Stefan Igel inovex GmbH. Hadoop in modern BI-Infrastrukturen

Größe: px
Ab Seite anzeigen:

Download "Stefan Igel inovex GmbH. Hadoop in modern BI-Infrastrukturen"

Transkript

1 Stefan Igel inovex GmbH Hadoop in modern BI-Infrastrukturen

2 BI-Plattform Access Standard Reporting Information Lifecycle Management Adhoc Queries /MB (SYNAPSE) << /MB (DWH) (Mass) Data Export DWH Oracle 11g EE Database Reporting Layer (Dependent Datamarts) Integration Layer (Core DWH) Acquisition Layer (Staging Area) Value: DWH als Langzeit-Archiv für Informationen Mass Data Aggregation Layer Mass Data Integration Layer Mass Data Acquisition Layer Volume: Hadoop als Kurzzeit-Archiv für Massendaten BI Source Systems Source Data WI Gateway Fileserver Replicated Source Data 51

3 Speichern: Gerne aber wie lange? Auch 500 TByte sind irgendwann einmal voll! IL separat für jede Verarbeitungsebene Je wertvoller die Daten, desto länger die Lebensdauer Bei >> Files hohe Anforderung ans Housekeeping in der SYNAPSE (s. u.) System Ebene Begründung Aufbewahrung Fileserver Import Nachladen 5 Tage Export Fachliche Anforderung 40 Tage SYNAPSE Acquisition Algorithmus / Nachberechnen 30 Tage Integration Fachliche Anforderung Tage Aggregate Nachladen 5 Tage DWH Acquisition Nachberechnen 30 Tage Integration Fachliche Anforderung 0,5-10 Jahre Reporting Fachliche Anforderung 0,5-10 Jahre 52

4 Mehrparteien- Betrieb Wer darf wann? Hadoop Job Scheduler Gleichmäßige Lastverteilung über die Zeit nach Prioritäten Verschiedene Anwendungen können konkurrierend betrieben werden Ermöglicht Adhoc-Queries mit definierten Ressourcen Mechanismus Default Capacity Fair Vergeben von Prioritäten pro Job Job-Queues mit festgelegten Prioritäten Funktionsfähig Ja Ja Ja Clusterauslastung Ja Nein Ja Gefahr von Starvation Ja Nein Nein Job-Queues und Pools mit Gewichten 53

5 Mehrparteien- Betrieb Wer darf überhaupt? Hadoop hat ein Zugriffsberechtigungskonzept angelehnt an POSIX (ohne sticky, setuid or setgid bits) für Files und Directories Hadoop hat keine eigene Benutzer-Authentifizierung Hadoop übernimmt user name (whoami) und group name (bash -c groups) vom aufrufenden Client-Prozess Authorisierung ist damit (nur) auf File- und Verzeichnisebene möglich Das schützt im Mehrparteienbetrieb vor versehentlichem Löschen oder Überschreiben fremder Dateien. Authorisierung muss auf Betriebssystem-Ebene konsequent umgesetzt sein Geeignetes Konzept für Tool -User oder Application Manager / Data Scientists This user identity mechanism combined with the permissions model allows a cooperative community to share file system resources in an organized fashion. 54

6 Best Practice Identifiziere dein BIG DATA Problem Etwas mehr schadet nicht: Alle Systeme müssen skalieren und benötigen Reserven, Namenode HA! Keep Your Ecosystem Simple, weniger kann mehr sein! Die Algorithmen bestimmen die Effizienz! Sorge für geordnete Verhältnisse im Cluster! 55

7 Agenda BI meets BIG DATA Jede Menge Blech: Die Hardware Was darf es denn sein: Das Hadoop Ecosystem Speichern, Mappen, Reduzieren Spielregeln im Cluster Der fleißige Handwerker Essenz 56

8 BI-Plattform Prozess-Steuerung Access Standard Reporting Adhoc Queries (Mass) Data Export DWH Oracle 11g EE Database Reporting Layer (Dependent Datamarts) Integration Layer (Core DWH) Acquisition Layer (Staging Area) ETL im DWH Mass Data Aggregation Layer Mass Data Integration Layer Mass Data Acquisition Layer Integration MR-Jobs in Hadoop BI Source Systems Source Data WI Gateway Fileserver Replicated Source Data 57

9 Prozess-Steuerung Anforderungen Steuerung von ETL-Prozessen im Batch-Mode Steuerung Datei-basierter Datenflüsse Verteilung der ETL-Algorithmen auf dem Cluster Integration in übergreifende Prozessketten Unterstützung des Information Lifecycle Managements (Housekeeping) Nachvollziehbarkeit von Ladeprozessen Fehler-Toleranz durch Wiederaufsetzbarkeit Technisches und fachliches Monitoring 58

10 Steuerung Azkaban (LinkedIn) PRO CONTRA Workflows können graphisch dargestellt und gedrilled werden Einfache Handhabung (Komplexes wird in Scripts ausgelagert) Startet Hadoop-Jobs und Anderes einfach als Unix-Prozesse Minimaler Funktionsumfang Keine Rechte und Zugriffs-Verwaltung Jobausführung nur Zeit-basiert Keine Redundanz (Azkaban-Server wird zum SPOF) Ressoucen (.jar files, pig scripts) werden durch Azkaban verwaltet und deployed 59

11 Steuerung Oozie (Yahoo!) PRO CONTRA Enge Integration mit Hadoop und M/R Kann mit unterschiedlichen Job-Typen umgehen: Java MR, PIG, Java, etc. Webservice- und Java-API Zeit- und Ereignis-basierte Job- Ausführung WEB-Konsole ist Read-Only, keine graphische Aufbereitung von Abhängigkeiten Ressoucen (.jar files, pig scripts) müssen manuell vor der Jobausführung auf dem HDFS deployed werden Müsste um File-Registierung erweitert werden 60

12 BI-Plattform Steuerung Steuerung der Verarbeitung und damit der Datenströme muss über den gesamten BI-Stack sichergestellt sein! Das richtige Werkzeug für die jeweilige Aufgabe: GEPPI = 1&1 EAI-Lösung (Workflow-Steuerung) FUNDI = Eigenentwicklung verlängerter Arm für Hadoop-Anbindung 61

13 Das richtige Werkzeug für die jeweilige Aufgabe PDI (http://kettle.pentaho.com/) ETL-Jobs im DWH HDFS-Zugriff delegiert an Pentaho Kettle delegiert an FUNDI GEPPI = Workflow-Engine Übergreifende-Steuerung Functional Dependency Integrator Hadoop Job-Ausführung Data-Repository 62

14 FUNDI Swahili für... Der fleißige Handwerker FUNDI File-Registration Register File & Metadata File Registration Functional Dependency Integrator Search for matching files Data Files 63

15 FUNDI Swahili für... Der fleißige Handwerker FUNDI Job-Run get Jar/PIG Metadata Input-Filenames Register Output-Files & Metadata Inp. Data Files Run Job(name) Functional Dependency Integrator Start MR Job Outp Data Files 64

16 FUNDI Swahili für... Der fleißige Handwerker FUNDI Housekeeping Check Config & Metadata Housekeeping Functional Dependency Integrator Remove matching files Data Files 65

17 FUNDI Swahili für... Der fleißige Handwerker Fundi Job-Ketten (Das EVA-Prinzip) Metadata for Job-Run, Inp.-Files, Outp.-Files E V A Named-Input Named-Output Configuration e.g. Path, Filenames, Jar/PIG-Script, Settings 66

18 Monitoring mit Ganglia :00 Uhr 67

19 Best Practice Identifiziere dein BIG DATA Problem Etwas mehr schadet nicht: Alle Systeme müssen skalieren und benötigen Reserven, Namenode HA! Keep Your Ecosystem Simple, weniger kann mehr sein! Die Algorithmen bestimmen die Effizienz! Sorge für geordnete Verhältnisse im Cluster! Es geht auch ohne Skript-Wüste und cron-jobs! 68

20 Agenda BI meets BIG DATA Jede Menge Blech: Die Hardware Was darf es denn sein: Das Hadoop Ecosystem Speichern, Mappen, Reduzieren Spielregeln im Cluster Der fleißige Handwerker Essenz 69

21 Lange Rede kurzer Sinn: Die Aufgabe ist BIG! Hadoop verlangt ein neues Denken in allen IT-Bereichen: Operations, Entwicklung, QS, Binde alle Stakeholder möglichst früh in deine Planung ein! Know-how zum Entwickeln, Testen und Betreiben einer verteilten Umgebung muss erarbeitet werden! Reduziere Komplexität, wo möglich, es bleibt herausfordernd genug! Identifiziere dein Pilotprojekt! Bleibe nicht zu lange im Spielbetrieb, evaluiere gegen echte Anforderungen! 70

22 Die Belohnung: Hadoop beeindruckt! Hadoop und sein Ecosystem bieten hervorragende Lösungen für viele BIG DATA Probleme! 71

23 Der Nutzen Hadoop beeindruckt Massendatenverarbeitung bei 1&1 ist für Web- und Media-Analytics, Logfile-Verarbeitung und Datawarehousing mit Hadoop messbar performanter, kostengünstiger, skalierbarer, flexibler, und zukunftsfähiger. Vielen Dank! 72

24 Vielen Dank für eure Aufmerksamkeit 73

25 Aufgabenverteilung Aggregationen alle 6 Stunden >15000 Files/Tag ~ 3TB 74

Big Data: Hadoop im Unternehmenseinsatz bei. TDWI Roundtable Frankfurt, 13.09.2012 Patrick Thoma, inovex GmbH

Big Data: Hadoop im Unternehmenseinsatz bei. TDWI Roundtable Frankfurt, 13.09.2012 Patrick Thoma, inovex GmbH Big Data: Hadoop im Unternehmenseinsatz bei TDWI Roundtable Frankfurt, 13.09.2012 Patrick Thoma, inovex GmbH inovex GmbH Profil inovex IT-Projekthaus individuelle IT-Dienstleistungen 1999 in Pforzheim

Mehr

Hadoop im Unternehmenseinsatz. Präsentation von Dirk Schmid und Dr. Stefan Igel

Hadoop im Unternehmenseinsatz. Präsentation von Dirk Schmid und Dr. Stefan Igel Hadoop im Unternehmenseinsatz Präsentation von Dirk Schmid und Dr. Stefan Igel Dirk Internet affin seit 1997 durch, einem der zwei ersten Internetprovider Deutschlands. Softwarearchitekt bei der 1&1 Mediafactory

Mehr

Hadoop in modernen BI-Infrastrukturen. Dr. Stefan Igel inovex GmbH

Hadoop in modernen BI-Infrastrukturen. Dr. Stefan Igel inovex GmbH Hadoop in modernen BI-Infrastrukturen Dr. Stefan Igel inovex GmbH Stefan Seit 01/2005 als Projektleiter und Systemarchitekt bei inovex Seit 08/2009 als Business Engineer bei 1&1 Erstkontakt mit Hadoop

Mehr

Hadoop in modernen BI-Infrastrukturen. Dr. Stefan Igel inovex GmbH

Hadoop in modernen BI-Infrastrukturen. Dr. Stefan Igel inovex GmbH Hadoop in modernen BI-Infrastrukturen Dr. Stefan Igel inovex GmbH Zur Person Dr. Stefan Igel Seit 01/2005 als Projektleiter und Systemarchitekt bei inovex Seit 08/2009 als Business Engineer bei 1&1 Web.Intelligence

Mehr

Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte. Best Practices aus unseren Projekten. Dr. Stefan Igel Karlsruhe, 20.02.

Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte. Best Practices aus unseren Projekten. Dr. Stefan Igel Karlsruhe, 20.02. Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte Best Practices aus unseren Projekten Dr. Stefan Igel Karlsruhe, 20.02.2014 Agenda 1. Agile Ziele 2. Agile Teams 3. Agil BI-Projekte managen

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

BUSINESS INTELLIGENCE (BI) MIT PENTAHO. Schneller, höher, weiter!

BUSINESS INTELLIGENCE (BI) MIT PENTAHO. Schneller, höher, weiter! BUSINESS INTELLIGENCE (BI) MIT PENTAHO Schneller, höher, weiter! HERZLICH WILLKOMMEN ZUM WEBINAR Business Intelligence (BI) mit Pentaho Die Moderatoren Fragen über Chat Arved Wendt Teammanager Janina Kasten

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Markus Feichtinger. Power Systems. Der Weg zu POWER! 2009 IBM Corporation

Markus Feichtinger. Power Systems. Der Weg zu POWER! 2009 IBM Corporation Markus Feichtinger Power Systems Der Weg zu POWER! Agenda Motivation Lösung Beispiel Export / Import - Überblick - Migration Beispiel XenoBridge - Überblick - Migration Benefits 2 Motivation Strategisch

Mehr

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH Complex Hosting Autor.: Monika Olschewski Whitepaper Version: 1.0 Erstellt am: 14.07.2010 ADACOR Hosting GmbH Kaiserleistrasse 51 63067 Offenbach am Main info@adacor.com www.adacor.com Complex Hosting

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Zeitlich abhängig von OWB?

Zeitlich abhängig von OWB? Zeitlich abhängig von OWB? 24. April 2007 Beat Flühmann Trivadis AG > IT Lösungsanbieter» Application Development, Application Performance Management, Business Communication, Business Intelligence, Managed

Mehr

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing DWH Projekte Ulf Leser Wissensmanagement in der Bioinformatik Inhalt DWH Projekte Spezifika Die kritischen Punkte Warum scheitern DWH Projekte? Ulf Leser: Data Warehousing, Vorlesung,

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Oracle XML Publisher

Oracle XML Publisher Oracle 1 Oracle übernimmt Generierung Verwaltung Verteilung der Geschäftsdokumente Rechnungen Invoice Check Print Schecks Etiketten Erfüllt die Anforderungen Reduziert Komplexität geringer Pflegeaufwand

Mehr

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012 Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment Henning Blohm 5.7.2012 1 Z2 ist ein radikal neuer* Ansatz für System Life-Cycle Management in Java * jedenfalls für Java Ein Builtool?

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte. Best Practices aus unseren Projekten. Dr. Stefan Igel Mainz, 13.05.

Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte. Best Practices aus unseren Projekten. Dr. Stefan Igel Mainz, 13.05. Agile Methoden als Erfolgsfaktor für BI und Big Data Projekte Best Practices aus unseren Projekten Dr. Stefan Igel Mainz, 13.05.2014 Agenda 1. Agile BI und BI Agilität 2. Agile Teams 3. Agil BI-Projekte

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 05.03.2013 CeBIT 2013 Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 35 Mitarbeiter! Spezialisierung

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com z/os Explorer Agenda Introduction and Background Why do you want z/os Explorer? What does z/os Explorer do? z/os Resource Management

Mehr

BMC Control M Tipps & Tricks 2. Martin Dienstl, BMC Software martin_dienstl@bmc.com

BMC Control M Tipps & Tricks 2. Martin Dienstl, BMC Software martin_dienstl@bmc.com BMC Control M Tipps & Tricks 2 Martin Dienstl, BMC Software martin_dienstl@bmc.com CONTROL M Tipps&Tricks Topics Usability Nützliche Systemparameter Copyright 3/1/2012 BMC Software, Inc 2 Quantitative

Mehr

SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz

SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz SharePoint 2016 was kommt auf uns zu? SharePoint & Office 365 Community Zentralschweiz Inhalt Wo liegt der Fokus von SharePoint 2016? Experiences Infrastruktur SharePoint Migration auf 2016 Wie sehen die

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Release Automation für Siebel

Release Automation für Siebel June 30 th 2015 Release Automation für Siebel Stefan Kures Agenda + Herausforderungen + Lösung mit Automic + Vorteile + Resultate 3 Property of Automic Software. All rights reserved Siebel als zentrale

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Solaris Cluster. Dipl. Inform. Torsten Kasch 8. Januar 2008

Solaris Cluster. Dipl. Inform. Torsten Kasch <tk@cebitec.uni Bielefeld.DE> 8. Januar 2008 Dipl. Inform. Torsten Kasch 8. Januar 2008 Agenda Übersicht Cluster Hardware Cluster Software Konzepte: Data Services, Resources, Quorum Solaris Cluster am CeBiTec: HA Datenbank

Mehr

Best Practices: BI mit Open-Source-Tools

Best Practices: BI mit Open-Source-Tools Best Practices: BI mit Open-Source-Tools Alf Hellmund - GIUA 2009 Seite 1 Agenda Einleitung Best Practices Fazit Vorstellung & Motivation Vorteile Architektur & Entwurf Datenmodellierung ETL Reporting

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 22.05.2013 LinuxTag Berlin Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 38 Mitarbeiter! Spezialisierung

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

Installation eines performanten und stabilen SQL-Servers

Installation eines performanten und stabilen SQL-Servers Installation eines performanten und stabilen SQL-Servers Worauf sollte man achten? Welche Einstellungen sind relevant? Optimierungspotentiale Björn Peters About Me www.sql-aus-hamburg.de plus.google.com/+sql-aus-hamburgde

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Oracle Fusion Middleware Ordnung im Ganzen Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Begriffe & Ordnung Fusion Middleware Wann, was, warum Beispiel für

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Jochen Heßler, 16.03.2015 2002 Gegründet in Freiburg, Deutschland 2002 Heute Büros in Freiburg, Frankfurt, Düsseldorf, Paris, Boston

Mehr

Make-loses Java für mehr Produktivität: Das z 2 -Environment. Henning Blohm 25.6.2012

Make-loses Java für mehr Produktivität: Das z 2 -Environment. Henning Blohm 25.6.2012 Make-loses Java für mehr Produktivität: Das z 2 -Environment Henning Blohm 25.6.2012 1 Z2 ist ein radikal neuer* Ansatz für System Life-Cycle Management in Java * jedenfalls für Java Oh je noch ein Tool?

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Komplexe dokumentenbasierte Prozesse mit Oracle Technologien umsetzen

Komplexe dokumentenbasierte Prozesse mit Oracle Technologien umsetzen Komplexe dokumentenbasierte Prozesse mit Oracle Technologien umsetzen Johannes Michler, PROMATIS software GmbH DOAG Development; Bonn, 19. Mai 2013 1 Agenda Einführung Ausgangssituation Anforderungen Ansätze

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

Session Storage im Zend Server Cluster Manager

Session Storage im Zend Server Cluster Manager Session Storage im Zend Server Cluster Manager Jan Burkl System Engineer, Zend Technologies Agenda Einführung in Zend Server und ZSCM Überblick über PHP Sessions Zend Session Clustering Session Hochverfügbarkeit

Mehr

Reporting: von der Datenquelle zum Dashboard. Dr. Gero Presser QuinScape GmbH

Reporting: von der Datenquelle zum Dashboard. Dr. Gero Presser QuinScape GmbH Reporting: von der Datenquelle zum Dashboard Dr. Gero Presser QuinScape GmbH 1 Agenda Kurze Vorstellung Embedded BI warum macht man das? TIBCO Jaspersoft Von der Datenquelle bis zum Dashboard Anwendungsbeispiele

Mehr

Dynamic Ressource Management

Dynamic Ressource Management best Open Systems Day Fall 2006 Dynamic Ressource Management Unterföhring Marco Kühn best Systeme GmbH kuehn@best.de Agenda Überblick Dynamic Resource Pools und FSS Dynamic Resource Memory RCAP Oracle

Mehr

IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database

IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database First European i2b2 Academic User Meeting IDRT: Unlocking Research Data Sources with ETL for use in a Structured Research Database The IDRT Team (in alphabetical order): Christian Bauer (presenter), Benjamin

Mehr

Kooperativer Speicher: Schwächen und Gegenmaßnahmen

Kooperativer Speicher: Schwächen und Gegenmaßnahmen Kooperativer Speicher: Schwächen und Gegenmaßnahmen Cooperative storage: weaknesses and countermeasures Lutz Behnke 2. Dezember 2005 2005 Lutz Behnke 1 /home/sage/texte/haw/master/seminar/coop_storage_failure.sxi

Mehr

A central repository for gridded data in the MeteoSwiss Data Warehouse

A central repository for gridded data in the MeteoSwiss Data Warehouse A central repository for gridded data in the MeteoSwiss Data Warehouse, Zürich M2: Data Rescue management, quality and homogenization September 16th, 2010 Data Coordination, MeteoSwiss 1 Agenda Short introduction

Mehr

Suchen allein ist nicht genug!

Suchen allein ist nicht genug! Suchen allein ist nicht genug! Eine Unternehmensweite Suche aussuchen, einführen und optimieren Jörg Issel Jörg Issel Seit 2001 im Suchmaschinenumfeld Projekte für diverse international tätige Konzerne

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Analytik Mittels R als übergreifende Plattform

Analytik Mittels R als übergreifende Plattform Analytik Mittels R als übergreifende Plattform Detlef E. Schröder Oracle DWH Community STCC DB Mitte @DetEgbSchroeder, http://www.oracledwh.de Themen Anforderungen an Datenmanagement R - Grundsätzliches

Mehr

i2b2 Wizard Installation

i2b2 Wizard Installation i2b2-workshop am 26.03.2013 in Erlangen i2b2 Wizard Installation Ein Überblick Sebastian Mate (Erlangen) Sebastian Mate et al. // Lehrstuhl für Medizinische Informatik // Universität Erlangen-Nürnberg

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

NEAR REAL TIME DWH BEI TRANSNETBW

NEAR REAL TIME DWH BEI TRANSNETBW Prozessdatenarchiv SCADA Data Warehouse NEAR REAL TIME DWH BEI TRANSNETBW MATTHIAS WOLF / TRANSNETBW PETER WELKER / TRIVADIS Stuttgart, 21. Januar 2015 AGENDA 01 02 03 04 Vorstellung TransnetBW Vorstellung

Mehr

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Sprecher: Uwe Nadler, Senior Managing Consultant 1 Marketing braucht unterschiedliche Informationen, um entsprechende

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich Agenda Einführung Key differentiators von ODI12c Effizienz Flexibilität Wartbarkeit & Beweglichkeit Schlussfolgerungen

Mehr

Portal for ArcGIS Konzepte und Deployment

Portal for ArcGIS Konzepte und Deployment Portal for ArcGIS Konzepte und Deployment Marcel Frehner Esri Schweiz IGArc Technologie-Sitzung Aarau, 28.1.2016 Agenda + GIS-Implementierungsmuster + Web GIS und Zusammenarbeit + Berechtigungen: Benutzer,

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Red Stack Einfach gut für jedes Projekt und jeden Kunden & Partner Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Oracle Red Stack - Idee und Vorteile Software

Mehr

Raber+Märcker Techno Summit 2014 Microsoft Dynamics NAV 2013 R2 Überblick und Hintergründe zu aktuellen Version. Schimon.Mosessohn@microsoft.

Raber+Märcker Techno Summit 2014 Microsoft Dynamics NAV 2013 R2 Überblick und Hintergründe zu aktuellen Version. Schimon.Mosessohn@microsoft. Raber+Märcker Techno Summit 2014 Microsoft Dynamics NAV 2013 R2 Überblick und Hintergründe zu aktuellen Version Schimon.Mosessohn@microsoft.com Herzlich Willkommen 1996 2004 2010 2014 Navision 3.7 Microsoft

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Automatisierung mit der Line of Business verbinden. Ralf Paschen

Automatisierung mit der Line of Business verbinden. Ralf Paschen Automatisierung mit der Line of Business verbinden Ralf Paschen Agenda Die Herausforderung Was wollen wir? Was hindert uns? Was müssen wir lösen? Wir automatisieren 3 Property of Automic Software. All

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH What is a GEVER??? Office Strategy OXBA How we used SharePoint Geschäft Verwaltung Case Management Manage Dossiers Create and Manage Activities

Mehr

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen

Mehr

On-premise owncloud für die Mitarbeiter der Deutschen Bahn - mit "DB Box" flexibel und sicher Dateien austauschen -

On-premise owncloud für die Mitarbeiter der Deutschen Bahn - mit DB Box flexibel und sicher Dateien austauschen - On-premise owncloud für die Mitarbeiter der Deutschen Bahn - mit "DB Box" flexibel und sicher Dateien austauschen - Bobby Eichholz, DB Systel GmbH Product Manager Infrastructure & Workplace, ICT Products

Mehr

Andreas Emhart Geschäftsführer Alegri International Group

Andreas Emhart Geschäftsführer Alegri International Group Andreas Emhart Geschäftsführer Alegri International Group Agenda Vorstellung Alegri International Überblick Microsoft Business Intelligence Sharepoint Standard Business Intelligence Tool Excel Service

Mehr

Carrier Integration. Wie binden Sie eigentlich Ihre Transportdienstleister in Ihre Prozesse ein?

Carrier Integration. Wie binden Sie eigentlich Ihre Transportdienstleister in Ihre Prozesse ein? Carrier Integration Wie binden Sie eigentlich Ihre Transportdienstleister in Ihre Prozesse ein? Ablauf Kurzvorstellung der Teilnehmer Wer sind Sie und wo arbeiten Sie? Was für Lösungen werden eingesetzt?

Mehr

Grundlagen des Grid Computing

Grundlagen des Grid Computing Grundlagen des Grid Computing Grid Middleware Toolkits: Advanced Resource Connector (ARC) ICA Joh.. Kepler Universität t Linz Advanced Resource Connector Entwickelt durch die NorduGrid Collaboration Skandinavische

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Alles neu. Migration in eine frische Datenbank ohne Altlasten. Thomas Klughardt Senior Systems Consultant

Alles neu. Migration in eine frische Datenbank ohne Altlasten. Thomas Klughardt Senior Systems Consultant Alles neu Migration in eine frische Datenbank ohne Altlasten Thomas Klughardt Senior Systems Consultant Dell Software Lösungen Data center & cloud management Client management Performance management Virtualization

Mehr

Zend PHP Cloud Application Platform

Zend PHP Cloud Application Platform Zend PHP Cloud Application Platform Jan Burkl System Engineer All rights reserved. Zend Technologies, Inc. Zend PHP Cloud App Platform Ist das ein neues Produkt? Nein! Es ist eine neue(re) Art des Arbeitens.

Mehr

Powershell DSC Oliver Ryf

Powershell DSC Oliver Ryf 1 Powershell DSC Oliver Ryf Partner: 2 Agenda Begrüssung Vorstellung Referent PowerShell Desired State Configuration F&A Weiterführende Kurse 3 Vorstellung Referent Seit 1991 IT-Trainer 1995 MCSE und MCT

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

SNMP4Nagios. SNMP4Nagios. Grazer Linuxtage 2007. Peter Gritsch

SNMP4Nagios. SNMP4Nagios. Grazer Linuxtage 2007. Peter Gritsch SNMP4Nagios Grazer Linuxtage 2007 Peter Gritsch Inhalte Motivation für Network Monitoring SNMP Grundlagen Nagios Grundlagen SNMP4Nagios PlugIns Motivation für Network Monitoring Probleme erkennen bevor

Mehr

Thin Clients einfach und erfolgreich ausrollen. Alan Boffi & Torsten Boll, 6. April 2016

Thin Clients einfach und erfolgreich ausrollen. Alan Boffi & Torsten Boll, 6. April 2016 Thin Clients einfach und erfolgreich ausrollen Alan Boffi & Torsten Boll, 6. April 2016 1 Kämpft nicht jeder mit diesen Herausforderungen? Grosse Stückzahlen müssen in kürzester Zeit konfiguriert und ausgerollt

Mehr

Agile Praktiken für das Service Transition Management. und wie IT Automation Ihre Service Transition Prozesse verändert - Change Management

Agile Praktiken für das Service Transition Management. und wie IT Automation Ihre Service Transition Prozesse verändert - Change Management Agile Praktiken für das Service Transition Management und wie IT Automation Ihre Service Transition Prozesse verändert - Change Management Agenda Warum Change Management? Wie wird Change Management umgesetzt?

Mehr

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?!

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! Oliver Steinhauer Sascha Köhler.mobile PROFI Mobile Business Agenda MACHEN SIE IHRE ANWENDUNGEN MOBIL?! HERAUSFORDERUNG Prozesse und Anwendungen A B

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015 Hadoop & Spark Carsten Herbe 8. CC-Partner Fachtagung 2015 29.04.2015 Daten & Fakten 25 Jahre Erfahrung, Qualität & Serviceorientierung garantieren zufriedene Kunden & konstantes Wachstum 25 Jahre am Markt

Mehr

Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord

Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord Gut zu wissen... Lorenz Keller Server Technologies Competence Center Nord Agenda Neue Produkte Oracle Secure Enterprise Search SQL Developer (Raptor) XML-Publisher Application Server/ JDeveloper 10.1.3

Mehr

MICROSOFT WINDOWS AZURE

MICROSOFT WINDOWS AZURE Cloud Computing à la Microsoft MICROSOFT WINDOWS AZURE Karim El Jed netcreate OHG Agenda Was ist Cloud Computing? Anwendungsszenarien Windows Azure Platform Alternativen Was ist Cloud Computing? Was ist

Mehr

BI und Data Warehouse

BI und Data Warehouse BI und Data Warehouse Die neue Welt der Daten mit 2012 Daniel Weinmann Product Marketing Manager Microsoft Deutschland GmbH Sascha Lorenz Consultant & Gesellschafter PSG Projekt Service GmbH Werner Gauer

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Oracle Database 10g RAC Plattformen im Detail

Oracle Database 10g RAC Plattformen im Detail Oracle Database 10g RAC Plattformen im Detail Markus Michalewicz BU Database Technologies ORACLE Deutschland GmbH 2 Page 1 www.decus.de 1 Agenda Einleitung RAC was ist das noch gleich? Wer die Wahl hat,

Mehr