Optische Phasenkonjugation

Größe: px
Ab Seite anzeigen:

Download "Optische Phasenkonjugation"

Transkript

1 Optische Phasenkonjugation Unter optischer Phasenkonjugation(OPC) soll ein Effekt verstanden werden, bei dem eine einfallende monochromatische Welle nach Wechselwirkung mit einem Medium dieses so verläßt, daß sie sich genau entgegengesetzt ihrer ursprünglichen Richtung ausbreitet (PC-Welle). Die Wellenfront (Phasenfront) entspricht genau der der einfallenden Welle, ist aber dabei an jeder Stelle im Raum infolge des Vorzeichenwechsels der Ausbreitungsrichtung invertiert. Ein Medium, welches einen solchen Effekt realisiert, heißt phasenkonjugierender Spiegel. Eine auf einen solchen Spiegel einlaufende divergente Welle wird also im Gegensatz zur Reflexion am gewöhnlichen (ebenen) Spiegel als konvergente Welle reflektiert. Reflexion an einem gewöhnlichen Spiegel Reflexion an einem PCM Abbildung 1: Prinzip des phasenkonjugierenden Spiegels Allerdings läßt sich auch mit klassischen Spiegeln die Phasenkonjugation realisieren, denn eine sphärische Welle, ausgehend vom Krümmungsmittelpunkt eines konkaven Spiegels, wird an diesem in sich reflektiert (gilt sogar für polychromatische Wellen) und ein ebener Spiegel ist bei senkrechtem Einfall für eine ebene Welle ebenfalls ein Phasenkonjugator. Soll eine komplex ausgebildete Welle, z.b. eine, die von einem Objekt mit rauher Oberfläche herrührt, phasenkonjugiert werden, kann das mit einem Hologramm realisiert werden. 1

2 PC - Welle Rekonstruktionswelle (konjug. Referenzwelle) Signalwelle Referenzwelle Photoempfindliches Medium Abbildung 2: Prinzip der Phasenkonjugation mit Hologramm Die Objektwelle interferiert mit einer zu ihr kohärenten ebenen Referenzwelle und bildet in der Hologrammebene ein Intensitätsmuster, welches z.b. durch eine Fotoplatte registriert werden kann. Beleuchtet man nach Entwicklung und Reposition der Fotoplatte diese von hinten mit der (konjugierten) ebenen Referenzwelle, so wird diese derart gebeugt, daß sie eine der ursprünglichen Objektwelle entgegenlaufende Welle generiert. Die phasenkonjugierte Welle ist erzeugt. Mathematisch wird eine monochromatische Welle der Frequenz ω durch den Ausdruck beschrieben. A( r)e i(ωt k r) Ersetzt man den Wellenzahlvektor k( r), der die Ausbreitung der Welle charakterisiert, durch k( r), erhält man die phasenkonjugierte Welle mit der reellen Amplitude A( r). Die das Hologramm erzeugende Interferenz läßt sich beschreiben mit: I( r) = A O ( r)e i(ωt k O r) + AR ( r)e i(ωt k R r) 2 = (A O ( r)) 2 + (A R ( r)) 2 + A O ( r)a R ( r) [e i(ωt k O r) e i(ωt k R r) + e i(ωt k O r) e i(ωt k R r) ] = I O ( r) + I R ( r) + 2 I O ( r)i R ( r) cos ( φ( r)), (1) 2

3 wobei der Index O die Objektwelle und der Index R die Referenzwelle bezeichnet. Die Phasendifferenz ( φ( r) am Ort des Hologramms ermittelt sich aus φ( r) = ko ) k R r, wobei i. A. die Vektoren k R und k O Funktionen der Ortskoordinaten sind. Kann die in der Hologrammebene vorliegende Intensitätsverteilung in eine zu ihr proportionale Transmissionsfunktion τ( r holog ) I( r) (siehe Holographie) umgesetzt werden, so wird bei der Rekonstruktion mit der konjugierten Referenzwelle A R ( r)e i(ωt+ k R r) folgende Amplitudenverteilung nach Beugung am Hologramm entstehen: A(( r)) = τ( r holog )A R ( r)e i(ωt+ k R r) = [ (A O ( r)) 2 + (A R ( r)) 2] A R ( r)e i(ωt+ k R r) + [ ] A O ( r)a R ( r) e i( k R k O) r + e i( k R k O) r A R ( r)e i(ωt+ k R r) = [ (A O ( r)) 2 + (A R ( r)) 2] A R ( r)e i(ωt+ k R r) + A O ( r) (A R ( r)) 2 e i(ωt+(2 k R k O ) r) + AO ( r) (A R ( r)) 2 e i(ωt+ k O r) (2) Der 1. Term ist die modifizierte transmitierende Rekonstruktionswelle (0. Beugungsordnung), der 2. Term entrspricht der 1. Beugungsordnung, deren Ausbreitungsrichtung durch den Vektor 2 k R k O festgelegt ist und der 3. Term repräsentiert die -1. Beugungsordnung, die sich entgegengesetzt (+ k O ) der ursprünglichen Objektwelle ausbreitet, also deren Phasenkonjugierte ist. Da diese Welle zum Ort des Objektes zurückläuft, formt sie am Ort des Objektes ein reelles Bild desselben, ohne daß eine abbildende Optik vonnöten wäre. Die gesamte Anordnung übernimmt also die Funktion eines phasenkonjugierenden Spiegels, der wiederum für die linsenlose 1:1 Abbildung eingesetzt werden kann. Ersetzt man die Fotoplatte durch ein Echtzeitmedium, z.b. einen photorefraktiven Kristall ( photorefraktiver Effekt), erspart man sich Entwicklung 3

4 und Repositionierung des Hologramms, die Operation Phasenkonjugation findet in Echtzeit statt. In der älteren Literatur findet man dazu auch den Begriff der dynamischen Holographie. Bei der Verwendung von Echtzeitmedien kann man sowohl den oben geschilderten Prozeß verwenden, die dann auch als 4-Wellenmischung bezeichnet wird, als auch einen Selbstorganisationsprozeß, der im Material selbst alle wechselwirkenden Wellen bereit stellt und zur optischen Phasenkonjugation führt. 4-Wellenmischung Der Begriff rührt daher, daß im dynamischen Fall neben Signal-, Referenzund konjugierter Referenzwelle (Rekonstruktionswelle) auch noch als 4. die durch Beugung der Rekonstruktionswelle entstandene PC-Welle vorhanden ist. Da Ladungen nicht instantan umverteilt werden, bleibt die Ladungsverteilung beim Abschalten von Signal- und Referenzwelle trotz homogener Beleuchtung durch die Rekonstruktionswelle noch eine zeitlang erhalten, so daß auch die einfache Hologrammrekonstruktion möglich bleibt. Im übrigen gibt es auch Methoden, die eine dauerhafte Fixierng des Phasenhologramms im Kristall ermöglichen. Selbstgepumpter Phasenkonjugator (SPPC) In einem BaTiO 3 -Kristall kommt es zum fanninng (spezielle Streuung), so daß neben dem direkt einfallenden schmalen Lichtbündel zusätzliche Wellen entstehen, die alle miteinander interferieren können. Unter geeigneten geometrischen Bedingungen kommt es mit Hilfe der inneren Totalreflexion zum Ausbilden eines loops 1, der der alle Wellen für eine (interne) 4- Wellenmischung enthält. 1 das deutsche Wort Schleife ist hier doch nicht so ganz passend 4

5 Auch in diesem Falle laufen die Prozesse nicht instantan ab, sondern sind an die Zeiten der Ladungsumverteilung gebunden. Je nach Intensität (und gewählter Geometrie) entsteht dann das PC-Signal der einfallenden Welle. BaTiO 3 DFWM-Gebiet E S E PC E S E PC C-Achse Abbildung 3: Selbstgepumpter phasenkonjugierender Spiegel (SPPCM) mit BaTiO 3 5

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart Dr. Hanskarl Treiber Martin Treiber Lasertechnik Band 2 Holographie Frech-Verlag Stuttgart Inhaltsverzeichnis 1. Klassische Photographie 11 1.1 Eigenschaften photographischer Bilder 11 1.2 Stereophotographie

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013)

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013) Holographie Grundlagen und Anwendungen Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes Holographie - Grundlagen und Anwendungen (2012/2013) 1. Was versteht man unter Schärfen-

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Praktikumsanleitung: Holografie Versuch 4: Hologrammkopie 1 Versuchsziel Ziel dieses

Mehr

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak Die Aufzeichnung dreidimensionaler Bilder Caroline Girmen, Leon Pernak Ablauf Einführung Allgemeine Definition Geschichte Aufnahme Wiedergabe Besondere Hologrammtypen Dicke Hologramme Echtfarbige Hologramme

Mehr

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart T c l Dr. Hanskarl Treiber Martin Treiber f j.l f j Lasertechnik Band 2 Holographie Frech-Verlag Stuttgart Für eine gewerbliche Nutzung der gezeigten Modelle ist die Genehmigung des Verfassers erforderlich.

Mehr

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip 1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 4. Übungsblatt - 15.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (3 Punkte) Welche

Mehr

13. Elektromagnetische Wellen

13. Elektromagnetische Wellen 13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz

Mehr

6.6. Beugung. Exp.: Wellenwanne. Dieter Suter - 407 - Physik B2. 6.6.1. Grenzen der geometrischen Optik

6.6. Beugung. Exp.: Wellenwanne. Dieter Suter - 407 - Physik B2. 6.6.1. Grenzen der geometrischen Optik Dieter Suter - 407 - Physik B2 6.6. Beugung 6.6.1. Grenzen der geometrischen Optik Im Rahmen der geometrischen Optik hatten wir angenommen, dass die Wellenlänge des Lichtes klein sei im Vergleich zu allen

Mehr

HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM

HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM 27-1 HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM Vorbereitung: Interferenz, Sinusgitter und Zonenplatte, Kohärenz, Laser, Prinzip der Holographie (Aufnahme und Rekonstruktion), Amplituden- und Phasenholographie,

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

1 Die Fresnel-Formeln

1 Die Fresnel-Formeln 1 Die Fresnel-Formeln Im Folgenden werden die Bezeichnungen aus dem Buch Optik von Eugene Hecht 5. Auflage, Oldenburg verwendet, aus dem auch die Bilder stammen. In der Vorlesung wurden andere Bezeichnungen

Mehr

Weitere Wellenmerkmale des Lichtes

Weitere Wellenmerkmale des Lichtes Weitere Wellenmerkmale des Lichtes Farben an einer CD/DVD: Oberflächenstruktur: Die Erhöhungen und Vertiefungen (Pits/Lands) auf einer CD-Oberfläche wirkt als Reflexionsgitter. d Zwischen den reflektierten

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit

Mehr

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment 5.9.4 ****** 1 Motivation Ein mit Kohlendioxid gefüllter Luftballon wirkt für Schallwellen als Sammellinse, während ein mit Wasserstoff gefüllter Ballon eine Zerstreuungslinse ergibt. Experiment Abbildung

Mehr

Holographie. Mario Chemnitz

Holographie. Mario Chemnitz Holographie Mario Chemnitz Kurzvortrag im Rahmen des Proseminars des F-Praktikums Physikalische Astronomische Fakultät Friedrich-Schiller-Universität Jena 28. Mai 2009 Inhaltsverzeichnis 1 Einleitung 2

Mehr

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an.

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an. 6 Elektromagnetische Schwingungen und Wellen E y E(z=0) E 0 z E y E 0 t Abbildung 6.10: (a) E(z, t = t 1 ): Momentaufnahme für t = t 1. (b) E(z = z 1, t): Zeitabhängigkeit an festem Ort z = z 1. Polarisation

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Winkelvergrößerung einer Lupe Das Fernrohre Das Mikroskop m m = ges f f O e m = ( ) N f l fo fe N ln f f f f O e O e Abbildungsfehler

Mehr

Speckle-Meßtechnik. Speckle-Effekt

Speckle-Meßtechnik. Speckle-Effekt Speckle-Meßtechnik Speckle-Effekt Beleuchtet man eine rauhe Oberfläche mit kohärentem Licht, so entsteht durch Mikrointerferenzen der Speckle-Effekt. Helle und dunkle "körnige ", kontrastreiche Flecken

Mehr

Optische Holographie

Optische Holographie ----------'I THIEMIG -TASCHENBÜCHER' BAND 61 Optische Holographie Theoretische und experimentelle Grundlagen und Anwendung Optical Holography Theoretical and experimental principles and application Von

Mehr

Diffraktive Optik (O9)

Diffraktive Optik (O9) 5. Juni 08 Diffraktive Optik (O9) Ziel des Versuches Das Prinzip der diffraktiven Optik, die Beugung und Interferenz von Licht ausnutzt, soll an einer fresnelschen Zonenplatte kennen gelernt werden. Bestimmte

Mehr

Laser A Versuchsvorbereitung

Laser A Versuchsvorbereitung Versuche P2-16,17,18 Laser A Versuchsvorbereitung Thomas Keck und Marco A. Harrendorf, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 18.04.2011 1 1 Aufgabe 1: Brewsterwinkel

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Aufgaben 4 Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten

Mehr

Einführung in die Technische Akustik

Einführung in die Technische Akustik Einführung in die echnische Akustik Inhalt Grundbegriffe der Schwingungslehre Schallfeldgrößen und Wellengleichung für fluide Medien 3 Ebene Schallwellen in fluiden Medien 4 Kugelwellen 5 Synthese von

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Bericht zum Versuch Holographie

Bericht zum Versuch Holographie Bericht zum Versuch Holographie Michael Goerz, Anton Haase 4. Dezember 2006 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: H. Fidder Inhalt 1 Einführung 2 1.1 Michelson-Morley-Interferometer..................

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Inhalte Prisma & Regenbogen Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer

Mehr

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln

Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Aufgaben 4 Bildentstehung, Spiegel und Linsen Bildentstehung bei Planspiegeln und sphärischen Spiegeln Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten

Mehr

Felder und Wellen Übung 11 WS 2018/2019

Felder und Wellen Übung 11 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 11 WS 2018/2019 Institute of Photonics and Quantum Electronics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer

0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer 1 31.03.2006 0.1 75. Hausaufgabe 0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer Wellen Elektromagnetische Hochfrequenzschwingkreise strahlen elektromagnetische Wellen ab. Diese

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Mach-Zehnder Interferometer

Mach-Zehnder Interferometer Mach-Zehnder Interferometer 1891/2 von Ludwig Mach und Ludwig Zehnder entwickelt Sehr ähnlich Michelson-Interferometer Aber: Messobjekt nur einmal durchlaufen 1 Anwendung: Mach-Zehnder Interferometer Dichteschwankungen

Mehr

2. Wellenoptik Interferenz

2. Wellenoptik Interferenz . Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München Optik Lichtstrahlen -Wellen - Photonen von Wolfgang Zinth Ursula Zinth 4., aktualisierte Auflage OldenbourgVerlag München Inhaltsverzeichnis Vorwort 1 Einführung und historischer Überblick v 1 Licht als

Mehr

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren)

Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) Dirk Eßer (Autor) Ultraschalldiagnostik im Kopf- und Halsbereich (A- und B- Bild- Verfahren) https://cuvillier.de/de/shop/publications/885 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

Auswertung des Versuches Holographie

Auswertung des Versuches Holographie Auswertung des Versuches Holographie Andreas Buhr 9. Januar 006 Inhaltsverzeichnis 1 Formales 3 Überblick über den Versuch 4 3 Grundlagen der Holographie 4 3.1 Idee und Prinzip................................

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Übersichtspraktikum Interferenz und Holographie

Übersichtspraktikum Interferenz und Holographie Übersichtspraktikum Interferenz und Holographie 1 Interferenz und Huygenssches Prinzip 1.1 Interferenz Als Interferenz bezeichnet man die additive Überlagerung von Wellen. Dabei kann es zur Verstärkung

Mehr

Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am

Klausurtermin: Anmeldung:  2. Chance: voraussichtlich Klausur am Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,

Mehr

Wellenwanne für Projektion DW401-2W. Versuchsanleitung

Wellenwanne für Projektion DW401-2W. Versuchsanleitung Wellenwanne für Projektion DW401-2W Versuchsanleitung INHALTSVERZEICHNIS AKD 7.09 AKD 7.07 AKD 7.08 AKD 7.02 AKD 7.01 AKD 7.03 AKD 7.05 AKD 7.06 AKD 7.04 Dopplereffekt Reflexion Spiegel hohl Brechung

Mehr

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von Optik Lichtstra h len - Wellen - Photonen von Wolfgang Zinth Ursula Zinth 3-, verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einführung und historischer Überblick 1 2 Licht

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit Dass Geschwindigkeiten größer als die Lichtgeschwindigkeit im Vakuum werden können, ist interessant durch die Implikationen

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

PeP Physik erfahren im ForschungsPraktikum

PeP Physik erfahren im ForschungsPraktikum Physik erfahren im ForschungsPraktikum Vom Kerzenlicht zum Laser Kurs für die. Klasse, Gymnasium, Mainz.2004 Daniel Klein, Klaus Wendt Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Wissenswertes zum Einsatz von Lichtleitern

Wissenswertes zum Einsatz von Lichtleitern Wissenswertes zum Einsatz von Lichtleitern Dr. Jörg-Peter Conzen Vice President NIR & Process Bruker Anwendertreffen, Ettlingen den 13.11.2013 Innovation with Integrity Definition: Brechung Brechung oder

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

LICHTBEUGUNG AN SPALT UND GITTER

LICHTBEUGUNG AN SPALT UND GITTER LICHTBEUGUNG AN SPALT UND GITTER I. Lernziele Dieser Versuch soll Sie mit der Theorie und Praxis der Beugung von monochromatischem Licht bekannt machen. II. Vorbereitung Machen Sie sich mit den folgenden

Mehr

6.3 Reflexion und Brechung

6.3 Reflexion und Brechung Dieter Suter - 306 - Physik B3 63 Reflexion und Brechung 631 Reflexion: Grundlagen Wie bereits bei den Seilwellen diskutiert werden Wellen reflektiert wenn die Bedingungen für die Ausbreitung sich ändern

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

Versuch P2-18: Laser und Wellenoptik Teil A

Versuch P2-18: Laser und Wellenoptik Teil A Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Wellen an Grenzflächen

Wellen an Grenzflächen Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische

Mehr

6.2 Elektromagnetische Wellen

6.2 Elektromagnetische Wellen 6.2 Elektromagnetische Wellen Im vorigen Kapitel wurde die Erzeugung von elektromagnetischen Schwingungen und deren Eigenschaften untersucht. Mit diesem Wissen ist es nun möglich die Entstehung von elektromagnetischen

Mehr

Interferenz von Kreiswellen

Interferenz von Kreiswellen 5.2.14 Interferenz von Kreiswellen In einer Wellenwanne werden mit einem geradlinigen Erreger Wellen mit geraden Wellenfronten erzeugt. Treffen diese auf ein Hindernis mit einem kleinen Spalt, so bilden

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

Klausur zu Grundlagen IIIa SH 2004

Klausur zu Grundlagen IIIa SH 2004 Klausur zu Grundlagen IIIa SH 2004 Prof. Dr. Martin Pietralla Prof. Dr. Othmar Marti 26. 7. 2004 Name Vorname Matrikelnummer Kennwort (bitte leserlich schreiben) Aufgabe Punktzahl 1 2 3 4 5 6 7 8 9 10

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton)

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton) 1.Wellenoptik 1.1 Lichttheorien 1. Strhlentheorie (Empedokles, Alhzen, Snellius) 2. Korpuskeltheorie (Newton) 3. Wellentheorie (Huygens, Young, Fresnel) 4. Quntentheorie (Plnck, Einstein) 1.2 Lichteigenschften

Mehr

Übungsfragen zur Vorlesung Grundlagen der technischen Optik

Übungsfragen zur Vorlesung Grundlagen der technischen Optik Übungsfragen zur Vorlesung Grundlagen der technischen Optik 1) Welche Näherungen/Vereinfachungen werden beim Übergang zu folgenden optischen Modellen vorgenommen: von der Quantenoptik zur Maxwellschen

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Holografische Interferometrie

Holografische Interferometrie Holografische Interferometrie Die Grundlagen der Holografie wurden 1947 von Dennis Gabor in Rugby/UK initiiert, der ursprünglich eine Verbesserung der Elektronenmikroskopie vornehmen wollte. Seine Experimente

Mehr

Geometrische Optik. Optische Elemente; Reflexion und Brechung

Geometrische Optik. Optische Elemente; Reflexion und Brechung Geometrische Optik Um das Verhalten von Licht in der makroskopischen Welt zu beschreiben, insbesondere um die Funktionsweise von optischen Instrumenten zu verstehen, reicht ein idealisiertes Bild der Lichtausbreitung

Mehr

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1 V. Optik V. Wellenoptik Physik für Mediziner 1 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik mikroskopische Wechselwirkung

Mehr

12.1 Licht als elektromagnetische Welle

12.1 Licht als elektromagnetische Welle Inhalt 1 1 Optik 1.1 Licht als elektromagnetische Welle 1. Reflexions- und Brechungsgesetz 1.3 Linsen und optische Abbildungen 1.4 Optische Instrumente 1.4.1 Mikroskop 1.4. Fernrohr 1.5 Beugungsphänomene

Mehr

Wellenoptik (6. Klasse AHS)

Wellenoptik (6. Klasse AHS) Physikalisches Schulversuchspraktikum Wellenoptik 1/10 Übungsdatum: 08.11.2001 Abgabetermin: 21.11.2001 Physikalischen Schulversuchspraktikum Wellenoptik (6. Klasse AHS) Mittendorfer Stephan Matr. Nr.

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Inhalte. Fabry Perot Interferometer

Inhalte. Fabry Perot Interferometer Fabry Perot Interferometer Inhalte Reflexion / Transmission Fabry-Perot als Resonator - Finesse Auflösung Auflösungsvermögen optischer Spektrometer Fouriertransform-Spektroskopie Abbesche Abbildungstheorie

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Markus Rosenstihl e-mail:rosenst@prp.physik.tu-darmstadt.de Praktikumspartner: Shona Mackie, Wolfgang Schleifenbaum Betreuer: Dr. Holzfuss 6. Juli 2005 1 1

Mehr