n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

Größe: px
Ab Seite anzeigen:

Download "n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)"

Transkript

1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für eine bestimmte Zeit ( Laufzeit einer Kapitalanlage) Habenzinsen: Preis, der für ein Guthaben gezahlt wird Sollzinsen: Preis, der für ein Darlehen zu zahlen ist n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) i... Zinssatz (Zinsrate) = Betrag an Zinsen, der für ein Kapital von 1 e in einer Zinsperiode (z.b. ein Jahr) anfällt p... Zinsfuß = Betrag an Zinsen, der für ein Kapital von 100 e in einer Zinsperiode anfällt (p = i 100) Die Höhe der Zinsen ist abhängig von Kapital Laufzeit Zinssatz Bei einer Laufzeit von einer Zinsperiode gilt z = K i (2.1) 1

2 Bemerkung: - Der Zinssatz i bezieht sich in der Regel auf ein Jahr. - Es können auch andere Zinsperioden festgelegt werden, die kürzer sind als ein Jahr (z.b. 1/2 Jahr, 1 Monat, 1 Woche, 1 Tag). Man spricht dann von unterjähriger Verzinsung (oder unterjährlicher Verzinsung). - Das bedeutet nicht, dass man das Kapital für ein Jahr oder entsprechend der Zinsperiode der Bank anlegen muss. Kürzere und längere Laufzeiten sind durchaus üblich. In diesen Fällen muss man Rechenregeln angeben, wie die Zinsen zu berechnen sind. - Man muss also immer unterscheiden zwischen Zinsperiode und Laufzeit der Kapitalanlage. Vereinbarung: Wenn nicht anders angegeben, soll die Zinsperiode im Folgenden immer ein Jahr sein. Zinsen können unterschiedlich berechnet werden nach der Länge der Zinsperiode Behandlung der bereits gezahlten Zinsen Zeitpunkt der Zinszahlung, wenn das Kapital weiterhin angelegt bleibt jährliche unterjährige einfache Zinseszinsen nachschüssige vorschüssige Verzinsung Verzinsung Verzinsung Zinszahlung Zinszahlung 2

3 Einfache Verzinsung: Die Zinsen werden pro Zinsperiode ermittelt und (gleich oder am Laufzeitende) ausbezahlt, selbst aber nicht mitverzinst. auch Bürgerliche Verzinsung genannt Verzinsung mit Zinseszinsen: Zinsen werden wiederangelegt und in der darauffolgenden Zinsperiode mitverzinst. Nachschüssige Zinszahlung: Zahlung der Zinsen am Ende der Zinsperiode (bzw. am Ende der Laufzeit der Kapitalanlage, falls diese vor dem Ende der Zinsperiode liegt). Vorschüssige Zinszahlung: Zinszahlung am Anfang der Zinsperiode oder am Anfang der Laufzeit der Kapitalanlage (von untergeordneter Bedeutung). Vereinbarung: Wir betrachten ausschließlich nachschüssige Verzinsung. Bezeichnungen: K 0... Anfangskapital n... Laufzeit der Kapitalanlage in Zinsperioden K n... (End ) Kapital nach n Zinsperioden z... Zinsen pro Jahr (bei einfacher Verzinsung) z k... Zinsen im k ten Jahr, k = 1... n Z n... Zinsen nach n Jahren Die Berechnung von K n aus K 0 wird als Aufzinsen, die Berechnung von K 0 aus K n als Abzinsen, Diskontierung oder Barwertbestimmung bezeichnet. Der Barwert eines nach n Zinsperioden anfallenden Betrages K n ist der Anfangsbetrag ( K 0 ), der im entsprechenden Zinsmodell nach n Zinsperioden den Betrag K n liefert. 3

4 2.2. Einfache Verzinsung Einfache jährliche Verzinsung Beispiel: K 0 = n = 3 i = 0,04 Kapital nach einem Jahr: K 1 = K 0 + z = Kapital nach zwei Jahren: K 2 = K 0 + 2z = Kapital nach drei Jahren: K 3 = K 0 + 3z = Allgemein: K n = K 0 + n K 0 i = K 0 (1 + ni) (2.2) Z n = nk 0 i (2.3) n = 1 i ( ) Kn 1 K 0 (2.4) i = 1 n ( ) Kn 1 K 0 (2.5) Barwertformel der bürgerlichen Verzinsung: K 0 = K n 1 + ni (2.6) 4

5 Einfache jährliche Verzinsung bei unterjährlicher Laufzeit Die (Rest ) Laufzeit der Kapitalanlage liegt unter einem Jahr (= Zinsperiode) Zahlung der Zinsen am Ende der Laufzeit Berechnung der Zinsen erfolgt proportional zum Jahreszins bzw. zur Anzahl der Zinstage Die kleinste Zeitspanne, für die Zinsen berechnet werden, ist ein Tag. Berechnung der Zinstage: Dafür gibt es verschiedene Methoden (Usancen): Usance 30/360 alle Monate werden mit 30 Tagen gerechnet, das Jahr mit = 360 Tagen Usance act/360 Zinstage exakt (actual), das Jahr mit 360 Tagen Usance act/act beides exakt (im Euro-Anleihenmarkt) Vereinbarung: Die Usance act/act wird im folgenden unterstellt. 5

6 Bezeichnung: f = t Anzahl der Tage im Jahr... gebrochene Zinsperiode (2.7) z f... Zinsen für t Tage, t {1,..., 365} Zinsen für t Tage: z f = f K 0 i (2.8) Interpretation: z f = (f i) K 0 = f (i K 0 ) anteiliger Jahreszinssatz anteilige Jahreszinsen Für 0 < f < 1: K f = K 0 + z f = K 0 + fk 0 i (2.9) = K 0 (1 + fi) K 0 = K f 1 + fi (2.10) Formel der bürgerlichen Diskontierung Sonderfall: Kaufmännische Diskontierung (Zinssatz j) K 0 = K f fk f j = K f (1 fj) (2.11) statt K 0! 6

7 2.3. Zinseszinsrechnung Zinszahlungen erfolgen auch während der Laufzeit einer Kapitalanlage Zinsen werden dem Kapital zugeschlagen, sofort wieder angelegt und somit in der nächsten Zinsperiode mitverzinst Zinszahlungen erfolgen jeweils am Ende einer Zinsperiode Jährliche Zinseszinsrechnung Beispiel: Wir betrachten eine Kapitalanlage mit einer Laufzeit von 3 Jahren und einem Zinssatz von 6% (p.a.). Der angelegte Betrag sei e. K 0 = n = 3 i = 0, 06 Kapital nach einem Jahr: K 1 = K 0 (1 + i) = ,00 nach zwei Jahren: K 2 = K 1 (1 + i) = K 0 (1 + i) 2 = ,00 nach drei Jahren: K 3 = K 2 (1 + i) = K 0 (1 + i) 3 = ,16 Allgemein erhält man: Diese Formel heißt auch Zinseszinsformel. Die Zinsen in dieser Zeit belaufen sich auf Bezeichnung: K n = K 0 (1 + i) n (2.12) Z n = K n K 0 = K 0 ((1 + i) n 1) (2.13) q n = (1 + i) n... Aufzinsfaktoren (geben an, auf welchen Betrag ein Kapital von 1 e bei einem Zinssatz i und Wiederanlage der Zinsen nach n Zinsperioden anwächst) 7

8 Vergleich von einfacher und zinseszinslicher Verzinsung: K 0 = i = 5% K n n Problem: Was geschieht zwischen den Punkten bei zinseszinslicher Verzinsung? Gemischte Verzinsung entspricht dem Verbinden der Punkte durch Geradenstücke. (später) Durchgehend zinseszinsliche Verzinsung entspricht der Exponentialfunktion K 0 (1 + i) x durch die Punkte. Das heißt, für die Laufzeit n kann jede positive reelle Zahl eingesetzt werden. 8

9 Weiter gelten: K 0 = i = K n (1 + i) n (2.14) n Kn K 0 1 (2.15) n = ln K n ln K 0 ln(1 + i) = ln(k n/k 0 ) ln(1 + i) (2.16) Formel (2.14) heißt Barwertformel oder Formel der zinseszinslichen Diskontierung. 9

10 Bei durchgehend zinseszinslicher Verzinsung kann n jeden beliebigen (nichtnegativen) Wert annehmen. Beispiel: i m = 1% pro Monat K n = K 0 q n = K 0 (1 + i) n K 1 Jahr = K 0 (1 + i m ) 12 = K 0 1, = K 0 1, 1268 = K 0 (1 + 0, 1268) gleiches Resultat wie für i Jahr = 12, 68% Bei m Zinsperioden im Jahr mit Zinssatz i m zinseszinslicher Verzinsung heißt und durchgehend i eff = (1 + i m ) m 1 der effektive Jahreszinssatz bzw. der konforme Jahreszinssatz zu i m. Bei einem Zinssatz von i (p.a.) heißt i m = m 1 + i 1 der zu i konforme Zinssatz für die unterjährliche Verzinsung. Allgemein: Der jährliche Zinssatz, bei dem sich bei einmaliger Verzinsung am Jahresende die gleichen Zinsen wie bei der unterjährlichen Verzinsung ergeben, heißt effektiver Zinssatz oder effektiver Jahreszins i eff. 10

11 Außerdem nennt man bei unterjährlicher Verzinsung i nom = m i m den nominellen Jahreszinssatz. Dieser ist leicht zu bestimmen und eine Näherung für den effektiven Zinssatz, aber nicht gleich diesem! Die Angabe eines nominellen Jahreszinssatzes hat nur einen Sinn bei gleichzeitiger Angabe der Zinsperiode! im Beispiel: i m = 1% pro Monat i nom = 12% bei monatlicher Verzinsung i eff = 12, 68% Zinssätze können also konform ineinander umgerechnet werden. Es ist deshalb unerheblich, ob man mit täglicher, wöchentlicher, monatlicher... Verzinsung rechnet, sofern man den Zinssatz konform bestimmt (und n entsprechend anpasst). 11

12 Beispiel: Es bezeichne m die Anzahl der Zinsperioden pro Jahr, i m den Zinssatz und i nom = m i m den nominellen Jahreszinssatz. K 0 = 1000 i nom = 6% Anzahl der n=1 n=2 n=3 Zinsperioden m=1, d.h. 1000(1 + 0, 06) 1000(1 + 0, 06) (1 + 0, 06) 3 jährl. Verzinsung = 1060, 00 = 1123, 60 = 1191, 02 m=2, d.h. halb- 1000(1 + 0,06 2 )2 1000(1 + 0,06 2 ) (1 + 0,06 2 )2 3 jährl. Verzinsung = 1060, 90 = 1125, 51 = 1194, 05 m=4, d.h. viertel- 1000(1 + 0,06 4 )4 1000(1 + 0,06 4 ) (1 + 0,06 4 )4 3 jährl. Verzinsung = 1061, 36 = 1126, 49 = 1195, 62 m=12, d.h. 1000(1 + 0,06 12 ) (1 + 0,06 12 ) (1 + 0,05 12 )12 3 monatl. Verzinsung = 1061, 68 = 1127, 16 = 1196, 68 Beobachtungen: 1) bei unterjährlicher Verzinsung ergeben sich höhere Endwerte als bei jährlicher Verzinsung anschaulich klar, da schon nach kürzerer Zeit anfallende Zinsen mitverzinst werden. 2) Gewinnmöglichkeiten durch immer kürzere Zinsperioden scheinen begrenzt zu sein stetige Verzinsung. 12

13 Bemerkung zur stetigen Verzinsung: Es gilt: ( K n m = K i ) m n m Frage: Was passiert für m? Wir betrachten: lim K n m = lim K 0 m m ( 1 + m) i m n ( = K 0 lim 1 + i ) m n m m [( = K 0 lim 1 + i ) m ] n [ = K 0 m m = K 0 (e i ) n = K 0 e i n lim m ( 1 + i ) m ] n m Ein Kapital wächst bei stetiger Verzinsung mit dem Zinssatz i in n Jahren auf K n = K 0 e in 13

14 2.3.2 Gemischte Verzinsung Problem: Gelder sind nicht über genau eine oder mehrere Zinsperioden festgelegt; sie werden auch innerhalb der Zinsperiode angelegt und wieder abgehoben, unterjährlich wird einfach verzinst Einzahlung von Auszahlung von Kapital K A Kapital K D A B C D Jahre } {{ } } {{ } } {{ } t 1 Tage N Jahre t 2 Tage Anfang bzw. Ende einer Zinsperiode Berechnung des Endkapitals: Anfangskapital : K A Kapital im Punkt B : K B = K A (1 + i f t1 ) Kapital im Punkt C : K C = K B (1 + i) N Endkapital im Punkt D : K D = K C (1 + i f t2 ) Legt man ein Kapital K A innerhalb eines Jahres bis Jahresende (t 1 Tage) an, lässt es dann N Jahre zinseszinslich angelegt und hebt es danach im Laufe des nächsten Jahres nach t 2 Tagen ab, so erhält man bei konstantem Zinssatz i (p.a.) und gemischter Verzinsung ein Endkapital K D von K D = K A (1 + i f t1 ) (1 + i) N (1 + i f t2 ) (2.17) 14

15 Probleme: Umständlich zu berechnen K D hängt von den Zinsterminen ab. Bemerkung: Werden unterjährlich Zinsen gezahlt, so behalten alle Formeln ihre Gültigkeit, nur dass n dann die Anzahl der Zinsperioden und i der (konforme) Zinssatz der entsprechenden (kürzeren) Zinsperiode ist. 15

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

LÖSUNGEN Zinsrechnung

LÖSUNGEN Zinsrechnung M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 6. Januar 2016 LÖSUNGEN Zinsrechnung Aufgabe 1. Am 3. März eines Jahres erfolgt eine Einzahlung von 3.500 e. Auf welchen Endwert

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Unterjährige einfache Verzinsung In Deutschland Einteilung des Zinsjahres

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n heißt

Mehr

Finanzmathematik. Zinsrechnung I 1.)

Finanzmathematik. Zinsrechnung I 1.) Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA m+1 re = r m + i 2 Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 3. entenrechnung Definition: ente = laufende Zahlungen, die in regeläßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzatheatisch sind zwei Gesichtspunkte

Mehr

Finanzmathematik. Aufgabe 71

Finanzmathematik. Aufgabe 71 Finanzmathematik Aufgabe 71 Finanzmathematik: Einfach (FIMA.1) Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen in Höhe von 144,45 zu bezahlen. Für welche Zeitspanne wurden

Mehr

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1 Exponentialfunktion Die Potenzfunktion y = e x = exp(x) mit der Eulerschen Zahl e = 2.71828... wird als Exponentialfunktion bezeichnet. Sie ist für alle x R positiv und erfüllt die Funktionalgleichung

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Die

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

1 Systematisierung der Verzinsungsarten

1 Systematisierung der Verzinsungsarten 1 Systematisierung der Verzinsungsarten 4 Stetige Verzinsung 5 Aufgaben zur Zinsrechnung Dr. A. Brink 1 1..Syse Systematisierung seugdeve der Verzinsungsarten sugs e Jährliche Verzinsung a Einfache Zinsen

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

Grundlagen der Finanzmathematik

Grundlagen der Finanzmathematik Kapitel 8 Grundlagen der Finanzmathematik In der Finanzmathematik spielt neben Geld (in Form von Zahlungen) der Faktor Zeit (als Zeitpunkt, zu dem die Zahlungen erfolgen, bzw. als Zeitraum zwischen Zahlungen)

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 = 1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen

Mehr

Finanzmathematik mit Excel 1

Finanzmathematik mit Excel 1 Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.09.202 Lösungen zur Zinseszinsrechnung Ergebnisse E Auf welchen Betrag wachsen foende Anfangskapitalien an? a) 800 wachsen bei einem Zinssatz von 5% in 0 Jahren

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

4. Übungsblatt mit Lösungen 09.05.2007. Die Besprechung der Aufgaben erfolgt im Tutorium bei Frau Stefanie Müller am Freitag, 11.05.2007.

4. Übungsblatt mit Lösungen 09.05.2007. Die Besprechung der Aufgaben erfolgt im Tutorium bei Frau Stefanie Müller am Freitag, 11.05.2007. (Unterjährige Verzinsung, stetige Verzinsung) Die Besprechung der Aufgaben erfolgt im Tutorium bei Frau Stefanie Müller am Freitag, 11.05.2007. 1. a) Ein Sparer legt 4.000 verzinslich zu 6% p. a. für 10

Mehr

Um die notwendigen Berechnungen durchführen zu können, benötigt man einige Begriffe:

Um die notwendigen Berechnungen durchführen zu können, benötigt man einige Begriffe: Kapitel 2 Zinsrechnung Für ausgeliehenes Kapital muss in der Regel ein Entgelt für dessen Nutzung, der so genannte Zins, bezahlt werden. Je nach Nutzungsdauer des Kapitals und Entgeltvereinbarung gibt

Mehr

Zinsrechnung. 2.1 Was sind Zinsen?

Zinsrechnung. 2.1 Was sind Zinsen? Zinsrechnung 2 Dieses Kapitel fasst aus fachwissenschaftlicher Sicht die wichtigsten ökonomischen und mathematischen Grundlagen derjenigen Inhalte zum Thema Zinsrechnung zusammen, die Gegenstand der im

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Elementare Zinsrechnung

Elementare Zinsrechnung Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013

R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben

Mehr

33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung.

33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung. 1 Lösungsvorschläge zu der Zinsaufgaben 33 37 (bzw. 6 10): 33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung. I) monatliche Zinsgutschrift: m

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich lange Rentenperioden, d.h.

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche

Mehr

Grundzüge der Finanzmathematik

Grundzüge der Finanzmathematik Markus Wessler Grundzüge der Finanzmathematik Das Übungsbuch Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 2 Zinsrechnung

Mehr

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen [FINANZMATHEMATIK] Mag. Michael Langer 1. Zinseszinsrechnung Zinseszins Wird ein Kapital K 0 zum Jahreszinssatz i so angelegt, dass es jedes Jahr um die Zinsen vermehrt wird, dann beträgt das Kapital nach

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

Grundzüge der Finanzmathematik

Grundzüge der Finanzmathematik Markus Wessler Grundzüge der Finanzmathematik Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 2.4 Kalenderjährliche Verzinsung

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Finanzmathematik - Grundlagen

Finanzmathematik - Grundlagen Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das

Mehr

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg 5/27/09 1.5 Anwendungen der Bruchzahlen Sachaufgaben im 6. und 7. Schuljahr a) Prozentrechnung b) Zinsrechnung c) Zinseszinsrechnung Prozentrechnung Zwei Möglichkeiten zum Einstieg I. Man geht von Prozentangaben

Mehr

2. Übungsblatt LÖSUNGEN (Abschreibungen, einfache Zinsrechnung, Zinseszinsrechnung, stetige Verzinsung)

2. Übungsblatt LÖSUNGEN (Abschreibungen, einfache Zinsrechnung, Zinseszinsrechnung, stetige Verzinsung) Übungen zu Finanzmathematik/Lineare Optimierung Seite 1 von 10 (Abschreibungen, einfache Zinsrechnung, Zinseszinsrechnung, stetige Verzinsung) 1. Eine Maschine hat einen Anschaffungswert von 60.000. Die

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Kurs und Rendite zu beliebigen Zeitpunkten

Kurs und Rendite zu beliebigen Zeitpunkten Zusammenfassung des Vortrages Kurs und Rendite zu beliebigen Zeitpunkten 14.05.2011 Kurs und Rendite zu beliebigen Zeitpunkten Gliederung 1. Grundlagen der Kursrechnung und Renditeermittlung 2. Kurs und

Mehr

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10 Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das

Mehr

0. Begrifflichkeiten...1. 1. Einfache Zinsrechnung (lineare Verzinsung)...3. 1.1 Jährliche lineare Verzinsung...3

0. Begrifflichkeiten...1. 1. Einfache Zinsrechnung (lineare Verzinsung)...3. 1.1 Jährliche lineare Verzinsung...3 Inhalt 0. Begrifflichkeiten...1 1. Einfache Zinsrechnung (lineare Verzinsung)...3 1.1 Jährliche lineare Verzinsung...3 1.2 Unterjährige lineare Verzinsung, zeitproportionale Zinsverrechnung...4 2. Zinseszinsrechnung

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Inhaltsverzeichnis. - Aktuelle Rendite. - Rendite-Historie. - Beschreibung

Inhaltsverzeichnis. - Aktuelle Rendite. - Rendite-Historie. - Beschreibung Inhaltsverzeichnis - Aktuelle Rendite - Rendite-Historie - Beschreibung - Finanzierungsschatz (1 Jahr Laufzeit) - Konditionen - Rendite - Nennwert - Effektive Rendite - Finanzierungsschatz (2 Jahre Laufzeit)

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 2016 Torsten Schreiber 303 TILGUNGSRECHNUNG: DEFINITION: Unter der Tilgungsrechnung versteht man einen Zahlungsstrom, der zur Rückführung eines geliehen Betrags (Schuld) dient. Die mathematischen Grundlagen

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Übungsaufgaben zur Zinsrechnung

Übungsaufgaben zur Zinsrechnung Seite 1 von 5 a.) Jemand legt heute 4.000.- zu 4,8% Zinsen an. Nach wie vielen Jahren wird sein Guthaben auf 5.056,69 angewachsen sein? 4.000 1,048 x = 5.056,69 : 4.000 1,048 x = 1,64175 lg x = lg 1,64175

Mehr

Tagesgeldkonto Aktualisiert Sonntag, 06. Februar 2011 um 21:22 Uhr. Beschreibung

Tagesgeldkonto Aktualisiert Sonntag, 06. Februar 2011 um 21:22 Uhr. Beschreibung Beschreibung Die einfachste Form Geld renditeträchtig anzulegen, bieten die von einer Vielzahl von Banken angebotenen Tagesgeldkonten. Sie dienen Banken zur Kapitalbeschaffung. Anstatt Geld von der Europäischen

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Vorlesungsrogramm für den 23. 11. 2006 K. Steffen, Heinrich-Heine-Universität Düsseldorf, WS 2006/07) 2.2 Zins- und Zinseszinsrechnung Einfache Verzinsung liegt

Mehr

Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe =

Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe = Aufgabe : [6 Punkte] Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe 0 i i über die Summenformel der geometrischen Reihe ( Nachkommastellen).

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das

Mehr

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit 1. Aufgabe Ein Kapital in Höhe von 1500 wird zunächst drei Jahre lang mit 5% verzinst und dann mit 6,2% verzinst. Das Kapital beträgt dann 2.645,64.

Mehr

a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? b) Was versteht man unter dem Begriff Wertstellungspraxis?

a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? b) Was versteht man unter dem Begriff Wertstellungspraxis? 1 Klausur SoSe 2007 Aufgabe 1: Fragen zur Finanzmathematik (7 Punkte) a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? (2 Punkte) b) Was versteht man unter dem Begriff Wertstellungspraxis?

Mehr

Testklausur Finanzmathematik / Statistik

Testklausur Finanzmathematik / Statistik Testklausur Finanzmathematik / Statistik Aufgabe - Grundlagen 0 a) Nennen Sie die charakteristische Eigenschaft einer geometrischen Zahlenfolge. b) Für eine geometrische Zahlenfolge seien das Glied a 0

Mehr

KV Glarus/BM Bs/97 Mathematik. Paul Bischof. Mathe-BM Seite 1

KV Glarus/BM Bs/97 Mathematik. Paul Bischof. Mathe-BM Seite 1 Mathe-BM Seite 1 Definition Folgen und Reihen Besteht der Definitionsbereich D einer Funktion ƒ nur aus den aufeinanderfolgenden natürlichen Zahlen 1, 2, 3, 4,... bzw. 0, 1, 2, 3,... oder aus einem Abschnitt

Mehr

Zinsrechnung K leicht 1

Zinsrechnung K leicht 1 Zinsrechnung K leicht 1 Berechne jeweils das Kapital im Kopf! (Zeitraum: 1 Jahr) a) K = 3 000 a) Zinsen: 30 b) K = 7 500 c) K = 100 000 d) K = 20 Zinssatz: 000 1 % b) Zinsen: 150 Zinssatz: 2 % c) Zinsen:

Mehr

Diskrete und Kontinuierliche Modellierung

Diskrete und Kontinuierliche Modellierung Diskrete und Kontinuierliche Modellierung Bei Modellen unterscheidet man unter anderem zwischen diskreten und kontinuierlichen Modellen. In diesem Artikel möchte ich den Unterschied zwischen beiden Arten

Mehr

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben 5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren

Mehr

Begleitskript zum Kurs Zinsrechnung

Begleitskript zum Kurs Zinsrechnung Begleitskript zum Kurs Zinsrechnung Lerninhalt: Grundlagen der kaufmännischen Zinsrechnung: Berechnung von Zinszeitraum und Zinsen, Zinseszinsrechnung, Zinssatz und effektiver Jahreszins und Kapitalwertberechnung.

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Finanzmathematik I: Zins- und Zinseszinsrechnung

Finanzmathematik I: Zins- und Zinseszinsrechnung Dr. habil. Burkhard Utecht Berufsakademie Thüringen Staatliche Studienakademie Studienabteilung Eisenach Studienbereich Wirtschaft Wirtschaftsmathematik Wintersemester 2004/05 Finanzmathematik I: Zins-

Mehr

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5 Inhalt. Einfache Zinsrechnung (lineare Verzinsung).... Zinseszinsrechnung (exponentielle Verzinsung)...4. Rentenrechnung...5 4. Tilgungsrechnung...6 Die Größe p bezeichnet den Zinsfuß (z.b. 0). Die Größe

Mehr

Wichtige Formeln im Bankgeschäft

Wichtige Formeln im Bankgeschäft Wichtige Formeln im Bankgeschäft Die dient als Nachschlagewerk für die wichtigsten Formeln im Bankgeschäft. Zu jeder Formel finden Sie auf der jeweiligen Folgeseite ein praktisches Beispiel. Mit «Page-down»

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

lebensbegleitenden Finanzmathematik

lebensbegleitenden Finanzmathematik Martin Hödlmoser Das lxl der lebensbegleitenden Finanzmathematik Kredit-, Darlehens-, Leasingraten Rendite von Veranlagungen (Sparbücher, Wertpapiere,...) Zinsverrechnungsmodalitäten Tilgungspläne Grundzüge

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen . Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich

Mehr

1 Zinsrechnung. 1.1 Grundbegrie

1 Zinsrechnung. 1.1 Grundbegrie 1 Zinsrechnung Als Zinsrechnung bezeichnet man alle mathematischen Formeln zur Berechnung der Zinsen, die für die Verleihung eines Geldbetrages innerhalb eines Zeitraumes anfallen. Es gibt zwei grundsätzliche

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007. 4 Forward Rate Agreement 7. 5 Forward Zinsen 8. Literatur 9

Zinssätze. Georg Wehowar. 4. Dezember 2007. 4 Forward Rate Agreement 7. 5 Forward Zinsen 8. Literatur 9 Zinssätze Georg Wehowar 4. Dezember 2007 Inhaltsverzeichnis 1 Grundlagen der Zinsrechnung 1 1.1 Allgemeines................................... 1 1.2 Zinsintensität.................................. 3 1.3

Mehr

Zinseszinsrechnung. für GeoGebraCAS

Zinseszinsrechnung. für GeoGebraCAS Zinseszinsrechnung für GeoGebraCAS Letzte Änderung: 01/ April 2011 Überblick 1.1 Zusammenfassung Bei dieser Unterrichtssequenz sollen die Kenntnisse der Schüler/innen zur Prozentrechnung (6. Schulstufe)

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014

Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014 Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014 Dipl.-Kfm. Stephan Körner Aufgabe 1: Investitionscontrolling (40 Punkte) Die Bleier & Mine GmbH ist Herstellerin von Büroartikeln

Mehr