Formelsammlung und Entscheidungsbaum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung und Entscheidungsbaum"

Transkript

1 Fakultät für Human- und Sozialwissenschaften Institut für Anewandte Beweunswissenschaft JP Forschunsmethoden & Analyseverfahren Formelsammlun und Entscheidunsbaum JP Dr. Christian Maiwald chemnitz.de Tel: +49 (371) Dr. Doris Oriwol chemnitz.de Tel: +49 (371)

2 1 Formelsammlun 1.1 Deskriptive Statistik Mittelwert MW = 1 n n x i Varianz VAR = 1 n 1 Standardabweichun SD = VAR n (x i MW) 2 Spannweite SW = max min Interquartilsabstand d IQ = Q 0.75 Q 0.25 Variationskoeffizient VK = SD MW Momentenkoeffizient der Schiefe Quartilskoeffizient der Schiefe m = 1 SD 3 n (n 1)(n 2) n (x i MW) 3 p = (Q 1 p MED) (MED Q p ) Q 1 p Q p Wölbun w = 1 SD 4 1 n n (x i MW) 4 3 2

3 1 Formelsammlun Standardfehler SF = SD n Konfidenzintervall MW ±u 1 α/2 SF mit u 1 α/2 - entsprechendes Quantil der Standardnormalverteilun 1.2 Testverfahren für zwei metrische Stichproben T-Test für zwei unabhänie Stichproben/ 2SP-T-Test 1 ( epoolte SD pool = (n1 1)SD 2 n Standardabweichun 1 +n (n 2 1)SD2) 2 Teströße t = MW 1 MW 2 SD pool 1/n1 +1/n 2, df = n 1 +n 2 2 Effektstärken d = MW 1 MW 2 SD pool, ω 2 = t 2 1 t 2 +n 1 +n 2 1 T-Test für zwei abhänie Stichproben Teströße t = MW diff SD diff /, df = n 1 n Effektstärken d = MW 1 MW 2 SD diff, ω 2 = t2 1 t 2 +2n 1 3

4 1 Formelsammlun Mann-Whitney-U-Test Teströße U 1 = n 1 n 2 + n 1(n 1 +1) 2 R 2 U = min(u 1,U 2 ) R 1, U 2 = n 1 n 2 + n 2(n 2 +1) 2 normalverteilte Teströße Effektstärken z = U n 1 n 2 /2 n1 n 2 (n 1 +n 2 +1)/12 PS = U n 1 n 2 Wilcoxon-Vorzeichenrantest Teströße T = min( R +, R ) normalverteilte Teströße z = T n(n+1)/4 n(n+1)(2n+1)/24 Effektstärken PS = #(positive Differenzen) n #(Nulldifferenzen) 1.3 Testverfahren für mehr als zwei metrische Stichproben Varianzanalyse Effektstärken η 2 = SS between SS total, ω 2 = (k 1)(F 1) (k 1)(F 1)+nk 4

5 1 Formelsammlun Varianzanalyse mit Messwiederholun Effektstärken η 2 p = SS between SS between +SS residual, ω 2 = (k 1)(F 1) (k 1)(F 1)+nk Einfache ANOVA mittels Ränen nach Kruskal-Wallis Teströße H =...+n k 12 N(N +1) k [ ] ( Rj ) 2 3(N +1) mit N = n 1 +n 2 + j=1 n j Effektstärken η 2 = H k +1 N k Einfache ANOVA mittels Ränen nach Friedman Teströße χ 2 r = 12 nk(k +1) Effektstärken W = χ 2 r n(k 1) k j=1 [ ] ( R j ) 2 3n(k +1) 5

6 1 Formelsammlun 1.4 Testverfahren für ordinale und nominale Stichproben Chi 2 -Test (Chi 2 -Homoenitätstest) Teströße χ 2 = Effektstärken C = (k+r) χ 2 (B i E i ) 2 E i, df = (r 1)(k 1) χ 2 +n, C korr = min(k,r) χ 2 min(k,r) 1 χ 2 +n V = χ 2 n(min(k,r) 1) Chi 2 -Anpassunstest Teströße χ 2 = Vorzeichentest (k+r) (B i E i ) 2 E i, df = (r 1)(k 1) normalverteilte Teströße z = x + n P(+) 0.5, df = n 1 n P(+) P( ) 6

7 1 Formelsammlun 1.5 Reliabilität und Zusammenhan Korrelation Korrelationskoeffizient nach Pearson Lineare Reression r xy = n (x i MW x )(y i MW y ) n (x i MW x ) 2 n (y i MW y ) 2 Funktionsleichun des linearen Modells y = SD y SD x r xy (x MW x )+MW y Reliabilität Limits of Areement LoA = MW diff ±1.96 SD diff RMSE RMSE 1 = 1 n n (VAR i ) RMSE 2 = MS residual mit MS residual - mittlere Fehlerschwankun einer ANOVA mit Messwiederholun 7

8 2 Entscheidunsbaum Art der Fraestellun Unterschiedshypothese / Veränderunshypothese (2.1) S. 8 Zusammenhanshypothese (2.2) S. 14 Äquivalenzhypothese (2.3) S. 15 Mittelwert / zentrale Tendenz (2.1.1) S. 8 Varianz / Dispersion (2.1.2) S. 11 Verteilunsform (2.1.3) S Unterschiedshypothese / Veränderunshypothese Unterschiede bezülich des Mittelwertes und der zentralen Tendenz eine Stichprobe (2.1.1) S. 9 Anzahl der Stichproben zwei Stichproben/ Bedinunen (2.1.1) S. 9 mehr als zwei Stichproben/ Bedinunen (2.1.1) S. 10 8

9 2 Entscheidunsbaum Eine Stichprobe Ein-Stichproben z-test normal Populationsvarianz Verteilun? (metrische Ein-Stichproben t-test Variable) unbekannt beliebi bekannt Vorzeichentest, Wilcoxon Vorzeichen-Ran Test Zwei Stichproben/ Bedinunen unabhänie Stichproben (2.1.1) S. 9 Abhänikeit? abhänie Stichproben (2.1.1) S. 10 Unabhänie Stichproben normal unbekannt Varianzen? bekannt Zwei-Stichproben z-test Zwei-Stichproben t-test für homoene Varianzen homoen Populationsvarianz heteroen Zwei-Stichproben t-test für heteroene Varianzen metrisch (steti) Verteilun? leich Mann-Whitney-U-Test Verteilunsform beliebi Messniveau? ordinal verschieden Mediantest 9

10 2 Entscheidunsbaum Abhänie Stichproben homoen t-test für abhänie Messunen normal Varianz metrisch (steti) Verteilun? heteroen leich Wilcoxon- Vorzeichenrantest beliebi Verteilunsform Messniveau? verschieden Vorzeichentest ordinal Mehr als zwei Stichproben/ Bedinunen unabhänie Stichproben (2.1.1) S. 10 Abhänikeit? abhänie Stichproben (2.1.1) S. 11 Unabhänie Stichproben homoen Varianzanalyse normal Varianz? heteroen Varianzanalyse nach Brown-Forsythe/Welch metrisch (steti) Verteilun? beliebi Verteilunsform leich Kruskal-Wallis Varianzanalyse mit Ränen Messniveau? verschieden Mediantest ordinal 10

11 2 Entscheidunsbaum Abhänie Stichproben ja Varianzanalyse für abhänie Messunen normal Sphärizität metrisch (steti) Verteilun? nein Varianzanalyse mit Korrektur nach Greenhouse-Geiser, Huynh-Feldt Messniveau? beliebi Friedman-Test ordinal Unterschied bezülich der Verteilunsform (2.1.3) S Unterschiede bezülich Varianz / Dispersion eine Stichprobe (2.1.2) S. 11 Anzahl der Stichproben zwei Stichproben/ Bedinunen (2.1.2) S. 12 mehr als zwei Stichproben/ Bedinunen (2.1.2) S. 12 Eine Stichprobe χ 2 -Test 11

12 2 Entscheidunsbaum Zwei Stichproben/ Bedinunen normal F-Test, Levene-Test, Brown-Forsythe unabhäni Verteilun? ja Sieel-Tuckey-Test Abhänikeit? beliebi abhäni (normalverteilt) Mediane leich? nein Adjustierter Sieel-Tuckey-Test t-test für Varianzleichheit Mehr als zwei Stichproben/ Bedinunen unabhäni (normalverteilt) Cochrans C, Box-Scheffé, Brown-Forsythe-Test, Levene-Test Abhänikeit? abhäni Sphärizitätsannahme bei der Varianzanalyse mit Messwiederholun Unterschiede bezülich der Verteilunsform eine Stichprobe (2.1.3) S. 13 Anzahl der Stichproben zwei Stichproben/ Bedinunen (2.1.3) S. 13 mehr als zwei Stichproben/ Bedinunen (2.1.3) S

13 2 Entscheidunsbaum Eine Stichprobe steti Kolmoorov-Smirnov- Anpassunstest, Shapiro-Wilk-Test Art der Daten? diskret Anzahl der Kateorien dichotom polychotom Binomialtest Pearsons χ 2 -Anpassunstest Zwei Stichproben/ Bedinunen steti Kolmoorov-Smirnov- Zwei-Stichproben-Test unabhäni Art der Daten? dichotom Vierfelder-χ 2 -Test, Fishers exakter Test diskret Anzahl der Kateorien? Abhänikeit? polychotom Pearsons χ 2 -Test dichotom McNemar-Test abhäni, diskret Anzahl der Kateorien? polychotom Bowkers-Test Mehr als zwei Stichproben/ Bedinunen Abhänikeit? unabhäni, diskret abhäni, diskret Pearsons χ 2 -Test Cochrans Q 13

14 2 Entscheidunsbaum 2.2 Zusammenhanshypothese linear (2.2.1) S. 14 Form des Zusammenhans? monoton (2.2.2) S. 15 kurvilinear (2.2.3) S Linearer Zusammenhan beide steti Pearson Produkt-Moment-Korrelation Variablen kateorial? eine künstlich dichotomisiert, Population normalverteilt biserale Korrelation beide künstlich dichotomisiert, Population bivariat normalverteilt tetrachorische Korrelation 14

15 2 Entscheidunsbaum Monotoner Zusammenhan Ene des Zusammenhans Spearmans Rankorrelation beide steti Interpretation hinsichtlich Vorhersaefehler Kendalls τ Variablen kateorial? beide kateorial Fraestellun symmetrisch ja nein Kendalls τ, Goodman-Kruskals γ Somers d kurvilinearer Zusammenhan Korrelationsverhältnis η Äquivalenzhypothese Reliabilität, Objektivität, Messsystemverleich Anzahl der Stichproben zwei Stichproben/ Bedinunen/ Beobachter (2.3.1) S. 16 mehr als zwei Stichproben/ Bedinunen/ Beobachter (2.3.1) S

16 2 Entscheidunsbaum Zwei Stichproben/ Bedinunen/ Beobachter (metrisches Messniveau) relative Maße (Konsistenz) Test-Retest-Korrelation nach Pearson Konzepte? absolute Maße (Übereinstimmun) Limits of Areement (LoA) Mehr als zwei Stichproben/ Bedinunen/ Beobachter (metrisches Messniveau) relative Maße (Konsistenz) Intraclass- Korrelationskoeffizienten (ICC) Konzepte? absolute Maße (Übereinstimmun) Root Mean Square Error (RMSE) 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Test-Finder 1 Test-Finder Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Inhalt 1 Grundlagen... 2 2 Maße der zentralen Tendenz vergleichen Zwei Gruppen... 3 2.1 T-Test für unabhängige Daten...

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt.

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt. Syntax *Ü2. *. corr it25 with alter li_re kontakt. *2. regression var=it25 alter li_re kontakt/statistics /dependent=it25 /enter. regression var=it25 li_re kontakt/statistics /dependent=it25 /enter. *3.

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

I Einführung 1. 1 Über den Umgang mit Statistik 3

I Einführung 1. 1 Über den Umgang mit Statistik 3 I Einführung 1 1 Über den Umgang mit Statistik 3 1.1 Statistik richtig lehren und lernen 3 1.2 Testergebnisse richtig interpretieren 6 1.3 Einfluss des Zufalls 8 1.4 Die Interpretation von Zusammenhängen

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

Lehrbuch Statistik. Rainer Leonhart. Verlag Hans Hub er. Unter Mitarbeit von Stephanie Lichtenberg, Katrin Schornstein und Jana Groß Ophoff

Lehrbuch Statistik. Rainer Leonhart. Verlag Hans Hub er. Unter Mitarbeit von Stephanie Lichtenberg, Katrin Schornstein und Jana Groß Ophoff Rainer Leonhart Lehrbuch Statistik Unter Mitarbeit von Stephanie Lichtenberg, Katrin Schornstein und Jana Groß Ophoff 2., überarbeitete und erweiterte Auflage Verlag Hans Hub er Inhaltsverzeichnis I Einführung

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner

Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Grundbegriffe und Grundlagen der Statistik Vortragender: Thomas Zidek Allgemeinmediziner Was werden wir behandeln? Grundbegriffe der Statistik 2 wesentliche Themen bereits behandelt Wissenschaftliche Studien

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Das harmonische Mittel

Das harmonische Mittel Das harmonische Mittel x H := 1 1 n n 1 x i Das harmonische Mittel entspricht dem Mittel durch Transformation t 1 t Beispiel: x 1,..., x n Geschwindigkeiten, mit denen konstante Wegstrecken l zurückgelegt

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH

Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH Biostatistische Studienplanung Dr. Matthias Kohl SIRS-Lab GmbH Ausgangspunkt Fragestellung(en)/Hypothese(n): Hauptfragestellung: Grund für Durchführung der Studie Nebenfragestellung(en): Welche Fragestellungen

Mehr

Statistik. Prof. em. Dr. Dr. h.c. Günter Bamberg PD Dr. Franz Baur Prof. Dr.Michael Krapp. 17., überarbeitete Auflage. Oldenbourg Verlag München.

Statistik. Prof. em. Dr. Dr. h.c. Günter Bamberg PD Dr. Franz Baur Prof. Dr.Michael Krapp. 17., überarbeitete Auflage. Oldenbourg Verlag München. Statistik von Prof. em. Dr. Dr. h.c. Günter Bamberg PD Dr. Franz Baur Prof. Dr.Michael Krapp 17., überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Liste wichtiger Symbole IX XI

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren Statistik Testverfahren Bachelorstudium Psychologie Statistik Testverfahren Prof. Dr.

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur... Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen Ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Anhang: Statistische Tafeln und Funktionen

Anhang: Statistische Tafeln und Funktionen A1 Anhang: Statistische Tafeln und Funktionen Verteilungsfunktion Φ(z) der Standardnormalverteilung Die Tabelle gibt die Werte Φ(z) der Verteilungsfunktion zu vorgegebenem Wert z 0 an; ferner gilt Φ( z)

Mehr

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40 283 Stichwortverzeichnis a Alpha-Wert 76, 91 Alter 256 Alternativhypothese 68, 70 ANOVA siehe einfache Varianzanalyse, zweifache Varianzanalyse Anpassung 178 Anpassungstest siehe Chi-Quadrat-Anpassungstest

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Erwin Grüner

Erwin Grüner FB Psychologie Uni Marburg 19.01.2006 Themenübersicht Die Verteilung zwei- oder mehrdimensionaler kategorialer Daten wird mit Hilfe von beschrieben. In R gibt es dafür den Objekttyp table. Zur Erstellung

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Statistik. Von Dr. Günter Bamberg. o. Professor für Statistik und Dr. habil. Franz Baur. Universität Augsburg. 12., überarbeitete Auflage

Statistik. Von Dr. Günter Bamberg. o. Professor für Statistik und Dr. habil. Franz Baur. Universität Augsburg. 12., überarbeitete Auflage Statistik Von Dr. Günter Bamberg o. Professor für Statistik und Dr. habil. Franz Baur Universität Augsburg 12., überarbeitete Auflage R.01denbourg Verlag München Wien V INHALTSVERZEICHNIS Vorwort Liste

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Wichtige statistische Koeffizienten und Formeln

Wichtige statistische Koeffizienten und Formeln Wichtige statistische Koeffizienten und Formeln Felix Baumann Skalenniveau Art des Koeffizienten Koeffizient Formel (ab) ominalskala: (Unterscheidung nach Gleichheit/Ungleichheit; jeder Ausprägung eine

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

5.9. Nichtparametrische Tests Übersicht

5.9. Nichtparametrische Tests Übersicht 5.9. Übersicht Es werden die wichtigsten Rang-Analoga zu den Tests in 5.2.-5.6. behandelt. 5.9.0 Einführung 5.9.1 Einstichprobenproblem (vgl 5.2), 2 verbundene Stichproben (vgl. 5.3) Vorzeichentest, Vorzeichen-Wilcoxon-Test

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Modulbeschreibung Statistik

Modulbeschreibung Statistik Modulbeschreibung Statistik Christian Reinboth Worum geht es in dieser Vorlesung? Eine statistische Grundlagenvorlesung ist Teil der meisten Studiengänge ob im natur-, wirtschafts- oder sozialwissenschaftlichen

Mehr

Kursangebote für Studierende über das Leibniz-Rechenzentrum (http://www.lrzmuenchen.de/services/schulung/)

Kursangebote für Studierende über das Leibniz-Rechenzentrum (http://www.lrzmuenchen.de/services/schulung/) Statistik-Manual für SPSS Anmerkung: Softwarebezug über das Leibniz-Rechenzentrum (Barer Straße 21, 80333 München, Telefon: (089) 289-28886 oder (089) 289-28784, http://www.lrz-muenchen.de/services /swbezug/lizenzen/spss/).

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Statistik für Psychologen, Pädagogen und Mediziner

Statistik für Psychologen, Pädagogen und Mediziner Thomas Köhler Statistik für Psychologen, Pädagogen und Mediziner Ein Lehrbuch ^~i: Verlag W. Kohlhammer 1 Einführung: Begriffsklärungen und Überblick 11 1.1 Aufgaben und Subdisziplinen der Statistik 11

Mehr

SPSS 13.0 Advanced. Mittelwertvergleiche

SPSS 13.0 Advanced. Mittelwertvergleiche Mittelwertvergleiche Der Vergleich von verschiedenen Stichproben hinsichtlich ihrer Mittelwerte gehört zu den gängigsten statistischen Analysen. Dabei soll stets die Frage geklärt werden, ob auftretende

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

7. Zusammenfassung. Zusammenfassung

7. Zusammenfassung. Zusammenfassung Zusammenfassung Basiswissen Klassifikation von Merkmalen Wahrscheinlichkeit Zufallsvariable Diskrete Zufallsvariablen (insbes. Binomial) Stetige Zufallsvariablen Normalverteilung Erwartungswert, Varianz

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 I.3. Computergestützte Methoden 1. Deskriptive Statistik Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 1 Seminarübersicht Nr. Thema 1 Deskriptive Statistik 1.1 Organisation und Darstellung von

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Mitschrift zu KV Statistik 2 bei DI Petz

Mitschrift zu KV Statistik 2 bei DI Petz Mitschrift zu KV Statistik bei DI Petz F l o r i a n K ö n i g 0550/51 florian.koenig@oeh.jku.at 9. März 004 1 Klassenbildung N ist eine gute Zahl von Klassen bei kleinen N, ansonsten besser log N. Lagemaßzahlen

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Werkzeuge der empirischen Forschung

Werkzeuge der empirischen Forschung Werkzeuge der empirischen Forschung I. Daten und Beschreibende Statistik 1. Einführung 2. Dateneingabe, Datentransformation, Datenbehandlung 3. Beschreibende Statistik II. Schließende Statistik 1 III.

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette Ruhr-Universität Bochum 7. Mai 2010 1 / 95 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30-10.00

Mehr

Jiirgen Kriz. Statistik in den Sozialwissenschaften

Jiirgen Kriz. Statistik in den Sozialwissenschaften Jiirgen Kriz. Statistik in den Sozialwissenschaften WV studium Band 29 J tirgen Kriz Statistil< in den Sozialwissenschaften Einfuhrung und kritische Diskussion 4. Auflage Westdeutscher Verlag CIP-Kurztitelaufnahme

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Deskriptive Statistik Aufgaben und Lösungen

Deskriptive Statistik Aufgaben und Lösungen Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Analyse von Experimenten. Stefan Hanenberg (University of Duisburg-Essen)

Analyse von Experimenten. Stefan Hanenberg (University of Duisburg-Essen) Analyse von Experimenten Stefan Hanenberg (University of Duisburg-Essen) Eine Intuitive Einführung Intuitive Einführung (1) siehe vorherige Vorlesung Beispiel und Diskussion Ich glaube, dass die Programmiersprache

Mehr

Statistik-Quiz Sommersemester

Statistik-Quiz Sommersemester Statistik-Quiz Sommersemester Seite 1 von 8 Statistik-Quiz Sommersemester Die richtigen Lösungen sind mit gekennzeichnet. 1 In einer Gruppe von 337 Probandinnen und Probanden wurden verschiedene Merkmale

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Analyse von Kategoriedaten / Nicht-parametrische Methoden Dezember 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 19. Dezember 2012: Vormittag (09.15 12.30) Vorlesung

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr