1 BWL 4 Tutorium V vom

Größe: px
Ab Seite anzeigen:

Download "1 BWL 4 Tutorium V vom 15.05.02"

Transkript

1 1 BWL 4 Tutorum V vom Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM (1 ) n 1 Mt dem Tlgungsfaktor(TF) kann somt ene rechenoperaton durchgeführt werden, de der des Endwertfaktors genau entgegengesetzt st. En Geldbetrag zum Zetpunkt t n wrd also n ene aus konstanten Zahlungen bestehende Zahlungsrehe transformert Aufgabe 3.18, S.65 Bespel: Ene Rente n Höhe von e = GE fällt jewels am Jahresende an. De Rente wrd über n = 8 Jahre gezahlt. Was st de Rente aus der Scht des Zetpunktes t 8 wert, wenn en Kalkulatonsznssatz von = 0, 05 angesetzt wrd? Der Wert ener Rente zum Zetpunkt t n errechnet sch we folgt: Be den gegebenen Daten hesst das: Daraus folgt: C En = e (1 + )n 1 C En = e EW F (n; ) C E8 = (1, 05)8 1 0, 05 C E8 = EW F (N = 8; = 0, 05) C E8 = , 5491 = 9.549, 10 De Rente hat be enem Kalkulatonsznssatz von = 0, 05 aus der Scht des Zetpunktes t 8 enen Wert von C E8 = 9.549, 10 GE. Der Betrachter st somt ndfferent zwschen ener Rente von GE während der Zet von n = 8 Jahren jewels am Jahresende gezahlt, und ener enmalgen Zahlung n Höhe von C E8 = 9.549, 10GE zum Zetpunkt t 8. Es besteht nun de Möglchket, enen m Zetpunkt t 8 fällgen Betrag n Höhe von C E8 = 1

2 1.2 Fazt, S.74, Punkt Nr.4 1 BWL 4 TUTORIUM V VOM , 10 GE n ene Zahlungsrehe über n = 8 Jahren zu transformeren. De Zahlungen erfolgen jewels am Jahresende. Dabe wrd von enem Kalkulatonssatz von = 0, 05 ausgegangen. We hoch müssen de jährlchen Zahlungen sen, damt der Betrachter ndfferent st zwschen den Optonen? De konstante Zahlungsrehe mt dem Betrag e am Ende ener jeden Perode wrd mt Hlfe des Tlgungsfaktors ermttelt: e = C En Be den gegebenen Daten bedeutet des: Daraus folgt: (1+) n 1 e = C En T F (n; ) e = 9.549, 10 0, 05 (1, 05) 8 1 e = 9.549, 10 T F (n = 8; = 0, 05) e = 9.549, 10 0, 1047 = 999, 79 Der Betrag entsprcht der Rente aus dem Bsp. zum EWF, de gernge Dfferenz st n ener Rundung begründet. 1.2 Fazt, S.74, Punkt Nr.4 Zahlungsrehen, de als Rente vorlegen, können mt dem Barwertfaktor (BWF) auf den Anfangszetpunkt der Rente und mt dem Endwertfaktor (EWF) auf das Ende der Laufzet der Rente transformert werden. Den Kehrwert des BWF stellt der Wedergewnnungsfaktor (WGF) dar, Kehrwert des EWF st der Tlgungsfaktor (TF). Sämtlche Faktoren lassen sch durch enfache Rechenoperatonen nenander überführen, da se auf dentschen Annahmen beruhen. Be der Bewertung und der Konstrukton von Zahlungen/Zahlungsrehen kann man so äquvalente Ergebnsse erzelen. De Dfferenz aus dem Barwert der Enzahlungen und dem der Auszahlungen ener Investton heßt Kaptalwert und st en zentrales Entschedungskrterum der Investtonsrechnung. 1.3 Das Barwert-Prnzp Barwert: Wert, den ene zukünftge Zahlung m Zetpunkt to hat. Dabe wrd zugrunde gelegt, dass zukünftge Zahlungen nedrger engeschätzt werden als gegenwärtge Zahlungen glecher Höhe. Des kann rechenbar gemacht werden durch Auf- und Abznsungen von Zahlungen (Stchwort Fnanzmathematk, behandelt n Mathe I - Analyss). Der Barwert ener Zahlungsrehe st entsprechend de Summe aller abgeznsten (dskonterten) Zahlungen. Bem Vorlegen konstanter En- oder Auszahlungen ergeben sch gewsse Verenfachungen n der Berechnung: 2

3 1.4 Der Kaptalwert (S.77) 1 BWL 4 TUTORIUM V VOM Rentenbarwertfaktor (BWF): znst ene Rehe konstanter Zahlungen auf t0 ab und bldet de Summe. Rentenendwertfaktor (EWF): znst ene Rehe konstanter Zahlungen auf tn auf und bldet de Summe. Wedergewnnungsfaktor (WGF): ermttelt für enen heutgen Betrag de glechwertge Rente be gegebenem Zns und Laufzet. Der WGF st damt der Kehrwert des BWF. Tlgungsfaktor (TF): ermttelt für enen Betrag zum Zetpunkt tn de glechwertge Rente be gegebenem Zns und Laufzet. Der TF st damt der Kehrwert des EWF. Abbldung 1: De Faktoren n Zusammenhang 1.4 Der Kaptalwert (S.77) Der Kaptalwert stellt en zentrales Entschedungskrterum m Rahmen der gesamten Investtonsrechnung dar.alle weteren Krteren der mehrperodgen Investtonsrechnung snd formal mehr oder wenger eng mt der Methode der Ermttlung des Kaptalwertes verwandt Kaptalwert-Methode 1.Defnton: Der Kaptalwert ener Investton ergbt sch, wenn man den Barwert aller Auszahlungen vom Barwert aller Enzahlungen subtrahert. Bespel: = 10% 3

4 1.4 Der Kaptalwert (S.77) 1 BWL 4 TUTORIUM V VOM Ennahmen: Auszahlungen A 0 = e 1 = a 1 = e 2 = a 2 = e 3 = a 3 = e 4 = a 4 = We hoch snd de Barwerte der En- und Auszahlungen sowe der Kaptalwert der gesamten Investton? Rechenweg: BW E0 = (1, 1) (1, 1) (1, 1) (1, 1) 4 B A0 = (1, 1) (1, 1) BW E = 6.181, , , , 11 = , 89 Barwert der Enzahlungen BW A = , , , , 04 = , 38 Barwert der Auszahlungen C 0 = BW E0 BW A0 Kaptalwert der Investton = Barwert der Enzahlungen Barwert der Auszahlungen (1) In deser Aufgabe st das Ergebns c 0 = 815, 51. Allgemene Formel: Dabe werden de Anschaffungszahlung A 0 als erste Zahlung der Investton und der Restverkaufserlös R n als letzte Zahlung der Investton explzt berückschtgt. De anderen Zahlungen während der Laufzet der Investton werden n den Ennahmeüberschüssen (EÜ) zusammengefasst. C E0 = [ (1 + ) t ] + R n (1 + ) n t01 Barwert der Enzahlungen C A0 = A 0 + (1 + ) t t=1 Barwert der Auszahlungen C 0 = C E0 C A0 C 0 = A 0 + n t=1 d t(1 + ) t + R(1 + ) n (2) 4

5 1.5 Interpretaton/Vortelhaftgketskrterum1 BWL 4 TUTORIUM V VOM d E = e t a t Enzahlungüberschüsse = Enzahlungen Auszahlungen En- und Auszahlungen der Investton werden n ener Zahlungsrehe zusammengefasst. Der Barwert deser Zahlungsrehe st der Kaptalwert der Investton. 2.Defnton Der Kaptalwert ener Investton st de Dfferenz zwschen hrem Ertragswert und der Anschaffungszahlung. EW = d t (1 + ) t + R n (1 + ) n Anschaffungszahlung= A 0 Vergleche Aufgabe 4.3 S.80 t=1 1.5 Interpretaton/Vortelhaftgketskrterum De Kaptalwertmethode verglecht de Sachnvestton (SI) mt ener Geldanlage zum Znssatz. Deser repräsentert de Verznsung der besten alternatven Verwendung der Investtonssumme bzw. stellt de notwendgen Kaptalkosten zur Fnanzerung der Investton n Rechnung. De Zahlungen der Sachnvestton werden mt dem Znssatz dskontert. Der Kaptalwert gbt an, we vel mehr bzw. wenger n ener Fnanznvestton angelegt werden muss, um dasselbe Ergebns zu erzelen (EK). En postver Kaptalwert bedeutet auch, dass de Sachnvestton mehr Erträge erwrtschaftet, als zur Deckung von a 0, Zns und Znsesznsen nötg st (FK). Es wrd de Investton mt dem höchsten KW ermttelt. Dese Investton wrd realsert, wenn der KW grösser st als 0. Bsp.: = 10% Sachnvestton t 0 t 1 C 0 = (1 + 0, 1) 1 = 45, 45 Be ener Fnanznvestton hätten 45,45 Euro mehr angelegt werden müssen, um zu ener Rückzahlung n t 1 n Höhe von zu führen. 5

6 1.5 Interpretaton/Vortelhaftgketskrterum1 BWL 4 TUTORIUM V VOM , t 0 t 1 De Sachnvestton st n desem fall der FI vorzuzehen, da se mt enem gerngeren Mttelensatz dasselbe Ergebns erwrtschaftet.(mnmumprnzp) Fnanznvestton ,45 Sachnvestton t 0 t 1 C 0 > 0 SI C 0 = 0 ndfferent C 0 < 0 FI In der Wrtschaftlchketsrechnung wrd verenfachend angenommen, dass Soll+ und Habenznsen glech snd. (vollkommener Kaptalmarkt). Vgl. Aufgabe 4.4, S.82 ff Aufgabe Für ene Maschne legen folgende Daten vor: Enzahlungen Auszahlungen A = e = a = 750 e = a = 400 e = a = 250 Der Kalkulatonsznssatz beträgt = 10 %. Nach 3 Jahren kann de Maschne zum Pres von 100 verkauft werden. 1. Blde de Zahlungsrehe. 6

7 1.6 Interpretaton der Handlungsmöglchketen1 BWL 4 TUTORIUM V VOM Berechne den Kaptalwert. Lohnt sch der Kauf der Maschne? zu t 0 t 1 t 2 t 3 zu 2. C 0 = A 0 + d t (1 + ) t + R n (1 + ) n t=1 C 0 = , (1, 1) (1, 1) (1, 1) 3 = 18, 41 De FI lohnt sch mehr, da man 18,41 Euro wenger nvesteren müsste. 1.6 Interpretaton der Handlungsmöglchketen =5% 1. Verzcht auf Kredtaufnahme zum Znssatz, wenn der Investor ken Kaptal zur Verfügung hat und de SI mt enem Kredt fnanzeren müsste. (FK) 2. Anlage der vorhandenen fnanzellen Mttel zum Znssatz, wenn der Investor den Investtonsbetrag zur Verfügung hat (EK). ( der KW stegt be fallenden Znssatz) C 0 = 174, 17 Be enem Znssatz von 5% lohnt sch de SI mehr. Interpretaton der Handlungen: 1.FK 2.EK De Vortelhaftgket der SI st damt entschedend abhängg von den Kondtonen der Bank bzw. dem Znssatz. mt fallenden wrd de FI wenger attraktv bzw. der Kredt bllger und de SI vortelhafter be stegenden Znsen muss de SI höhere EÜ errechen, um m Verglech zu den Kondtonen der Bank vortelhafter zu sen. vgl. 4.5/4.6, S. 84 ff 7

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Prof. Dr. Alexander Bassen Lehrstuhl für Betriebswirtschaftslehre insb. Kapitalmärkte und Unternehmensführung. Investition 1 EINFÜHRUNG 0-1

Prof. Dr. Alexander Bassen Lehrstuhl für Betriebswirtschaftslehre insb. Kapitalmärkte und Unternehmensführung. Investition 1 EINFÜHRUNG 0-1 Prof. Dr. Alexander Bassen Lehrstuhl für Betrebswrtschaftslehre nsb. Kaptalmärkte und Unternehmensführung Investton 1 EINFÜHRUNG 0-1 Organsatorsches Glederung der VO Inhalt Enhet (Plan) (0) Enführung -Was

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009 DEUTSCHE AKTUARVEREINIGUNG e.v. Mathematk der Lebensverscherung ( Spezalwssen ) Klausur vom 4.0.009 De Klausur besteht aus 3 Aufgaben, de mt nsgesamt 80 Punkten bewertet werden. Um dese maxmale Punktzahl

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

bciiii $elbbtbc~\~o!lntcti I-Ieim dagegen nictir. Bei freiiidgciiutztcn Inimobilien zeigt ein Vergleich nach Sreucrii, daß das Modell der

bciiii $elbbtbc~\~o!lntcti I-Ieim dagegen nictir. Bei freiiidgciiutztcn Inimobilien zeigt ein Vergleich nach Sreucrii, daß das Modell der uen gegenwärtg d, dle zudem unte 11 'Slgugh..r solltc de Nutzutgs'rt der Innublc 1- rd d.s %~sn\,cau berückschtgt werdenu, rat,,,,,, r Sre~scl~. l)c Nutzungsnrt der Irmoble sctwchtg, wel hc Jer vcrctctc

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Formeln und Aufgaben Zins- und Rentenrechnung

Formeln und Aufgaben Zins- und Rentenrechnung Foreln und ufgaben Zns- und Rentenrechnung Detrch Baugarten «14. Januar 014 Inhaltsverzechns 1 Rentenrechnung 1 1.1 Zusaenfassung............................... 1 1. Bespele....................................

Mehr

Hypothekenversicherung oder Bankhypothek?

Hypothekenversicherung oder Bankhypothek? Unverstät Augsburg Prof Dr Hans Ulrch Buhl Kernkompetenzzentrum Fnanz- & Informatonsmanagement Lehrstuhl für BWL, Wrtschaftsnformatk, Informatons- & Fnanzmanagement Dskussonspaper WI-44 Hypothekenverscherung

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Basel III Kontrahentenrisiken

Basel III Kontrahentenrisiken Basel III Kontrahentenrsken Chrstoph Hofmann De Fnanzkrse hat gezegt, dass das aus ncht börsengehandelten (OTC) Dervaten hervorgehende Kontrahentenrsko von entschedender Bedeutung für de Stabltät des Bankensystems

Mehr

Die risikoadäquate Kalkulation der Fremdkapitalkosten für nicht öffentlich gehandelte Unternehmen

Die risikoadäquate Kalkulation der Fremdkapitalkosten für nicht öffentlich gehandelte Unternehmen De rskoadäquate Kalkulaton der Fremdkaptalkosten für ncht öffentlch gehandelte Unternehmen Patrck Behr * Schwerpunkt Fnanzen, Unverstät Frankfurt André Güttler ** Schwerpunkt Fnanzen, Unverstät Frankfurt

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Ein stochastisches Modell zur Ertragsoptimierung bei Versicherungen

Ein stochastisches Modell zur Ertragsoptimierung bei Versicherungen En stochastsches Modell zur Ertragsoptmerung be Verscherungen Clauda Garschhammer und Rud Zagst Clauda Garschhammer Bahnhofstr. 34, 8340 aufen Tel: 0868 / 548, c.garschhammer@web.de Prof. Dr. Rud Zagst,

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

EAU SWH l$,0, wohngebäude

EAU SWH l$,0, wohngebäude EAU SWH l$,0, wohngebäude gemäß den $$ 6 ff, Energeensparverordnung (EnEV) :,:: Gültsbs: 09208 Gebäude Gebäudetyp Altbau Mehrfamlenhaus Adresse Hardstraße 3 33, 40629 Düsseldorf Gebäudetel Baujahr Gebäude

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Formeln und Aufgaben zur Rentenrechnung

Formeln und Aufgaben zur Rentenrechnung Foreln und ufgaben zur Rentenrechnung Detrch Baugarten «16. prl 014 Inhaltsverzechns 1 Rentenrechnung 1 1.1 Zusaenfassung............................... 1 1. Bespele....................................

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Thema 7: Übungsaufgaben

Thema 7: Übungsaufgaben Thema 7: Übungsaufgaben Übungsaufgabe 1: a) Kaptalangebotskurve (Skzze): (S) (H) 0 280 F Der endogene Kalkulatonsznsfuß beträgt mndestens (H) = 9 % und maxmal (S) = 16 %. Damt sollten alle Investtonsprojekte

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Ingenieurmonitor Fachkräftebedarf und -angebot nach Berufsordnungen und regionalen Arbeitsmärkten

Ingenieurmonitor Fachkräftebedarf und -angebot nach Berufsordnungen und regionalen Arbeitsmärkten Methodenbercht Ingeneurmontor Fachkräftebedarf und -angebot nach Berufsordnungen und regonalen Arbetsmärkten n Kooperaton mt: Veren Deutscher Ingeneure e.v. (VDI) VDI-Platz 1 40468 Düsseldorf Ansprechpartner

Mehr

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements Unser Auftrag st de aktve Umsetzung der frohen Botschaft Jesu m Denst am Menschen. Ene Herausforderung, der wr täglch neu begegnen. Mt modernster Technk und Kompetenz. Und vor allem mt Menschlchket. Letlnengerechte

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Leitfaden zum. GBC Mittelstandsanleihen Index (GBC MAX)

Leitfaden zum. GBC Mittelstandsanleihen Index (GBC MAX) Letfaden zum GBC Mttelstandsanlehen Index (GBC MAX) Verson 2.0 vom 04. Februar 2014 1 Inhalt Enführung 1 Parameter des Index 1.1 Kürzel und ISIN 1.2 Startwert 1.3 Vertelung 1.4 Prese und Berechnungsfrequenz

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck

Mehr

AusbildungsTickets 2008/09. SparTickets für Schüler, Azubis und Studenten. Weitersagen: Wer clever ist, kommt besser weg. Gemeinsam mehr bewegen.

AusbildungsTickets 2008/09. SparTickets für Schüler, Azubis und Studenten. Weitersagen: Wer clever ist, kommt besser weg. Gemeinsam mehr bewegen. AusbldungsTckets 2008/09 SparTckets für Schüler, Azubs und Studenten Wetersagen: Wer clever st, kommt besser weg. Gemensam mehr bewegen. Auf große Fahrt für klenes Geld Schüler, Auszubldende und Studenten

Mehr

Keynesianisches Totalmodell

Keynesianisches Totalmodell Keynesansches Totalmodell : S-LM-Modell mt Geldund Kaptalmarkt S LM : Gütermarkt : roduktonsfunkton : rbetsmarkt * : Nomallohnfestsetzung s () W0 * W/ (W/)* * d () d (W/) = (,K) Fskalpoltk m Totalmodell

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

(Essentiell) τ-äquivalente Tests:

(Essentiell) τ-äquivalente Tests: (Essentell) τ-äquvalente Tests: τ-äquvalenz: Essentelle τ-äquvalenz: τ τ τ τ +λ Repräsentatonstheore (Exstenzsatz): De Tests,..., snd genau dann τ-äquvalent, wenn ene reelle Zufallsvarable η sowereellekonstantenλ,...,

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Faszination Photovoltaik. Das reine Vergnügen. Unabhängig mit Solarstrom

Faszination Photovoltaik. Das reine Vergnügen. Unabhängig mit Solarstrom Fasznaton Photovoltak Das rene Vergnügen Unabhängg mt Solarstrom Deutschland Sonnenland Sonnenenstrahlung pro m2 und Jahr Kel Rostock Hamburg Bremen Berln Hannover Magdeburg Dortmund Lepzg Kassel Köln

Mehr

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften Ertragsmanagementmodelle n servceorenterten IT- Landschaften Thomas Setzer, Martn Bchler Lehrstuhl für Internetbaserte Geschäftssysteme (IBIS) Fakultät für Informatk, TU München Boltzmannstr. 3 85748 Garchng

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Wirtschaftliche Analyse des Leasing

Wirtschaftliche Analyse des Leasing Wrtschaftlche Analyse des Leasng Mchael Btz und Karn Nehoff *) Dskussonsbetrag Nr. 316 2002 * Unv.-Prof. Dr. Mchael Btz st Inhaber des Lehrstuhls für Betrebswrtschaftslehre, nsbes. Bank- und Fnanzwrtschaft

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Leitfaden zum. Micro Bond IndeX_InvestmentGrade (MiBoX_IG)

Leitfaden zum. Micro Bond IndeX_InvestmentGrade (MiBoX_IG) Letfaden zum Mcro Bond IndeX_InvestmentGrade (MBoX_IG) Verson 1.0 vom 25. September 2012 1 Inhalt Enführung 1 Parameter des Index 1.1 Kürzel und ISIN 1.2 Startwert 1.3 Vertelung 1.4 Prese und Berechnungsfrequenz

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr