Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik"

Transkript

1 INSTITUT FÜR STOCHASTIK WS 07/08 UNIVERSITÄT KARLSRUHE Blatt 4 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen Aufgabe 12: Es sei Ω = {(i, j: i, j {1, 2, 3, 4}}. Die Zufallsvariablen X : Ω R bzw. Y : Ω R seien definiert durch X(i, j := i und Y (i, j := j und die gemeinsame Zähldichte von X und Y f X,Y : Ω R durch f X,Y (i, j := c (i+j mit einem noch zu bestimmenden c R. a Bestimmen Sie c R so, dass f X,Y eine Zähldichte auf Ω wird. b Bestimmen Sie f X und f Y. c Welche Werte nimmt die Zufallsvariable Z := X Y an? d Berechnen Sie P(Z 9. a Wir schreiben zur Abkürzung f := f X,Y. Damit f eine Zähldichte wird, muss gelten 1 = ω Ω f(ω = i=1 f(i, j = j=1 i=1 c (i + j j=1 = c (( ( ( ( ( (4 + 4 = 80 c und damit notwendig c = 1/80. Tatsächlich ist damit f eine Zähldichte: Es ist f(i, j = i+j 0 und 4 4 i+j 80 i=1 j=1 = b Wegen (6.4 und (6.5 gilt für i, j = 1,...,4 f X (i = f X,Y (i, k = k=1 (i (i (i (i = 4 i = i und analog f Y (j = j

2 c Da X und Y jeweils die Werte 1, 2, 3, 4 annehmen, nimmt Z = X Y die Werte 1 1 = 1,...,1 4 = 4, 2 3 = 6, 2 4 = 8, 3 3 = 9, 3 4 = 12 und 4 4 = 16 an. Der Wertebereich von Z ist also {1, 2, 3, 4, 6, 8, 9, 12, 16}. d {Z 9} = {(1, 1, (1, 2, (1, 3, (1, 4, (2, 1, (2,2, (2, 3, (2, 4,(3, 1,(3, 2, (3,3, (4,1, (4, 2}. Damit P(Z 9 = f(1, 1 + f(1, f(4, 2 = = Alternativ und etwas einfacher: P(Z 9 = 1 P(Z > 9 = 1 P({(3, 4, (4, 3, (4, 4} = 1 f(3, 4 f(4, 3 f(4, 4 = = = Aufgabe 13: Eine Lieferung von 0 Bauteilen eines bestimmten Typs darf laut Liefervertrag höchstens 3% Ausschuss haben. Um dies zu überprüfen, werden nacheinander Bauteile rein zufällig entnommen, getestet und die Lieferung abgelehnt, wenn unter den getesteten Bauteilen mindestens ein defektes ist. a Wie groß ist bei diesem Prüfverfahren die Wahrscheinlichkeit ungerechtfertigter Reklamation, indem eine Lieferung zurückgewiesen wird, obwohl sie den Lieferbedingungen entspricht? Führen Sie ihre Rechnungen für den Fall durch, dass die Lieferung genau 30 defekte Bauteile, also 3% Ausschuss, enthält und ein getestetes Bauteil nicht noch einmal getestet werden kann. b Welche Wahrscheinlichkeit ergibt sich, wenn im Gegensatz dazu ein getestetes Bauteil wieder in die Lieferung zurückgelegt wird und erneut getestet werden kann? c Welche Werte ergeben sich in a und b, wenn die Lieferung genau 00 Bauteile enthält und darunter genau 300 defekte Bauteile sind? a Sei X die zufällige Anzahl defekter Bauteile. Dann gilt X Hyp(n, r, s mit n = Anzahl der getesteten Bauteile, r = tatsächliche Anzahl der defekten Bauteile, s = tatsächliche Anzahl intakter Bauteile. Gesucht P( ungerechtfertigte Reklamation = P(X 1. Es ist hier mit n =, r = 30 und s = 970 nach dem Hinweis ( r ( 0 s P(X 1 = 1 P(X 0 = 1 f X (0 = 1 ( n n = 1 = 1 ( 970 ( 0 = /!! = 1 =

