Mathematische und statistische Methoden II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematische und statistische Methoden II"

Transkript

1 Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum ) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike SS 2010 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Methodenlehre Mengelehre Variablen Merkmale, deren Werte bei den statistischen Einheiten beobachtet werden, heißen Variablen Die Werte, die ein Merkmal bzw. eine Variable annehmen kann, heißen Ausprägungen oder Realisationen Die Ausprägungen eines Merkmals können beliebiger Art sein (z.b. Worte, Formen, Farben etc.) Eine Variable wird definiert, indem den Ausprägungen des Merkmals Zahlen zugeordnet werden. 2 Merkmal 5 Variable

3 Methodenlehre Mengelehre Wir haben bereits eine Unterscheidung von Typen von Variablen anhand der Art der Daten kennen gelernt. Eine diskrete Variable besitzt zumeist endlich viele und feste Ausprägungen, die man über Ganzzahlen beschreiben kann Dichtome Variablen haben genau zwei diskrete Ausprägungen Polytome Variablen haben mehr als zwei diskrete Ausprägungen Eine kontinuierliche (stetige) Variable kann (unendlich viele) beliebige bi Ausprägungen annehmen, die man über reelle Zahlen beschreibt

4 Methodenlehre Mengelehre Eine feinere Unterscheidung qualitativer und quantitativer Variablen wird über geleistet. Verhältnisskala l (Ratioskala) Absolutskala Der Informationsgehalt nimmt von der zur Absolutskala hin zu Bei Messungen kognitiver Merkmale kommen die Verhältnis- und die Absolutskala so gut wie nie vor

5 Methodenlehre Mengelehre Definition Bei einer werden den Realisationen einer Variablen Zahlen mit dem Ziel zugeordnet, Kategorien zu unterscheiden Die Zahlen selbst sind nicht interpretierbar Die Anwendung mathematischer Operationen auf die Werte einer nominalskalierten Variablen ist unter bestimmten Voraussetzungen möglich, aber zumeist nicht sinnvoll.

6 Methodenlehre Mengelehre Beispiele Konstitutionstypen a) Leptosomer Typ b) Athletischer Typ c) Pyknischer Typ Temperamentstypen

7 Methodenlehre Mengelehre Zulässige Transformationen Zulässige Transformationen sind eineindeutige Abbildungen, so dass die Unterscheidbarkeit der Werte erhalten bleibt.

8 Methodenlehre Mengelehre Definition Bei einer können die Realisationen einer Variablen geordnet werden Die Zuordnung der Zahlen zu den Ausprägungen spiegelt die Ordnung wieder Abstände zwischen den Zahlen können nicht interpretiert werden Die Anwendung von Rechenoperationen auf die Werte einer ordinalskalierten Variablen ist unter bestimmten Voraussetzungen erlaubt, aber im Allgemeinen eher wenig sinnvoll

9 Methodenlehre Mengelehre Beispiel Social Penetration Theory von Altman und Taylor (1958) (I) Orientierungsstadium: Sozial erwünschte Normen und Verhaltensschemata werden ausgetauscht (z.b. Smalltalk) (II) Exploratorisch-affektives affektives Stadium: Partielle Öffnung der eigenen Einstellungs- und Wahrnehmungswelt gegenüber dem Anderen im Hinblick auf private, vor allem aber berufliche und weltanschauliche Inhalte. Weiterhin vorsichtige Prüfung der Interaktionsformen ( Bekanntschaftsphase ). h (III) (IV) (V) Affektives Stadium: Intensiver und möglicherweise kritischer Austausch über private und persönliche Themen. Körperliche Zuwendung wie Berühren und Küssen. Stabiles Stadium: Die Beziehung erreicht ein Plateau, persönliche Inhalte sind geteilt, Verhalten und Emotionen des Anderen vorhersagbar. Depenetration: Zusammenbruch und mögliches Ende der Beziehung, Überwiegen von Kosten gegenüber dem Nutzen.

10 Methodenlehre Mengelehre Zulässige Transformationen Zulässig sind alle streng monotonen Transformationen, so dass die Rangordnung der Werte erhalten bleibt.

11 Methodenlehre Mengelehre Kritische Betrachtung Bei Ordinalskalen l und höheren können Intransitivitäten auftreten Intransitivität = Eine angenommene Ordnung gilt nicht für bestimmte einzelne Paarungen Beispiel: Nahrungskette in chinesischen Restaurants Mensch Hund Ratte Mensch (nach Glutamatvergiftung) Lösungen: Annahme eines niedrigeren, Einführung neuer Skalenstufen

12 Methodenlehre Mengelehre Definition Es wird eine Einheit definiert Es existiert kein natürlicher Nullpunkt Verhältnisse zwischen Differenzen können verglichen werden Wird am häufigsten in empirischen psychologischen Untersuchungen angenommen

13 Methodenlehre Mengelehre Beispiel Attitudes Toward Housecleaning Scale von Ogletree, Worthen, Turner & Vickers (2006). Ihre Aufgabe ist es, ihre Gefühle gegenüber jeder Aussage dahingehend zu kennzeichnen, ob sie (1) stark zustimmen, (2) etwas zustimmen, (3) weder zustimmen noch ablehnen, (4) etwas ablehnen oder (5) stark ablehnen. Bitte verdeutlichen Sie Ihre Meinung dadurch, dass sie entweder 1, 2, 3, 4 oder 5 auf dem Antwortblatt schwärzen. Einen Stapel dreckigen Geschirrs über Nacht im Spülbecken liegen zu lassen finde ich ekelhaft. Ich finde Staubwischen entspannend. Den Müll rauszubringen macht mir Spaß Frauen sollten die primäre Verantwortung für die Hausarbeit übernehmen. Eine unordentliche Wohnung zu haben macht mir nichts

14 Methodenlehre Mengelehre Zulässige Transformationen Zulässig sind alle linearen en Transformationen, so odass die Verhältnisse zwischen Differenzen erhalten bleiben.

15 Methodenlehre Mengelehre Zulässige Transformationen

16 Methodenlehre Mengelehre Kritische Betrachtung Die bekanntesten und am meisten verbreiteten statistischen Verfahren setzen eine voraus Der Umgang mit niedrigeren ist mathematisch ti h oftmals weitaus komplexer Die ungeprüfte Annahme der in psychologischen Untersuchungen ist oft problematisch Beispiele: IQ-Skala, 7-Punkte Likert Skala, Becks Depressionsskala (BDI) 0 13: Keine bis minimale Depression 14 19: Milde Depression 20 28: Moderate Depression 29 63: Schwere Depression

17 Methodenlehre Mengelehre Verhältnisskala Definition Bei der Verhältnisskala wird eine Einheit definiert Es existiert ein natürlicher Nullpunkt Verhältnisse zwischen Werten können verglichen werden Wird kaum in empirischen psychologischen Untersuchungen angenommen

18 Methodenlehre Mengelehre Verhältnisskala Zulässige Transformationen Zulässig sind alle Ähnlichkeitstransformationen, so odass die Verhältnisse zwischen Werten erhalten bleiben.

19 Methodenlehre Mengelehre Absolutskala Definition Bei der Absolutskala ist die Einheit natürlich vorgegeben Es existiert ein natürlicher Nullpunkt Werte können direkt interpretiert werden Wird kaum in empirischen psychologischen Untersuchungen angenommen Es existieren keine erlaubten Transformationen

20 Methodenlehre Mengelehre Zusammenfassung

21 Methodenlehre Mengelehre Einfacher Entscheidungsbaum Skala Sind Ausprägungen g Nominal unterscheidbar? Gibt es eine Ordnung? Ordinal Haben die Ausprägungen gleiche Abstände? Intervall Existiert ein natürlicher Nullpunkt? Verhältnis Existiert eine natürliche Einheit? Absolut

22 Methodenlehre Mengelehre Beispiele Mündliche Schulnoten, Note in der Statistikklausur Punkte in einem Multiple Choice Test zum Wortschatzumfang Aus diesem Punktwert berechneter verbaler IQ Adipositas (ja/nein) Geburtsort Von Multipler Sklerose betroffene Hirnregionen Anhand eines Sehtests gemessene Sehfähigkeit (in %) Aus der Sehfähigkeit ermittelte Berufseigung zum Piloten (geeignet/ungeeignet) Rasse Länge des Ringfingers

23 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Operationen Mengenlehre, naive Definition einer Menge nach Cantor (1895) Unter einer 'Menge'' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen. Schreibe: Somit auch: m M m M N Definition einer Menge: Extensional: M = {1, 3, 5, 7, 9} Intensional: M = {m ungerade natürliche Zahl < 10} lies: gegeben, dass

24 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Mächtigkeit und Identität von Mengen M ist die Mächtigkeit einer Menge und bezeichnet ei die Anzahl der Elemente in der Menge. Operationen Bei der extensionalen Definition einer Menge sind die Anzahl gleicher Elemente und auch die Reihenfolge von Elementen gleichgültig. M 1 = {1, 3, 5, 7, 9} M 2 = {3, 7, 1, 9, 5} M 3 = {1, 1, 1, 3, 5, 5, 7, 9, 9} Die Menge der Mächtigkeit 0 ist die leere Menge M = { } bzw. M = sind dieselbe Menge der Mächtigkeit M = 5.

25 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Mengen und Teilmengen Ist eine Menge A eine Teilmenge von B, so gilt für jedes a Є A auch a Є B. Operationen Dann schreibt man: A B Gilt A B und auch B A, so sind A und B gleich. Dann schreibt man: A = B Ambiguität: A B schließt A = B nicht aus. Nur wenn hier nicht B A gilt, ist A eine echte Teilmenge von B. Dann schreibt man: A B

26 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Venn-Diagramme Jede Menge M 1 i und alle Beziehungen zwischen diesen Mengen sind durch einen Kreis repräsentiert. Operationen A B A B A B und B A B A A = B A B

27 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Die Potenzmenge Eine Potenzmenge P(M) ist die Menge aller möglichen Teilmengen von M plus der leeren Menge. Formal: A P(M) genau dann, wenn A M Operationen Beispiel: Ergebnisse eines einmaligen Münzwurfs M={K {K, Z, S} P(M) = {, {K}, {Z}, {S}, {K,Z}, {K,S}, {Z,S}, {K,Z,S}} Die Mächtigkeit einer Menge M sei M = n. Dann gilt für die Mächtigkeit der Potenzmenge: P(M) = 2 n

28 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Vereinigung von Mengen: A B Operationen (Durch-)Schnitt von Mengen: A B Differenz von Mengen: A \ B Komplementärmenge: A ( nicht A )

29 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Vereinigung von Mengen: A B Operationen A B = {m m A oder m B} A B A B (Vereinigungsmenge)

30 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Operationen Mengenlehre, naive Mengenoperationen (Durch-)Schnitt von Mengen: A B A B = {m m A und m B} A B A B (Schnittmenge)

31 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Differenz von Mengen: A \ B Operationen A \ B = {m m A und nicht m B} A B A \ B (Differenzmenge)

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Dozentin: Wiebke Petersen 1. Foliensatz Wiebke Petersen math. Grundlagen 6 Frage Was ist eine Menge? 1 Minute zum Nachdenken

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen.

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. A. Geschlossene Fragen Klausuraufgaben für Probeklausur 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. 2.Das Informationszentrum Sozialwissenschaften liefert die Rohdaten

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy Grundkurs Semantik Sitzung 3: Mengenlehre Andrew Murphy andrew.murphy@uni-leizpig.de Grundkurs Semantik HU Berlin, Sommersemester 2015 http://www.uni-leipzig.de/ murphy/semantik15 15. Mai 2015 Basiert

Mehr

Mathematik für Techniker

Mathematik für Techniker Siegfried Völkel u.a. Mathematik für Techniker 7., neu bearbeitete und erweiterte uflage 16 1 Rechenoperationen Prinzip der Mengenbildung Wenn eine ussageform für die Objekte eines Grundbereichs vorliegt,

Mehr

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }.

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }. 2. Mengen Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (z. B. Zahlen) zu einer Menge zusammen. Eine Menge muss kein

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 16.04.2013 Gegenstand der Vorlesung und Grundbegriffe der

Mehr

Logik, Mengen und Zahlen

Logik, Mengen und Zahlen Zahlenmengen Herbert Paukert. 1 Logik, Mengen und Zahlen Version 2.0 Herbert Paukert Logik und Mengenlehre [ 02 ] Mathematische Beweisverfahren [ 12 ] Natürliche und ganze Zahlen [ 15 ] Teilbarkeit der

Mehr

Kartographische Visualisierung

Kartographische Visualisierung Kartographische Visualisierung Kartenmodellierung Modellierung von Karten Ziel der Kartenmodellierung: Geodaten angemessen abbilden (repräsentieren) Informationen mit der Karte vermitteln (präsentieren).

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit.

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit. Kapitel 1 Beschreibende Statistik Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Gesucht: Übersichtliche Beschreibung Die gegebene Menge heißt auch Grundgesamtheit. Beispiele

Mehr

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1 FHManagement & IT Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen Mehrfachantworten

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

Übungsaufgaben Mengenlehre

Übungsaufgaben Mengenlehre Übungsaufgaben Mengenlehre Die folgenden Übungsaufgaben beziehen sich auf den Stoff des Skriptes zur Mengenlehre der Lehrveranstaltung Wirtschaftsmathematik und dienen der Klausurvorbereitung. Zuvor werden

Mehr

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke W eierstraßinstitut für Angew andte Analysis und Stochastik Mohrenstraße 39, 0 Berlin Institut für Mathematik HumboldtUniversität

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Methoden der unscharfen Optimierung

Methoden der unscharfen Optimierung Methoden der unscharfen Optimierung Mike Hüftle Juli 2005 Inhaltsverzeichnis 1 Einleitung 2 1.1 Unscharfe Mengen.......................... 2 2 Unscharfe Mengen 3 2.1 Zugehörigkeit.............................

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Bayessches Lernen Aufgaben

Bayessches Lernen Aufgaben Bayessches Lernen Aufgaben martin.loesch@kit.edu (0721) 608 45944 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1

Mehr