p-leitend ist durch wenige nm einer Bor-Implantationsschicht. Am pn-übergang bildet sich eine Ladungsfreie Zone, die durch Anlegen einer Spannung in Sperrichtung vergrößert wird. Die einfallende Strahlung (α-strahlen) in diese Zone erzeugt Paare von Elektronen und Löchern. In der pn- Übergangsschicht werden Elektronen und Löcher durch das Ladungsfeld getrennt (Löcher wandern ins p- und Elektronen ins n-gebiet). Die Anzahl der Elektronen-Loch-Paare hängt von der Energie des einfliegenden Teilchens ab. Der resultierende Stromstoß ist ein Maß für die Energie der Strahlung. Komponenten eines α-spektrometers Vakuum PIPS VV HV ADC VKA HSV VV HV HSV ADC VKA Vorverstärker Hauptverstärker Hochspannungsquelle Analog-Digital-Konverter Vielkanalanalysator Direkt am Detektor ist der Vorverstärker angeschlossen, um Ladungsverluste durch eine sehr kurze Wegstrecke zu vermeiden. Am Vorverstärker wird eine Hoch spannung (ca V) angelegt. Im Hauptverstärker wird das Signal weiter verstärkt. Zur Weiterverarbeitung wird das Signal im Analog-Digital-Konverter 3

4 geformt und die Impulshöhe ermittelt, im Vielkanalanalysator werden die Ereignisse entsprechend ihrer Energie gezählt, und danach wird das α-spektrum auf einem Bildschirm dargestellt. Es wird im Vakuum gemessen, um die Reichweite der α-partikel zu erhöhen. Der Nulleffekt ist extrem niedrig (2 Impulse/h). Die hohe Auflösung von 20 kev erlaubt, α-strahlende Nuklide, deren Energien nahe beieinander liegen, zu trennen. Typisches α-spektrum (mit 241 Am kontaminierter Bauschutt) 2.2. α-,β-spektrometrie mittels Flüssigszintillation Es wird ein homogenes Gemisch aus Probe und Szintillations-Cocktail hergestellt. Der Szintillations-Cocktail, bestehend aus Lösungsmittel, primärem Szintillator und sekundärem Szintillator, wird durch α- oder β- Teilchen zur Emission von Lichtquanten angeregt: Lösungsmittel: - z.b. Toluol, Benzol, Xylol, Diisopropylnaphtalin - kinetische Energie des Kernzerfalls regt π-elektronen an: nm primärer Szintillator: - z.b. Oxazole, Oxadiazole, Benzooxazole, Pyrazoline, 2,5- Diphenyloxazol PPO, ca M) Energieübertragung durch Molekülzusammenstöße, Strahlung, Dipol-Dipol-Wechselwirkung: nm sekundärer Szintillator: - ähnliche Struktur wie primärer, aber längerwelliges Fluoreszenzmaximum, z.b. p-bis-(o-methylsteryl)-benzol, ca M) - absorbiert das Licht vom primären Szintillator und gibt es als Fluoreszenzlicht weiter Wellenlängenschieber : nm 4

5 Detektion im Flüssigszintillationsgerät (LSC, Liquid Szintillation Counter) Komponenten eines LSC Hochspannung Photoverstärkerröhre Probe Photoverstärkerröhre Koinzidenzschaltung Verstärker Impulshöhenanalysator ADC Analyse des Spektrums Photoverstärkerröhre: - Lichtumwandlung in elektrische Impulse - Photoeffekt: Elektronenfreisetzung - Auf Dynoden (pos. Elektrode) gelenkt - Erzeugung von Sekundärelektronen - Weitere Dynoden Kaskade von Elektronen - Letzte Dynode Messung des elektrischen Impulses Koinzidenzschaltung: - Nur Messung von Spannungsimpulsen, die von beiden Photoverstärkern kommen - Unterdrückung thermischer Impulse Impulshöhenanalysator: - Die im Szintillationsprozess freigesetzte Photonenzahl ist der α-, β-energie proportional. - Lineare Umsetzung in Photoverstärker - Impulshöhe proportional der α-, β-energie 5

6 Impulse Impulse Reines β-spektrum Energie in kev Gemischtes α-, β-spektrum 3 H Spektrum 210 Po -Spektrum 210 Pb, 210 Bi Energie [Kanal] Zählausbeute und Quenching In der Praxis wird nicht jeder radioaktive Zerfall in der Probe vom Messgerät registriert. Deshalb unterscheidet man zwischen Counts, der Zahl der registrierten Impulse, und Disintegrations, der Zahl der tatsächlichen Zerfälle. Die Zählausbeute gibt an, welcher Anteil der radioaktiven Zerfälle tatsächlich vom Gerät registriert wird. Zählausbeu te cps Counts pro Sekunde cpm Counts pro Minute dps Disintegrations pro Sekunde dpm Disintegrations pro Minute 1 Becquerel (Bq) = 1 dps = 60 dpm cps dps cpm dpm Eine 100%ige Zählausbeute wird praktisch nie erreicht (z.b. 3 H: 60%, 14 C: 95%) 6

7 Impulse Ursachen: Verluste bei der Energieübertragung = Quenching Physikalisches Quenching: - Verluste treten vor der Anregung der Lösungsmittelmoleküle auf - Absorption bzw. Selbstabsorption durch Fremdkörper (z.b. Filterpapier) oder ungenügende Probendurchmischung (Emulsionsbildung) - Vermeidung durch entsprechende Probenpräparation Chemisches Quenching: - direkte Verluste bei der Energieübertragung auf Primär- und Sekundärszintillator - Übertragung der Energie auf Moleküle in der Probe: Löschsubstanzen (Quencher) Farbquenching: - Emittiertes Licht von Primär- und Sekundärszintillator ( nm) wird von gefärbten Probenbestandteilen absorbiert - z.b. Blut, Harn, Gewebeextrakte, Pflanzenextrakte) Beispiel: Chemischer Quench an 3 H Zugabe CH 3 NO 2 0 µl 5 µl 10 µl 15 µl 25 µl 40 µl 90 µl 220 µl 230 µl 450 µl Kanal 2.3. γ-spektrometrie mit Reinst-Germaniumdetektor Wechselwirkung zwischen γ-strahlung und Materie γ-strahlen sind keine geladenen Teilchen, sondern Photonen. Nach der Wechselwirkung mit Materie Messung möglich. Drei Wechselwirkungsprozesse: Photoeffekt: γ-quanten werden an stark gebundenen Elektronen (innere Schale) von Atomen inelastisch gestreut. Die Energie des Photons wird vollständig auf das Elektron übertragen. Das Elektron wird aus dem Atom geschlagen. Sekundäreffekt: Augereffekt 7

8 Comptoneffekt: Wechselwirkung der γ-quanten mit freien Elektronen Stoßprozess. Das Elektron gewinnt kinetische Energie, die Energie des Photons wird abgeschwächt (abhängig vom Streuwinkel). Paarbildung: Umwandlung eines Photons in ein Elektron-Positron-Paar erst oberhalb der Schwellenergie von 1.02 MeV möglich Aufbau eines Gamma-Spektrometers Die Messung der γ-strahlung erfolgt über einen Halbleiterdetektor. Üblicherweise werden Germainum-Detektoren verwendet (Reinst- Germanium-Detektor, HPGe, High Purity Germanium). Da die Lücke zwischen Valenz- und Leitungsband kleiner ist als bei Si und von den kristalleigenen Elektronen schon bei Raumtemperatur überwunden werden kann, muss der Ge-Detektor auf ca. 90 K gekühlt werden (mit flüssigem Stickstoff oder neuerdings auch elektrisch), um thermisches Rauschen zu unterdrücken und die Beweglichkeit der Elektronen und Löcher zu erhöhen. Die auftreffende Strahlung erzeugt Elektronen-Loch-Paare. Der resultierende Stromimpuls wird von einem sensitiven Vorverstärker abgenommen, an dem eine Hochspannung im Bereich von 2000 bis 4000 V anliegt und über einen Hauptverstärker weiter verstärkt. Über einen Anaolg-Digital-Konverter und einen Vielkanalanalysator werden die Signale weiterverarbeitet und computerunterstützt das resultierende γ-spektrum ausgewertet. Schematischer Aufbau Bleiabschirmung Probe Ge-Detektor Vorverstärker Hauptverstärker Vielkanalanalysator Spektrenauswertung Hochspannung Dewargefäß Flüssiger N 2 8

9 γ-spektrum von 137 Cs Photopeak Rückstreulinie Comptonkante Comptonkontinuum 9

Messmethoden zum Nachweis von Radionukliden in Wasser

Messmethoden zum Nachweis von Radionukliden in Wasser Messmethoden zum Nachweis von Radionukliden in Wasser Dipl.-Ing. (FH) Christoph Wilhelm - SUM KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Gammastrahlung Gammastrahlung ist die durchdringendste radioaktive

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Strahlenschutz in der Feuerwehr

Strahlenschutz in der Feuerwehr in der Feuerwehr Wiederholung der Ausbildung zum A-Einsatz Einsatzgebiete Wahrnehmung Ladung der Strahlung Energie und biologische Wirkung Grenzwerte Einsatzgrundsätze Kontamination Ausblick Strahlungsarten

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Dunkle Materie-Experimente

Dunkle Materie-Experimente Dunkle Materie-Experimente Der Kampf im Untergrund gegen den Untergrund Hardy Simgen Max-Planck-Institut für Kernphysik Die Suche nach der Nadel im Warum ist sie so schwierig? Nadel und Heu sehen ähnlich

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 07.11.2012 22.11.2012 Praxisseminar Strahlenschutz Teil 4: Messtechnik 1 1 Inhalt Wiederholung ionisierende Strahlung Prinzipien der Messtechnik

Mehr

Neutrinophysik-Experimente

Neutrinophysik-Experimente Physik am Samstagmorgen 2007/2008 Schülertreffen am Max-Planck-Institut für Kernphysik 26. April 2008 Neutrinophysik-Experimente Der Kampf im Untergrund gegen den Untergrund W. Hampel Max-Planck-Institut

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

IV Atomlehre und Periodensystem (Mortimer: Kap. 2 u. 6; Atkins: Kap. 7)

IV Atomlehre und Periodensystem (Mortimer: Kap. 2 u. 6; Atkins: Kap. 7) IV Atomlehre und Periodensystem (Mortimer: Kap. u. 6; Atkins: Kap. 7) 13. Aufbau der Atome Stichwörter: Elementarteilchen und ihr Nachweis, Atom, Atomkern, Proton, Neutron, Kanalstrahlen, Kathodenstrahlen,

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Versuch 29 Ak-vierungsanalyse

Versuch 29 Ak-vierungsanalyse Versuch 29 Ak-vierungsanalyse Betreuer WS 2016-2017: Oleg Kalekin Raum: 314 Tel.: 09131-85- 27118 Email: Oleg.Kalekin@physik.uni- erlangen.de Standort: Raum 133 (Kontrollraum Tandembeschleuniger) Literatur:

Mehr

Physik. Semester III Teil 2. Abiturwiederholung

Physik. Semester III Teil 2. Abiturwiederholung Semester III Teil 2 Selbstständige Auswertung von Experimenten zu Emissions- und Absorptionsspektren Grundlagen einer Atomvorstellung (Größe, Struktur, einfache Termschemata) und qualitative Deutungen

Mehr

11. GV: Radioaktivität

11. GV: Radioaktivität Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Detektoren für radioaktive Strahlung

Detektoren für radioaktive Strahlung G-11 Geräte Detektoren für radioaktive Strahlung 28.02.06 Universität Ulm, Vorlesungssammlung Physik Verfügbare Detektoren Nebelkammer Geiger-Müller-Zählrohr α-, β- und γ- Strahlung Szintillationsdetektor

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Grundlagen der Strahlenphysik

Grundlagen der Strahlenphysik Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz Grundlagen der Strahlenphysik Dr.rer.nat. Jörg Harmsen Abt. für Strahlentherapie St.-Josef Hospital Bochum Klinikum der Ruhr-Universität Was ist

Mehr

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Strahlungsdetektoren. Tl-haltiges NaI. ionisierende Strahlung << >> Materie

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Strahlungsdetektoren. Tl-haltiges NaI. ionisierende Strahlung << >> Materie Strahlungsdetektoren Strahlungsdetektoren ionisierende Strahlung > Materie elektromagnetische Wechselwirkung Wechselwirkung nicht elektromagnetische Wechselwirkung Die Basis aller Messungen (auch Beobachtungen)

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n

Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n EMS γ, X Ausschliesslich für den Unterrichtsgebrauch 1 2 Wechselwirkung ionisierender Strahlungen mit der Materie Strahlungsdetektoren DIREKTE IONISATION

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie Strahlungsdetektoren ionisierende Strahlung > Materie elektromagnetische Wechselwirkung Wechselwirkung nicht elektromagnetische Wechselwirkung Strahlungsdetektoren Nachweis über elektromagnetische

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

γ Spektroskopie Axel Müller & Marcel Köpke Gruppe 13 Abgabedatum: Versuchsdurchführung:

γ Spektroskopie Axel Müller & Marcel Köpke Gruppe 13 Abgabedatum: Versuchsdurchführung: γ Spektroskopie Axel Müller & Marcel Köpke Gruppe 13 Abgabedatum: 02.12.2013 Versuchsdurchführung: 25.11.2013 Inhaltsverzeichnis 1 Theorie 3 1.1 Gamma-Strahlung............................... 3 1.1.1 Entstehung...............................

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.5 - Absorption von Gammastrahlung Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Radioaktivität & X-Strahlen Physikalbor 01 Michel

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

3. Experimentelle Verfahren der Kern- und Teilchenphysik

3. Experimentelle Verfahren der Kern- und Teilchenphysik 3. Experimentelle Verfahren der Kern- und Teilchenphysik 3.1 Wechselwirkung von Strahlung und Teilchen mit Materie 3.2 Teilchendetektoren (3.3 Beschleuniger, verschoben auf Teil 2) 1 3.1 Wechselwirkung

Mehr

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie Strahlungsdetektoren ionisierende Strahlung > Materie elektromagnetische Wechselwirkung Wechselwirkung nicht elektromagnetische Wechselwirkung Strahlungsdetektoren Nachweis über elektromagnetische

Mehr

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. osisbegriffe Geladene Teilchen

Mehr

Physik III - Anfängerpraktikum- Versuch Korrektur

Physik III - Anfängerpraktikum- Versuch Korrektur Physik III - Anfängerpraktikum- Versuch 704 - Korrektur Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 Theorie 2 2.1 Absorption.......................................

Mehr

Aufbau und Test eines Referenzsystems für den Lichtpulser des PANDA- Kalorimeters

Aufbau und Test eines Referenzsystems für den Lichtpulser des PANDA- Kalorimeters Seminar: Experimentelle Methoden in der Kern- und Teilchenphysik Bachelorarbeit: Aufbau und Test eines Referenzsystems für den Lichtpulser des PANDA- Kalorimeters gehalten von Christian Mertes 1 Gliederung

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Messtechnik Markus Drapalik 20.03.2014 27.03.2014 Praxisseminar Strahlenschutz: Messtechnik 1 1 Inhalt Wiederholung Prinzipien der Messtechnik Gas Zählrohre Szintillatoren

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 1 1 Inhalt Wiederholung Prinzipien der Messtechnik Gas Zählrohre Szintillatoren Halbleiterzähler Personendosimeter Andere Detektionsmethoden

Mehr

Vorbereitung. Von Jan Oertlin und Ingo Medebach. 20. April 2010

Vorbereitung. Von Jan Oertlin und Ingo Medebach. 20. April 2010 Versuch P2-72,73,83: Gamma-Spektroskopie und Statistik Vorbereitung Von Jan Oertlin und Ingo Medebach Inhaltsverzeichnis 20. April 2010 0 Grundlagen 2 0.1 Gammastrahlung.......................................

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 08.Juni 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - γ-szintillationsspektroskopie - 1 Vorbetrachtung jedes radioaktive Präparat weist ein charakteristisches

Mehr

Physik-Praktikum: RAD

Physik-Praktikum: RAD Physik-Praktikum: RAD Einleitung Bei diesem Praktikumsversuch werden verschiedene radioaktive Präparate auf ihre Gammastrahlung untersucht. Bei der Aufnahme des Spektrums mittels einer Szintillationsmesssonde

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

Radioaktivität (RAD)

Radioaktivität (RAD) Radioaktivität (RAD) Manuel Staebel 2236632 / Michael Wack 2234088 1 Versuchsdurchführung und Aufgaben 1.1 Messung 1: Aufnahme der Eichspektren Ziel dieser Messung war es, eine Zuordnung zwischen den Kanalnummern

Mehr

Versuch 500. γ - Strahlung. 1. Aufgabe. 2. Grundlagen

Versuch 500. γ - Strahlung. 1. Aufgabe. 2. Grundlagen Versuch 500 1 γ - Strahlung 1. Aufgabe Mit einer Cs-137 Strahlungsquelle sind für verschiedene Materialien durch Absorptionsmessung bei unterschiedlichen Schichtdicken die totalen Absorptionskoeffizienten

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. Dosisbegriffe α β Geladene

Mehr

Gamma-Spektrometrie. Fortgeschrittenenpraktikum Vorbereitung. Erik Streb. 5. Juni 2007 Betreuer: Kristian Döbrich. 1 Einleitung

Gamma-Spektrometrie. Fortgeschrittenenpraktikum Vorbereitung. Erik Streb. 5. Juni 2007 Betreuer: Kristian Döbrich. 1 Einleitung Freie Universität Berlin Sommersemester 2007 Arnimallee 14 14195 Berlin Fortgeschrittenenpraktikum Vorbereitung Gamma-Spektrometrie Erik Streb 5. Juni 2007 Betreuer: Kristian Döbrich 1 Einleitung Gammastrahlen

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Bas Physik Jgst: Q2.2 Klausur-Nr. 2 Datum: Dez Die semiempirischen Massenformel von v. Weizsäcker ist gegeben durch: Z MeV

Bas Physik Jgst: Q2.2 Klausur-Nr. 2 Datum: Dez Die semiempirischen Massenformel von v. Weizsäcker ist gegeben durch: Z MeV Bas Physik Jgst: Q. Klausur-Nr. Datum: Dez 015 1. Aufgabe Die semiempirischen Massenformel von v. Weizsäcker ist gegeben durch: W A Z m c Z m c C A C A C Z C N Z ges n p 3 1 3 1 4 A 3 A C A 5 3 4 a) Berechnen

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

-Zerfall, radioaktives Gleichgewicht und -Spektroskopie

-Zerfall, radioaktives Gleichgewicht und -Spektroskopie Kernchemisches Praktikum I -Zerfall, radioaktives Gleichgewicht und -Spektroskopie Institut für Kernchemie Universität Mainz Folie Nr. 1 Tröpfchenmodell / Weizsäckerformel Idee: Kerne verhalten sich wie

Mehr

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 704 Absorption von γ- und β-strahlung und Durchgeführt am: 27 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 γ-strahlung.............................

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Versuch P2-82: Absorption von Beta- und Gammastrahlung

Versuch P2-82: Absorption von Beta- und Gammastrahlung Versuch P2-82: Absorption von Beta- und Gammastrahlung Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Einleitung und Grundlagen...2 1.1 Einleitung... 2 1.2 Beta-Strahlung...

Mehr

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I Fachkunde im Strahlenschutz Kurs September 01 Naturwissenschaftliche Grundlagen I 1 Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität - Zerfallsarten - Strahlung, Strahlungsarten

Mehr

Fusion durch Pyroelektrische Kristalle

Fusion durch Pyroelektrische Kristalle 26. April 2010 Inhaltsverzeichnis Motivation 1 Motivation 2 3 4 5 6 Motivation Nutzung von Nanometerphysik in der Fusionsforschung Tabletop-Ionenbeschleuniger Tabletop-Fusionsgenerator Neutronenkanone

Mehr

Kurs Juli Grundlagen I

Kurs Juli Grundlagen I Fachkunde im Strahlenschutz Kurs Juli 2010 Naturwissenschaftliche Grundlagen I Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität -Zerfallsarten fll - Strahlung, Strahlungsarten

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 20. γ-spektrometrie mit Szintillations- und Halbleiterdetektoren. 1. Radioaktiver Zerfall 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 20. γ-spektrometrie mit Szintillations- und Halbleiterdetektoren. 1. Radioaktiver Zerfall 2 ETH Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 20 γ-spektrometrie mit Szintillations- und Halbleiterdetektoren INHALTSVERZEICHNIS Seite 1. Radioaktiver Zerfall 2 2. γ-strahlung 2 3. Wechselwirkung

Mehr

Strahlung und Strahlenschutz in den Physikalischen Praktika

Strahlung und Strahlenschutz in den Physikalischen Praktika Strahlung und Strahlenschutz in den Physikalischen Praktika Was ist Strahlung? Welche Gefahren entstehen durch Strahlung? Wie kann man sich vor Strahlung schützen? Physikalisches Institut 1 Was ist Strahlung?

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend II. DETEKTION VON PHOTONEN II.1 Detektoreigenschaften 05. Mai 2015 Photonen in Astronomie und Astrophysik Kerstin Sonnabend

Mehr

Elektromagnetisches Spektrum Radioaktive Strahlung

Elektromagnetisches Spektrum Radioaktive Strahlung Umgang mit Radionukliden Elektromagnetisches Spektrum Radioaktive Strahlung Strahlung Nichtionisierende Strahlung Mikrowellen Sichtbares Licht Strahlung von Radiound Fernsehsendern UV-Licht Ionisierende

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 2 γ-absorption (Ab) 2.1 2.1 Einleitung........................................

Mehr

Lagerung des Abfalls. radioaktiver Abfall

Lagerung des Abfalls. radioaktiver Abfall Lagerung des Abfalls radioaktiver Abfall Radioaktivität Was ist Radioaktivität? Welche Eigenschaften besitz sie? Welche Auswirkungen kann sie haben? Warnung vor radioaktiver Strahlung Internationale Strahlenschutzzeichen

Mehr

Bericht zum Kernphysik-Praktikum Universität Potsdam

Bericht zum Kernphysik-Praktikum Universität Potsdam Bericht zum Kernphysik-Praktikum 2018 Universität Potsdam Niklas Polei Philipp Ortner Daniel Rothhardt Jann Winkler 19.-22.03.2018 1 Inhaltsverzeichnis 1 Einleitung 3 2 Messinstrumente und -methoden 3

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 15. A: Theoretischer Teil. Seite 1. Meßprinzip 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 15. A: Theoretischer Teil. Seite 1. Meßprinzip 2 ETH Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 15 Nachweis von β--strahlung mittels Flüssigszintillationszählung INHALTSVERZEICHNIS A: Theoretischer Teil Seite 1. Meßprinzip 2 2. Einfluß der

Mehr

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung Norddeutsches Seminar für Strahlenschutz Gefahren ionisierender Strahlung Ionisation Entfernen eines oder mehrerer Elektronen aus dem neutralen Atom A A + + e - Aus einem elektrisch neutralem Atom wurden

Mehr