3 b Wird ein getestetes Bauteil zurückgelegt, so liegt die Situation des Ziehens mit Zurücklegen vor und es ist X Bin(n, = Bin(, Es ist hier r P(X 1 = 1 P(X = 0 = 1 f X (0 = ( = = c Es ist jetzt n =, r = 300 und s = Da weiterhin r = 0.03 ist, ändert sich an der Wahrscheinlichkeit in b nichts. In a erhalten wir ( 9700 P(X 1 = 1 ( 00 = = = Dieser Wert stimmt bis auf 3 Einheiten in der vierten Nachkommastelle mit dem Wert aus b überein. Aufgabe 14: An einer -Adresse treffen täglich X Spam-Mails ein. Aus Erfahrung weiß man, dass X eine Zufallsvariable ist mit der Poisson-Verteilung Po(α für ein α > 0. Weiter treffen täglich genau c erwünschte s ein, c N. a Drücken Sie Y := Gesamtzahl der s, die täglich an der -Adresse eintreffen mit Hilfe von X und c aus. Welche Werte kann Y annehmen? Bestimmen Sie die Zähldichte von Y. b Bestimmen Sie P(Y 6 für den Fall α = 6 und c = 4. c Angenommen, X sei eine Zufallsvariable mit der Binomialverteilung Bin(, Bestimmen Sie wieder P(Y 6 für den Fall c = 4 und vergleichen Sie das Ergebnis mit dem Ergebnis aus b, d.h. wie groß ist der prozentuale Unterschied beider Wahrscheinlichkeiten? a Es ist Y = X + c. Da X die Werte 0, 1,... annehmen kann, nimmt Y die Werte c, c + 1, c + 2,... an. Ferner f Y (k = P(Y = k = P(X + c = k = P(X = k c { e = f X (k c = α αk c, k c (k c! 0, sonst. b Wegen Y c = 4 gilt P(Y 6 = P(Y = 4 + P(Y = 5 + P(Y = 6, also wegen a P(Y 6 = e α α0 0! + e α α1 1! + e α α2 2! = e α (1 + α + α2 2 = 25 e 6 =

4 c Gilt X Bin(, 0.06, so wegen a mit p = 0.06 P(Y 6 = P(Y = 4 + P(Y = 5 + P(Y = 6 = f X (0 + f X (1 + f X (2 = p 0 (1 p + p 1 (1 p 99 + p 2 (1 p = ( = Das Ergebnis aus b ist um 9.46% größer als das aus c. Aufgabe 15: Ein Programm soll (auf Korrektheit getestet werden. Die Wahrscheinlichkeit, dass bei einem Testdurchlauf ein (Laufzeit- Fehler gefunden wird, sei p > 0. X sei die zufällige Anzahl der Testdurchläufe ohne Fehler, bis der erste Fehler gefunden wird. a Welche Verteilung hat X? b Das Programm wird so lange getestet, bis ein Fehler gefunden wird, höchstens jedoch c mal. Sei Y dabei die zufällige Anzahl der Testdurchläufe. Berechnen und skizzieren Sie die Zähldichte der Zufallsvariablen Y für p = 0.1 und c = 7. c Z := 50 Y + seien die zufälligen Kosten für den Test. Berechnen Sie P(Z 0 für p = 0.1 und c = 7. d Wie groß muss c N mindestens sein, damit für den Fall p = 0.1 ein Laufzeitfehler mindestens mit Wahrscheinlichkeit 90% gefunden wird? Wir nehmen an, dass wie in Abschnitt 7.5 des Skriptums ein ideales Zufallsexperiment mit den zwei möglichen Ergebnissen Fehler gefunden (1 oder kein Fehler gefunden (0 solange unabhängig unter gleichen Bedingungen durchgeführt wird, bis der erste Fehler gefunden wird. a X die geometrische Verteilung G(p mit Parameter p. b X + 1 ist die zufällige Anzahl der Testdurchläufe bis der erste Fehler gefunden wird. Es ist daher Y = min{x + 1, c}. Y nimmt also die Werte 1, 2,..., c an und es ist { {X + 1 = k} = {X = k 1}, k = 1, 2,..., c 1, {Y = k} = {X + 1 c} = {X c 1}, k = c. Wegen gilt P(X c 1 = k=c 1 f Y (k = Speziell für p = 0.1 und c = 7 ergibt sich mit dem Stabdiagramm p (1 p k = p (1 p c 1 [1 + (1 p + (1 p ] = p (1 p c (1 p { p (1 p k 1, k = 1, 2,..., c 1 P(X c 1 = (1 p c 1, k = c k f Y (k = (1 pc 1

5 0.5 f Y (k c k P(Z 0 = P(50 Y + 0 = P(50 Y = P(Y 2 = 1 P(Y = 1 = 1 f Y (1 = d Ein Laufzeitfehler wird genau dann gefunden, wenn X < c ist, denn andernfalls wird in den ersten c Testdurchläufen kein Fehler gefunden. Gefordert ist P(X < c 0.9, also P(X c 0.1. Wegen b gilt (man ersetze dort c 1 durch c P(X c = (1 p c = 0.9 c. Es muss also 0.9 c 0.1 gelten, und damit äquivalent c ln(0.9 ln( c c = Es muss also c 22 sein. (Natürlich kann man dieses Ergebnis auch erhalten, wenn man für verschiedene c die Bedingung 0.9 c 0.1 direkt überprüft.

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Beispielaufgaben Binomialverteilung Lösungen

Beispielaufgaben Binomialverteilung Lösungen L. Schmeink 05a_beispielaufgaben_binomialverteilung_lösungen.doc 1 Beispielaufgaben Binomialverteilung Lösungen Übung 1 Der Würfel mit zwei roten (A) und vier weißen Seitenflächen (B) soll fünfmal geworfen

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Parametrische und nichtparametrische Tests

Parametrische und nichtparametrische Tests XIII. Nichtparametrische Tests Seite 1 Parametrische und nichtparametrische Tests Parametrische Tests: Hier wird eine bestimmte Verteilung vorausgesetzt, und getestet, ob die gewählten Parameter passen.

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Übungsblatt 6 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 6 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Übungsblatt 6 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker 29.11.2012 Gegeben sei erneut der folgende Grundraum: Ω = {1, 1.5, 2, π, 5, 12} Die Elementarereignisse

Mehr

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Aufgabe Aufgabe 2 Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker.2.202 Aufgabe Aufgabe 2 Bei einem Zufallsexperiment werden zwei Würfel geworfen und

Mehr

Statistik II für Betriebswirte Vorlesung 13

Statistik II für Betriebswirte Vorlesung 13 Statistik II für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 21. Januar 2019 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 13 Version:

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Prüfungsklausur zur Stochastik (LMG)/ Elementare Wahrscheinlichkeitstheorie und Statistik

Prüfungsklausur zur Stochastik (LMG)/ Elementare Wahrscheinlichkeitstheorie und Statistik B. Schmalfuß Jena, den 20.02.2018 Prüfungsklausur zur Stochastik (LMG)/ Elementare Wahrscheinlichkeitstheorie und Statistik Allgemeine Hinweise: Zur Verfügung stehende Zeit: 90 min. Hilfsmittel: keine.

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 4. Vorlesung - 2017 Diskrete Zufallsgrößen X : Ω {x 1, x 2,..., x i,... } Wahrscheinlichkeitsverteilung von X ( ) x1 x X 2... x i... = p 1 p 2... p i... I N (Indexmenge) mit den Wahrscheinlichkeiten p

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003 Polizeidienst-Aufgabe Abiturprüfung Bayern LK 003 a) Bei einem Einstellungstermin für den Polizeidienst waren 0% der Bewerber Frauen, von denen 90% die Aufnahmeprüfung bestanden. Drei Viertel derjenigen,

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179 . Aufgabe: Zwei bis drei Millionen deutsche Haushalte sind überschuldet. Einer der Hauptgründe für die Überschuldung privater Haushalte ist eine gescheiterte Selbstständigkeit. In einer Stichprobe von

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie 8 Termin: 1. Juni 2007 Aufgabe

Mehr

Summe von Zufallsvariablen

Summe von Zufallsvariablen Summe von Zufallsvariablen Gegeben sind die unabhängigen, gleichverteilten Zufallsvariablen X und Y mit den Wahrscheinlichkeitsdichten f() und g(). { für f() = g() = sonst Wir interessieren uns für die

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

3. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17

3. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 3. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 6/7. Aufgabe: 0 Bauteile gleicher Bauart werden vor der Weiterverarbeitung einer Materialprüfung unterzogen. 7 bestanden diese Prüfung,

Mehr

Statistik Zusätzliche Beispiele WS 2018/19

Statistik Zusätzliche Beispiele WS 2018/19 Statistik Zusätzliche Beispiele WS 208/9 Blatt 2: Wahrscheinlichkeitsrechnung. Erstellen Sie zur Zufallsgröße Augensumme von drei fairen Würfeln eine Tabelle der Wahrscheinlichkeitsfunktion und vergleichen

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Stochastik. 1 Grundlagen

Stochastik. 1 Grundlagen 1 Grundlagen Stochastik S 1.1 Beim Mensch-ärgere-dich-nicht darf zu Beginn bis zu dreimal gewürfelt werden, um eine Sechs zu bekommen. Mit welcher Wahrscheinlichkeit gelingt dies? S 1.2 Für einen Flug

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Wintersemester 2017/2018

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Wintersemester 2017/2018 Prof. Dr. Christoph Karg 31.1.2018 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Wintersemester 2017/2018 Unterschrift: Klausurergebnis Aufgabe 1 (10 Punkte) Aufgabe 3

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Aufgaben Wahrscheinlichkeitsrechnung 1. Eine Münze wird viermal geworfen. Y sei die Anzahl der Wechsel zwischen 0 und 1 während einer Versuchsfolge, z. B. Y(00) =. Bestimmen Sie die Verteilung von Y, zeichnen

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Kugelschreiber-Aufgabe Bayern LK 1986

Kugelschreiber-Aufgabe Bayern LK 1986 Kugelschreiber-Aufgabe Bayern LK 1986 1. Eine Firma stellt Kugelschreiber her. Sie werden in Packungen zu je 20 Stück geliefert. Ein Händler prüft aus jeder Packung nacheinander zwei Kugelschreiber (ohne

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

5. Stochastische Modelle I: Diskrete Zufallsvariablen

5. Stochastische Modelle I: Diskrete Zufallsvariablen 5. Stochastische Modelle I: Diskrete Zufallsvariablen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Zufallsgrößen Eine Zufallsgröße X ist eine Größe, deren Wert wir nicht exakt kennen

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Aufgaben zur Kombinatorik

Aufgaben zur Kombinatorik Aufgaben zur Kombinatorik Aufgabe 34 Kombinatorik: Kombinationen Wie viele verschiedene Zusammenstellungen von genau 5 Buchstaben können aus den 26 Buchstaben des Alphabets gebildet werden, wenn Wiederholungen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

Glücksrad-Aufgabe. Das Glücksrad ist in 2 Sektoren mit den Zahlen 1 (Winkel 120 ) und 2 eingeteilt.

Glücksrad-Aufgabe. Das Glücksrad ist in 2 Sektoren mit den Zahlen 1 (Winkel 120 ) und 2 eingeteilt. Glücksrad-Aufgabe Das Glücksrad ist in Sektoren mit den Zahlen (Winkel ) und eingeteilt. a) Das Glücksrad wird dreimal gedreht. Wie groß ist die Wahrscheinlichkeit für die folgenden Ereignisse: A: Die

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen Vorlesung 2b Diskrete Zufallsvariable und ihre Verteilungen 1 1. Die Grundbegriffe 2 Bisher hatten wir uns (vor allem) mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war. Die (schon in

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009 VERSICHERUNGEN AUF MEHRERE LEBEN Marta Ja lowiecka 23 Januar 2009 1 1 Einführung Im Folgenden werden betrachtet- basierend auf Modellen und Formeln für einfache Versicherungen auf ein Leben- verschiedene

Mehr

Inklusion und Exklusion

Inklusion und Exklusion Inklusion und xklusion ufgaben ufgabe 1: Wie groß ist die nzahl der natürlichen Zahlen zwischen 1 und 100 (jeweils einschließlich), die weder durch 2 noch durch 3 teilbar sind? ufgabe 2: Wie groß ist die

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017 Prof. Dr. Christoph Karg 10.7.2017 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2017 Name: Unterschrift: Klausurergebnis Aufgabe 1 (10 Punkte) Aufgabe

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

AUFGABENTYPEN. 2. Bekannt ist die Irrtumswahrscheinlichkeit α ; zu berechnen ist der Annahme- und Ablehnungsbereich, also die Entscheidungsregel.

AUFGABENTYPEN. 2. Bekannt ist die Irrtumswahrscheinlichkeit α ; zu berechnen ist der Annahme- und Ablehnungsbereich, also die Entscheidungsregel. AUFGABENTYPEN 1. Bekannt ist die Entscheidungsregel, d.h. K und K ; zu berechnen ist das Risiko 1.Art (bzw. 2. Art). 2. Bekannt ist die Irrtumswahrscheinlichkeit α ; zu berechnen ist der Annahme- und Ablehnungsbereich,

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt. Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die

Mehr

Stochastik Musterlösung 3

Stochastik Musterlösung 3 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 3 1. Wir betrachten eine Krankheit, zu der es einen Test beim Arzt gibt. Wir wissen,

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 B I N O M I A L V E R T E I L U N G, B I N O M I A L T A B E L L E, U N A B H Ä N G I G E E R E I G N I S S E Zentrale Methodenlehre, Europa Universität

Mehr

4b. Wahrscheinlichkeit und Binomialverteilung

4b. Wahrscheinlichkeit und Binomialverteilung b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl

Mehr

Stochastik: Binomialverteilung Stochastik Die 4 Grundaufgaben bei der Binomialverteilung Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Die 4 Grundaufgaben bei der Binomialverteilung Gymnasium ab Klasse 10 Stochastik Die 4 Grundaufgaben bei der Binomialverteilung Gymnasium ab Klasse 10 Alexander Schwarz www.mathe-aufgaben.com November 2013 1 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Erste Grundaufgabe:

Mehr

Abitur 2009 Mathematik GK Stochastik Aufgabe C1

Abitur 2009 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 009 Mathematik GK Stochastik Aufgabe C1 Auf einem Spielbrett rollt eine Kugel vom Start bis in eines der Fächer F 1 bis F 5. An jeder Verzweigung rollt

Mehr

Testen von Hypothesen bei gegebenem Annahmebereich - Übungen

Testen von Hypothesen bei gegebenem Annahmebereich - Übungen Mathias Russ, MK 19.04.2007 Hypothesentest_Ueb_Ber.mcd Testen von Hypothesen bei gegebenem Annahmebereich - Übungen (1) Schulschwänzer Von einem Schüler wird behauptet, dass er (mindestens) 40% der Unterrichtstage

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

Abitur 2016 Mathematik Stochastik IV

Abitur 2016 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr