VHDL - Grundlagen des Pointrenderings

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "VHDL - Grundlagen des Pointrenderings"

Transkript

1 VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg / 25

2 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges Dreiecksnetz Textur Beleuchtungsmodell schnelle Approximation (Interpolation, etc) Einsatz: interaktive Computergrafik 2 / 25

3 Rendern von Punktwolken 3D Scanner liefern Punktwolken keine explizite Textur nötig exakte Abbildung des Scans Einsatz: Visualisierung von 3D-Scans, Vermessung und Qualitätskontrolle 3 / 25

4 Ziel des Rendervorgangs Abbildung eines 3-D Punktes auf 2-D (Bildschirm) x in [ ] y in xout + Farbe + Farbe y z out in Annahme: x in, y in, z in [ 1, 1] Ausgabe: x out, y out [0, screen] 4 / 25

5 Transformations-Schritte World space Camera space Projective space Viewport Rasterization 5 / 25

6 Affine Abbildung und homogene Koordinaten Affine Abbildung: x = A x + t Ziel: Translation durch Matrix-Vektor-Multiplikation Lösung: Homogene Koordinaten Homogenisierung: [x, y, z] T [x, y, z, 1] T Matrix-Vektor-Multiplikation: [x, y, z, w ] T = M 4x4 [x, y, z, w] T Dehomogenisierung: [x, y, z, w ] T [ ] [ ] x A t x, A [ ] [ ] [ ] A t x A x + t = A x + t [ x w, y w, z w ] T 6 / 25

7 Matrix Vorberechnung Rendervorgang besteht aus mehreren Matrix-Vektor Multiplikationen p = M view (M proj (M cam p)) Assoziativität der Matrix Multiplikation M = M view M proj M cam p = M p Matrix-Matrix Multiplikation teuer, jedoch ist M unabhängig von den Punkten und kann vorberechnet werden Matrix-Vektor Multiplikation jedes Vektors mit M 7 / 25

8 World space y z Beschreibung der Szene in 3-D Positionierung der Kamera 8 / 25

9 Kamera-Koordinatensystem v w v up y u v gaze z e w = vgaze v gaze u = v up w v = w u x 9 / 25

10 Camera space v w Verschiebung des Koordinaten-Ursprungs Transformation des Welt-Koordinatensystems (x,y,z) in das der Kamera (u,v,w) 10 / 25

11 Camera space - Affine Abbildung Translation des Koordinaten-Ursprungs: e x M cam,1 = e y e z Wechsel des Koordinatensystems: u x u y u z 0 M cam,2 = v x v y v z 0 w x w y w z Resultierende Matrix: u u e M cam = M cam,2 M cam,1 = v v e w w e / 25

12 Projective space -1 z -1 y 1 1 perspektivische Projektion Skalierung abhängig von der Entfernung zum Betrachter Transformation des sichtbaren Bereichs auf Einheitswürfel [ 1, 1] 3 12 / 25

13 Perspektivische Transformation n f Begrenzung der Tiefe durch n (near plane) und f (far plane) Projektion des sichtbaren Pyramidenstumpfs auf die near plane 13 / 25

14 Perspektivische Transformation 2 Skalierung in Abhängigkeit der Entfernung zur near plane durch Dehomogenisierung n x M proj,1 = 0 n n + f nf, M proj,1 y z = nx n ny (n + f )z nf z x n z y n + f n z z f x Für z = n bleiben x und y unverändert: p = y n Für z = f : p = n f x n f y f 14 / 25

15 Einheitswürfel w h f Skalierung des Quaders auf sichtbaren Bereich und Verschiebung in den Ursprung 2 w M proj,2 = 0 h n+f 0 0 f n n f n 15 / 25

16 Projektionsmatrix Berechnung von w und h: φ ϕ (halber) Öffnungswinkel der Kamera in y-richtung r Seitenverhältnis Breite:Höhe, z. B. 4:3 oder 16:9 h = 2n tan(ϕ) w = 2nr tan(ϕ) Resultierende Matrix: M proj = M proj,2 M proj,1 = h /2 n 1 r tan(ϕ) tan(ϕ) 0 0 f +n 0 0 f f n 2nf n f / 25

17 Transformationsmatrix bislang M = M proj M cam = = 1 r tan(ϕ) tan(ϕ) 0 0 f +n 0 0 f n 2nf n f u x r tan(ϕ) v x tan(ϕ) u y r tan(ϕ) v y tan(ϕ) u z r tan(ϕ) v z tan(ϕ) u u e v v e w w e 0 1 u e r tan(ϕ) v e tan(ϕ) w x f +n f n w y f +n f n w z f +n f n w e f +n f n + 2nf n f w x w y w z w e 17 / 25

18 Viewport Skalierung auf Bildschirmgröße w scr / wscr / 2 0 h scr / 2 0 hscr / Clipping der nicht-sichtbaren Bereiche x / [0, w scr ] y / [0, h scr ] z / [ 1, 1] -1 0 screen height 1 z 18 / 25

19 Rasterisierung screen 0 Bestimmung der sichtbaren Pixel durch z-vergleich z-buffer speichert für jedes Pixel Tiefeninformation Aktualisierung der Farbe nur, falls z < z buffer (x, y) -1 screen height 1 z 19 / 25

20 Anpassung des Rendervorgangs Viewport-Transformation nicht Teil der vorberechneten Matrix Grund: einfache Überprüfung des gültigen Bereichs x, y, z [ 1, 1] Anschließend manuelle Skalierung auf Viewport x = x wscr 2 + wscr 2 y = y hscr 2 + hscr 2 Bei geeigneter Wahl von w scr, h scr : Multiplikation durch Shift realisierbar 20 / 25

21 Algorithmus Berechne Rendermatrix M = M proj M cam Lösche Tiefen- und Farbspeicher z buffer und c buffer Für alle Punkte P = [x, y, z] T mit Farbe c Füge homogene Koordinate hinzu P hom = [x, y, z, 1] T Berechne projizierten Punkt P proj = M P hom = [x, y, z, w ] T Dehomogenisierung [ ] x P dehom =, y T, z w w w = [x, y, z ] T Wenn x, y, z [ 1, 1] Skaliere auf Viewport x wscr = x y = y + wscr 2 2 hscr + hscr 2 2 Wenn z < z buffer (x, y ) z buffer (x, y ) = z c buffer (x, y ) = c 21 / 25

22 Datenfluss Punkte Matrix Auflösung Tiefe Tiefe Farbe Dehomogenisierung Homogenisierung Transformation Clipping Viewport z-vergleich Update RENDER UNIT 22 / 25

23 Speicher und Arithmetik MEMORY Punkte Konfiguration z-buffer Bildspeicher Matrix-Vektor Multiplikation Division Vergleich Multiplikation Vergleich RENDER UNIT Dehomogenisierung Homogenisierung Transformation Clipping Viewport z-vergleich Update 23 / 25

24 Zentraler Speicherbus MEMORY Punkte Konfiguration z-buffer Bildspeicher 1 Bildspeicher 2 Addr Data Matrix-Vektor Multiplikation Division Vergleich Multiplikation Vergleich RENDER UNIT Dehomogenisierung Homogenisierung Transformation Clipping Viewport z-vergleich Update 24 / 25

25 Umsetzung im FPGA FPGA PC UART MEMORY Punkte Konfiguration z-buffer Bildspeicher 1 Bildspeicher 2 Monitor VGA Addr Data SW/BTN Debug Matrix-Vektor Multiplikation Division Vergleich Multiplikation Vergleich RENDER UNIT Dehomogenisierung Homogenisierung Transformation Clipping Viewport z-vergleich Update 25 / 25

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE Marko HeRBERTZ Wiederholung: Objekt-, Welt- und Kamerakoordinaten Kugelkoordinaten in kartesische Mögliche Schwierigkeiten Kameralinse Lage der Festung Lagerichtige

Mehr

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 5. Sichtsysteme in der Robotik....................307 Industrielle

Mehr

Skalierbarkeit virtueller Welten

Skalierbarkeit virtueller Welten $86=8*'(5 )2/,(1 9505 9RUOHVXQJ Dr. Ralf Dörner *RHWKH8QLYHUVLWlWÃ)UDQNIXUW *UDSKLVFKHÃ'DWHQYHUDUEHLWXQJ hehueolfn Der Begriff VR Perspektivisches Sehen in 3D Skalierbarkeit virtueller Welten Echtzeitanforderungen

Mehr

Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig Kamerakalibrierung Messen in Videobildern, Leobots-Projekt 2006 Version 1.0 Matthias Jauernig, 03INB, HTWK Leipzig Copyright (c) 2006, Matthias Jauernig Kamerakalibrierung, Matthias Jauernig 3 Begriffe

Mehr

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1 Seite 1 1 Transformationen 1.1 Transformationsmatrizen In den folgenden Teilaufgaben sind die Koeffizienten von 4 4 Transformationsmatrizen zur Repräsentation von affinen Abbildungen im R 3 zu bestimmen.

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Programmieren mit DirectX

Programmieren mit DirectX 2D 3D Programmieren mit DirectX Teil 3: Malte Ried Fachhochschule Gießen-Friedberg 30. Oktober 2005 Inhalt 2D 3D 1 2D 2 3D 3 2D 3D Bis jetzt Windows-Fenster, das man schließen kann initialisiertes Direct3D

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( )

Universität Osnabrück Fachbereich Mathematik / Informatik. 5. Vorlesung ( ) Universität Osnabrück Fachbereich Mathematik / Informatik 5. Vorlesung (06.05.2013) Prof. Dr. rer. nat. Oliver Vornberger Nico Marniok, B. Sc. Erik Wittkorn, B. Sc. Game Application Layer Rückblick Game

Mehr

Lokale Beleuchtungsmodelle

Lokale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell

Mehr

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe

Shader für Geometrische Grundprimitive. Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe Shader für Geometrische Grundprimitive Beispielszene mit vielen Kegeln unterschiedlicher Größe und Farbe 0. Gliederung Gliederung: 1. Motivation 2. Verwandte Arbeiten 3. Überblick über das Vorgehen 3.1

Mehr

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67 Grundlagen - Licht und visuelle Wahrnehmung 1 Physikalische Grundlagen 2 Licht 2 Fotometrie 6 Geometrische Optik 9 Schatten 13 Farben 15 Visuelle Wahrnehmung - vom Reiz zum Sehen und Erkennen 17 Das Auge

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken 3D-Computergrafik und animation Shading und globale Beleuchtungsverfahren, Animationstechniken 1 Von 2D nach 3D Weiter: Modell für eine Sichtbeschreibung 2 Kameramodell Reale Kamera als Orientierung und

Mehr

Koordinaten, Transformationen und Roboter

Koordinaten, Transformationen und Roboter Koordinaten, Transformationen und Roboter Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 48 Einleitung Seit Anbeginn der

Mehr

Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester

Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform. Thorsten Jost INF-M2 AW1 Sommersemester Navigation anhand natürlicher Landmarken mit Hilfe der Scale Invariant Feature Transform Thorsten Jost INF-M2 AW1 Sommersemester 2008 Agenda Motivation Feature Detection Beispiele Posenbestimmung in Räumen

Mehr

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen

Shadingalgorithmen zur Visualisierung nanostrukturierter Oberflächen Universität Hamburg Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme Seminar Informatikanwendungen in Nanotechnologien Betreuer: Bernd Schütz Sommersemester 2014 Shadingalgorithmen

Mehr

Computer Graphics Gerätetechnik, Programmierung und Anwendung graphischer Systeme

Computer Graphics Gerätetechnik, Programmierung und Anwendung graphischer Systeme Computer Graphics Gerätetechnik, Programmierung und Anwendung graphischer Systeme Von Prof. Dr.-Ing. Jose Encarnacäo Prof. Dr.-Ing. Wolfgang Straßer, Technische Hochschule Darmstadt, Fachbereich Informatik

Mehr

Praktikum: Spieleengine im Eigenbau

Praktikum: Spieleengine im Eigenbau Seite 1/17 Praktikum Spieleengine im Eigenbau Alexander Weggerle, Tobias Bäuerle 19.10.09 http://www.saschawillems.de Praktikum: Spieleengine im Eigenbau Seite 2/17 Praktikum Spieleengine im Eigenbau Alexander

Mehr

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net> 3D rendering Introduction and interesting algorithms PHP Usergroup Dortmund, Dortmund, 2006-12-14 Kore Nordmann Speaker Kore Nordmann Studies computer science at the University Dortmund

Mehr

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de Überblick Echtzeit-Rendering Uwe Domaratius dou@hrz.tu-chemnitz.de Gliederung 1. Einleitung 2. geometriebasierende Verbesserungen 3. Level-of-Detail 4. Culling 5. Texturen 6. bildbasiertes Rendering Was

Mehr

Lehrbuch der Grafikprogrammierung

Lehrbuch der Grafikprogrammierung Klaus Zeppenfeld Lehrbuch der Grafikprogrammierung Grundlagen Programmierung Anwendung unter Mitwirkung von Regine Wolters mit 2 CD-ROMs Spektrum Akademischer Verlag Heidelberg Berlin LE 1 1 Grundlagen

Mehr

Die Elemente einer Szene werden in einer Graphstruktur gespeichert

Die Elemente einer Szene werden in einer Graphstruktur gespeichert SZENEGRAPHEN Szenegraphen Allgemeines Szenegraphen dienen zum Verwalten von 3D-Szenen Die Elemente einer Szene werden in einer Graphstruktur gespeichert Jede reale Implementierung eines Szenegraphen ist

Mehr

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany zach@tu-clausthal.de Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

Seminar Game Development Game Computer Graphics. Einleitung

Seminar Game Development Game Computer Graphics. Einleitung Einleitung Gliederung OpenGL Realismus Material Beleuchtung Schatten Echtzeit Daten verringern Grafik Hardware Beispiel CryEngine 2 Kristian Keßler OpenGL Was ist OpenGL? Grafik API plattform- und programmiersprachenunabhängig

Mehr

Cycloramas Nutzen und Mehrwerte für die Stadt Frankfurt am Main

Cycloramas Nutzen und Mehrwerte für die Stadt Frankfurt am Main Cycloramas Nutzen und Mehrwerte für die Stadt Frankfurt am Main Inhaltsübersicht Kurzüberblick Unternehmen CycloMedia Dienstleistungen CycloMedia Aufnahmeprinzip Messprinzip Globespotter Integrationen

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1.

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1. Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian Dauer: 30 min jeweils Note: 1.0 jeweils Alles in allem eine lockere Atmosphäre, man bekommt genug Papier und

Mehr

Automatisch-generierte Texturen aus Laserpunktwolken

Automatisch-generierte Texturen aus Laserpunktwolken Automatisch-generierte Texturen aus Laserpunktwolken Sharon Friedrich, Maik Häsner Ruprecht-Karls-Universität Heidelberg Interdisziplinäres Zentrum für wissenschaftliches Rechnen (IWR) Softwarepraktikum

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Wiederholung. Symmetrische Verschlüsselung klassische Verfahren: moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung einer Kombination aus

Wiederholung. Symmetrische Verschlüsselung klassische Verfahren: moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung einer Kombination aus Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Computergrafik 1 3D Rendering

Computergrafik 1 3D Rendering Computergrafik 3D Rendering Hearn/Baker 5.9-6,7.-9,7. Based on material b Werner Purgathofer and Dieter Schmalstieg Creating an Illusion The environment The imaging process = rendering The camera 2 Rendering

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

'Visual Hull' mit Hilfe von Spiegeln

'Visual Hull' mit Hilfe von Spiegeln 'Visual Hull' mit Hilfe von Spiegeln hwww.dip.ee.uct.ac.za/~kforbes/doublemirror/doublemirror.html Dreidimensionales Computersehen Dr.-Ing. Simon Winkelbach www.rob.cs.tu-bs.de/teaching/courses/cs 1 Zur

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11.

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11. Poisson Surface Reconstruction Peter Hagemann Andreas Meyer Seminar 1 Peter Eisert: SS 11 Motivation Zur 3D Darstellung von Objekten werden meist Scan-Daten erstellt Erstellung eines Dreieckmodells aus

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar ADOBE AFTER EFFECTS 5 - CAMERA - RIG von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar Beim 5 - Camera - Rig wird mit Hilfe von 5 Kameras ein Fulldome

Mehr

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung

Computergrafik 2010 Oliver Vornberger. Kapitel 18: Beleuchtung Computergrafik 2010 Oliver Vornberger Kapitel 18: Beleuchtung 1 Ausgangslage am Ende der Viewing Pipeline liegt vor: P A Materialeigenschaften P B P C 2 Beleuchtungmodelle lokal: Objekt, Lichtquellen,

Mehr

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Referent: Arndt Ebert 1 2 Ziel des Vortrags Einordnung der point based representation (PBR) und Grundlagen Effiziente

Mehr

Tag 3. Zweidimensionale Spielewelten

Tag 3. Zweidimensionale Spielewelten Tag 3 Zweidimensionale Spielewelten Lernziele Grundlagen für eine 2D-Spielewelt Beschreibung von 2D-Welten durch Vektoren Zweidimensionale Welttransformationen durch Matrizen Mögliche Problemstellungen

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Raytracing und Computergraphik Überblick Raytracing Typen von Raytracern z-buffer Raytracing Lichtstrahlen-Verfolgung (engl. ray tracing): Berechnung von Lichtstrahlen

Mehr

Morphologische Operationen (12 Punkte)

Morphologische Operationen (12 Punkte) 05.10.2015 186.822 VU Einführung in Visual Computing 3. Test Gruppe A Matrikelnummer: Nachname: Punkte Studienkennzahl: Vorname: Bitte tragen sie Ihre Matrikelnummer, Studienkennzahl sowie Vor- und Nachname

Mehr

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05

Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 Komplexpraktikum Graphische Datenverarbeitung im WS 04/05 von Enrico Leonhardt 28 45 669 TU Dresden Medieninformatik 29. März 2005 Graphische Datenverarbeitung WS 04/05 Einführung Dieser Raytracer entstand

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Eckehard Steinbach Fachgebiet Medientechnik. Technische Universität München. EIKON e.v. Jahresversammlung

Eckehard Steinbach Fachgebiet Medientechnik. Technische Universität München. EIKON e.v. Jahresversammlung Bildbasierte 3D Welten Eckehard Steinbach Fachgebiet Medientechnik Lehrstuhl für Kommunikationsnetze Technische Universität München EIKON e.v. Jahresversammlung 10.02.200902 2009 Traditionell: Geometrische

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Bildbearbeitung ganz praktisch

Bildbearbeitung ganz praktisch Bildbearbeitung ganz praktisch Karl-Friedrich Kamm Hamburg - Norderstedt 1 Um welche Kernfrage geht es in der digitalen Bildbearbeitung? Wie kann ich aus der Fülle der aufgenommenen Bildinformationen das

Mehr

Digitale Bildverarbeitung Einheit 12 3D-Modellierung

Digitale Bildverarbeitung Einheit 12 3D-Modellierung Digitale Bildverarbeitung Einheit 12 3D-Modellierung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Einen Eindruck

Mehr

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de > Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion

Mehr

Entwicklung einer allgemeinen dynamischen inversen Kinematik

Entwicklung einer allgemeinen dynamischen inversen Kinematik Entwicklung einer allgemeinen dynamischen inversen Kinematik Christoph Schmiedecke Studiendepartment Informatik Hochschule für Angewandte Wissenschaften Hamburg 06. Januar 2010 Inhaltsverzeichnis 1 Motivation

Mehr

Friedrich Hoermann 12.06.08 Hauptseminar Grafikprogrammierung. Grundlagen und Aufbau einer Grafikkarte

Friedrich Hoermann 12.06.08 Hauptseminar Grafikprogrammierung. Grundlagen und Aufbau einer Grafikkarte Friedrich Hoermann 12.06.08 Hauptseminar Grafikprogrammierung Grundlagen und Aufbau einer Grafikkarte Seite 2 Inhalt - Einleitung - Geschichte - Aufbau der Grafikkarte - Die Grafikpipeline - Ausblick Seite

Mehr

Computer-Graphik 2 Visibility Computations II Culling

Computer-Graphik 2 Visibility Computations II Culling lausthal omputer-raphik 2 Visibility omputations II ulling lausthal University, ermany zach@in.tu-clausthal.de Klassifikation (Erinnerung) Problemklassen innerhalb des Bereichs "Visibility omputations":

Mehr

Postprocessing. Algorithmen für Computerspiele. Alexander Martin 19. Juli 2010

Postprocessing. Algorithmen für Computerspiele. Alexander Martin 19. Juli 2010 Postprocessing Algorithmen für Computerspiele Alexander Martin 19. Juli 2010 Inhaltsverzeichnis 1. Einführung Definition Postprocessing Überblick Postprocessing generierte Bildeffekte Einordnung in den

Mehr

Jörn Loviscach Hochschule Bremen

Jörn Loviscach Hochschule Bremen Programmierbare Hardware-Shader Jörn Loviscach Hochschule Bremen Überblick Vertex- und Pixel-Shader Anwendungsbeispiele fx-dateien Anwendungsbeispiele Zusammenfassung Puffer Vertex- und Pixel-Shader Hardware-Renderpipeline

Mehr

Einführung in die Computergrafik

Einführung in die Computergrafik Einführung in die Computergrafik Proseminar Computergrafik Zuse Institut Berlin 22. November 2007 Organisatorisches Informationen rund um s Seminar. http://www.zib.de/hotz/teaching/currentlectures.htm

Mehr

Hardware Praktikum 2008

Hardware Praktikum 2008 HaPra 2008 - Versuchsreihe 5 - ALU Hardware Praktikum 2008 Prof. Dr. H.-J. Wunderlich Dipl.-Inf. M. Imhof Dipl.-Inf. S. Holst Agenda Die HaPra-CPU Eine kleine Übersicht VHDL Projekt-Organisation Entwurf

Mehr

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen 3D-Rendering Ulf Döring, Markus Färber 07.03.2011 1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen Anzeigefläche (a) Worin besteht das Sichtbarkeitsproblem?

Mehr

Real-Time 3D Model Acquisition

Real-Time 3D Model Acquisition Seminarvortrag Real-Time 3D Model Acquisition Alexander Barth Nach Folien von Szymon Rusinkiewicz, Olaf Hall-Holt und Marc Levoy Einführung 3D-Scannen 2 Einführung Ziele Hohe Präzision Hohe Geschwindigkeit

Mehr

Augmented Reality - Grundlagen

Augmented Reality - Grundlagen Augmented Reality - Grundlagen Intelligente Mensch-Maschine-Interaktion - IMMI SS 2011 Prof. Didier Stricker Didier.Stricker@dfki.de Die Vorlesung am 07.06 findet im Raum Zuse am DFKI statt 2 Übersicht

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Kameramodelle und Kamerakalibrierung Proseminar: Grundlagen Bildverstehen/Bildgestaltung Michaela

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Rendering für Augmented Reality

Rendering für Augmented Reality Rendering für Augmented Reality Vorlesung Augmented Reality Prof. Dr. Andreas Butz WS 2006/07 Folien heute von Dr. Martin Wagner LMU München Medieninformatik Butz Augmented Reality WS2006/07 Folie 1 Ein

Mehr

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung

Objekterkennung durch Vergleich von Farben. Videoanalyse Dr. Stephan Kopf HWS2007 Kapitel 5: Objekterkennung Objekterkennung durch Vergleich von Farben 48 Farbräume (I) Definitionen: Farbe: Sinnesempfindung (keine physikalische Eigenschaft), falls Licht einer bestimmten Wellenlänge auf die Netzhaut des Auges

Mehr

Konfiguration von OpenCOVER und COVISE

Konfiguration von OpenCOVER und COVISE Konfiguration von OpenCOVER und COVISE Andreas Kopecki kopecki@hlrs.de University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de COVISE-/OpenCOVER-Konfiguration Slide 1 Höchstleistungsrechenzentrum

Mehr

Mittelpunktbestimmung von PLZ-Regionen

Mittelpunktbestimmung von PLZ-Regionen Mittelpunktbestimmung von PLZ-Regionen Technische Beschreibung der Lat-Lon-Liste von Geodaten-Deutschland.de (c) 2016 OW networks GmbH Stand: 6. Februar 2016 1 Algorithmus Mittelpunkt-Bestimmung Gesucht

Mehr

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Rechnen mit Vektoren

Rechnen mit Vektoren () Der Ortsvektor Definition: Der Ortsvektor beginnt im Koordinatenursprung und endet in einem beliebigen Punkt P. Die Koordinaten des Punktes stimmen mit den Koordinaten des Ortsvektors überein. Schreibweise:

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

Quick Guide EB-1420Wi und EB-1430Wi

Quick Guide EB-1420Wi und EB-1430Wi Quick Guide EB-1420Wi und EB-1430Wi Die Epson EB-1420Wi/EB-1430Wi Serien unterstützen eine absolut einzigartige Lösung im Projektorenmarkt. Die Kombination einer grossen Leinwand (bis zu 2.54 m), einem

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

3D-Längenanamorphosen in einem einzigen Renderingschritt

3D-Längenanamorphosen in einem einzigen Renderingschritt 3D-Längenanamorphosen in einem einzigen Renderingschritt Jonas Schell,2, Tom Vierjahn 3, Sina Mostafawy,3 FH Düsseldorf 2 Urbanscreen GmbH & Co. KG 3 rmh new media GmbH Josef-Gockeln-Str. 9 Am Deich 86

Mehr