Mathematische und statistische Methoden II

Größe: px
Ab Seite anzeigen:

Download "Mathematische und statistische Methoden II"

Transkript

1 Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum ) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike SS 2010 Fachbereich Sozialwissenschaften Psychologisches Institut Johannes Gutenberg Universität Mainz

2 Methodenlehre Mengelehre Variablen Merkmale, deren Werte bei den statistischen Einheiten beobachtet werden, heißen Variablen Die Werte, die ein Merkmal bzw. eine Variable annehmen kann, heißen Ausprägungen oder Realisationen Die Ausprägungen eines Merkmals können beliebiger Art sein (z.b. Worte, Formen, Farben etc.) Eine Variable wird definiert, indem den Ausprägungen des Merkmals Zahlen zugeordnet werden. 2 Merkmal 5 Variable

3 Methodenlehre Mengelehre Wir haben bereits eine Unterscheidung von Typen von Variablen anhand der Art der Daten kennen gelernt. Eine diskrete Variable besitzt zumeist endlich viele und feste Ausprägungen, die man über Ganzzahlen beschreiben kann Dichtome Variablen haben genau zwei diskrete Ausprägungen Polytome Variablen haben mehr als zwei diskrete Ausprägungen Eine kontinuierliche (stetige) Variable kann (unendlich viele) beliebige bi Ausprägungen annehmen, die man über reelle Zahlen beschreibt

4 Methodenlehre Mengelehre Eine feinere Unterscheidung qualitativer und quantitativer Variablen wird über geleistet. Verhältnisskala l (Ratioskala) Absolutskala Der Informationsgehalt nimmt von der zur Absolutskala hin zu Bei Messungen kognitiver Merkmale kommen die Verhältnis- und die Absolutskala so gut wie nie vor

5 Methodenlehre Mengelehre Definition Bei einer werden den Realisationen einer Variablen Zahlen mit dem Ziel zugeordnet, Kategorien zu unterscheiden Die Zahlen selbst sind nicht interpretierbar Die Anwendung mathematischer Operationen auf die Werte einer nominalskalierten Variablen ist unter bestimmten Voraussetzungen möglich, aber zumeist nicht sinnvoll.

6 Methodenlehre Mengelehre Beispiele Konstitutionstypen a) Leptosomer Typ b) Athletischer Typ c) Pyknischer Typ Temperamentstypen

7 Methodenlehre Mengelehre Zulässige Transformationen Zulässige Transformationen sind eineindeutige Abbildungen, so dass die Unterscheidbarkeit der Werte erhalten bleibt.

8 Methodenlehre Mengelehre Definition Bei einer können die Realisationen einer Variablen geordnet werden Die Zuordnung der Zahlen zu den Ausprägungen spiegelt die Ordnung wieder Abstände zwischen den Zahlen können nicht interpretiert werden Die Anwendung von Rechenoperationen auf die Werte einer ordinalskalierten Variablen ist unter bestimmten Voraussetzungen erlaubt, aber im Allgemeinen eher wenig sinnvoll

9 Methodenlehre Mengelehre Beispiel Social Penetration Theory von Altman und Taylor (1958) (I) Orientierungsstadium: Sozial erwünschte Normen und Verhaltensschemata werden ausgetauscht (z.b. Smalltalk) (II) Exploratorisch-affektives affektives Stadium: Partielle Öffnung der eigenen Einstellungs- und Wahrnehmungswelt gegenüber dem Anderen im Hinblick auf private, vor allem aber berufliche und weltanschauliche Inhalte. Weiterhin vorsichtige Prüfung der Interaktionsformen ( Bekanntschaftsphase ). h (III) (IV) (V) Affektives Stadium: Intensiver und möglicherweise kritischer Austausch über private und persönliche Themen. Körperliche Zuwendung wie Berühren und Küssen. Stabiles Stadium: Die Beziehung erreicht ein Plateau, persönliche Inhalte sind geteilt, Verhalten und Emotionen des Anderen vorhersagbar. Depenetration: Zusammenbruch und mögliches Ende der Beziehung, Überwiegen von Kosten gegenüber dem Nutzen.

10 Methodenlehre Mengelehre Zulässige Transformationen Zulässig sind alle streng monotonen Transformationen, so dass die Rangordnung der Werte erhalten bleibt.

11 Methodenlehre Mengelehre Kritische Betrachtung Bei Ordinalskalen l und höheren können Intransitivitäten auftreten Intransitivität = Eine angenommene Ordnung gilt nicht für bestimmte einzelne Paarungen Beispiel: Nahrungskette in chinesischen Restaurants Mensch Hund Ratte Mensch (nach Glutamatvergiftung) Lösungen: Annahme eines niedrigeren, Einführung neuer Skalenstufen

12 Methodenlehre Mengelehre Definition Es wird eine Einheit definiert Es existiert kein natürlicher Nullpunkt Verhältnisse zwischen Differenzen können verglichen werden Wird am häufigsten in empirischen psychologischen Untersuchungen angenommen

13 Methodenlehre Mengelehre Beispiel Attitudes Toward Housecleaning Scale von Ogletree, Worthen, Turner & Vickers (2006). Ihre Aufgabe ist es, ihre Gefühle gegenüber jeder Aussage dahingehend zu kennzeichnen, ob sie (1) stark zustimmen, (2) etwas zustimmen, (3) weder zustimmen noch ablehnen, (4) etwas ablehnen oder (5) stark ablehnen. Bitte verdeutlichen Sie Ihre Meinung dadurch, dass sie entweder 1, 2, 3, 4 oder 5 auf dem Antwortblatt schwärzen. Einen Stapel dreckigen Geschirrs über Nacht im Spülbecken liegen zu lassen finde ich ekelhaft. Ich finde Staubwischen entspannend. Den Müll rauszubringen macht mir Spaß Frauen sollten die primäre Verantwortung für die Hausarbeit übernehmen. Eine unordentliche Wohnung zu haben macht mir nichts

14 Methodenlehre Mengelehre Zulässige Transformationen Zulässig sind alle linearen en Transformationen, so odass die Verhältnisse zwischen Differenzen erhalten bleiben.

15 Methodenlehre Mengelehre Zulässige Transformationen

16 Methodenlehre Mengelehre Kritische Betrachtung Die bekanntesten und am meisten verbreiteten statistischen Verfahren setzen eine voraus Der Umgang mit niedrigeren ist mathematisch ti h oftmals weitaus komplexer Die ungeprüfte Annahme der in psychologischen Untersuchungen ist oft problematisch Beispiele: IQ-Skala, 7-Punkte Likert Skala, Becks Depressionsskala (BDI) 0 13: Keine bis minimale Depression 14 19: Milde Depression 20 28: Moderate Depression 29 63: Schwere Depression

17 Methodenlehre Mengelehre Verhältnisskala Definition Bei der Verhältnisskala wird eine Einheit definiert Es existiert ein natürlicher Nullpunkt Verhältnisse zwischen Werten können verglichen werden Wird kaum in empirischen psychologischen Untersuchungen angenommen

18 Methodenlehre Mengelehre Verhältnisskala Zulässige Transformationen Zulässig sind alle Ähnlichkeitstransformationen, so odass die Verhältnisse zwischen Werten erhalten bleiben.

19 Methodenlehre Mengelehre Absolutskala Definition Bei der Absolutskala ist die Einheit natürlich vorgegeben Es existiert ein natürlicher Nullpunkt Werte können direkt interpretiert werden Wird kaum in empirischen psychologischen Untersuchungen angenommen Es existieren keine erlaubten Transformationen

20 Methodenlehre Mengelehre Zusammenfassung

21 Methodenlehre Mengelehre Einfacher Entscheidungsbaum Skala Sind Ausprägungen g Nominal unterscheidbar? Gibt es eine Ordnung? Ordinal Haben die Ausprägungen gleiche Abstände? Intervall Existiert ein natürlicher Nullpunkt? Verhältnis Existiert eine natürliche Einheit? Absolut

22 Methodenlehre Mengelehre Beispiele Mündliche Schulnoten, Note in der Statistikklausur Punkte in einem Multiple Choice Test zum Wortschatzumfang Aus diesem Punktwert berechneter verbaler IQ Adipositas (ja/nein) Geburtsort Von Multipler Sklerose betroffene Hirnregionen Anhand eines Sehtests gemessene Sehfähigkeit (in %) Aus der Sehfähigkeit ermittelte Berufseigung zum Piloten (geeignet/ungeeignet) Rasse Länge des Ringfingers

23 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Operationen Mengenlehre, naive Definition einer Menge nach Cantor (1895) Unter einer 'Menge'' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen. Schreibe: Somit auch: m M m M N Definition einer Menge: Extensional: M = {1, 3, 5, 7, 9} Intensional: M = {m ungerade natürliche Zahl < 10} lies: gegeben, dass

24 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Mächtigkeit und Identität von Mengen M ist die Mächtigkeit einer Menge und bezeichnet ei die Anzahl der Elemente in der Menge. Operationen Bei der extensionalen Definition einer Menge sind die Anzahl gleicher Elemente und auch die Reihenfolge von Elementen gleichgültig. M 1 = {1, 3, 5, 7, 9} M 2 = {3, 7, 1, 9, 5} M 3 = {1, 1, 1, 3, 5, 5, 7, 9, 9} Die Menge der Mächtigkeit 0 ist die leere Menge M = { } bzw. M = sind dieselbe Menge der Mächtigkeit M = 5.

25 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Mengen und Teilmengen Ist eine Menge A eine Teilmenge von B, so gilt für jedes a Є A auch a Є B. Operationen Dann schreibt man: A B Gilt A B und auch B A, so sind A und B gleich. Dann schreibt man: A = B Ambiguität: A B schließt A = B nicht aus. Nur wenn hier nicht B A gilt, ist A eine echte Teilmenge von B. Dann schreibt man: A B

26 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Venn-Diagramme Jede Menge M 1 i und alle Beziehungen zwischen diesen Mengen sind durch einen Kreis repräsentiert. Operationen A B A B A B und B A B A A = B A B

27 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Mengenlehre, naive Die Potenzmenge Eine Potenzmenge P(M) ist die Menge aller möglichen Teilmengen von M plus der leeren Menge. Formal: A P(M) genau dann, wenn A M Operationen Beispiel: Ergebnisse eines einmaligen Münzwurfs M={K {K, Z, S} P(M) = {, {K}, {Z}, {S}, {K,Z}, {K,S}, {Z,S}, {K,Z,S}} Die Mächtigkeit einer Menge M sei M = n. Dann gilt für die Mächtigkeit der Potenzmenge: P(M) = 2 n

28 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Vereinigung von Mengen: A B Operationen (Durch-)Schnitt von Mengen: A B Differenz von Mengen: A \ B Komplementärmenge: A ( nicht A )

29 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Vereinigung von Mengen: A B Operationen A B = {m m A oder m B} A B A B (Vereinigungsmenge)

30 Methodenlehre Mengelehre Grundlagen Venn- Diagramme Operationen Mengenlehre, naive Mengenoperationen (Durch-)Schnitt von Mengen: A B A B = {m m A und m B} A B A B (Schnittmenge)

31 Methodenlehre Mengelehre Grundlagen Mengenlehre, naive Mengenoperationen Venn- Diagramme Differenz von Mengen: A \ B Operationen A \ B = {m m A und nicht m B} A B A \ B (Differenzmenge)

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }.

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }. 2. Mengen Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (z. B. Zahlen) zu einer Menge zusammen. Eine Menge muss kein

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen.

Klausuraufgaben für Probeklausur. 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. A. Geschlossene Fragen Klausuraufgaben für Probeklausur 1.Die Zuverlässigkeit von Kodierern in der Inhaltsanalyse kann man berechnen. 2.Das Informationszentrum Sozialwissenschaften liefert die Rohdaten

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 16.04.2013 Gegenstand der Vorlesung und Grundbegriffe der

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke W eierstraßinstitut für Angew andte Analysis und Stochastik Mohrenstraße 39, 0 Berlin Institut für Mathematik HumboldtUniversität

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Kartographische Visualisierung

Kartographische Visualisierung Kartographische Visualisierung Kartenmodellierung Modellierung von Karten Ziel der Kartenmodellierung: Geodaten angemessen abbilden (repräsentieren) Informationen mit der Karte vermitteln (präsentieren).

Mehr

Kapitel 1: Gegenstand und Grundbegriffe der Statistik

Kapitel 1: Gegenstand und Grundbegriffe der Statistik Kapitel 1: Gegenstand und Grundbegriffe der Statistik 1. Gegenstand der Statistik... 1 2. Einheiten, Masse, Merkmal... 3 3. Messen, Skalen... 9 a) Messung... 9 b) Skalenarten... 11 1. Gegenstand der Statistik

Mehr

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1

Constantin von Craushaar FH-Management & IT Statistik Angewandte Statistik (Übungen) Folie 1 FHManagement & IT Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen Mehrfachantworten

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

Methoden der unscharfen Optimierung

Methoden der unscharfen Optimierung Methoden der unscharfen Optimierung Mike Hüftle Juli 2005 Inhaltsverzeichnis 1 Einleitung 2 1.1 Unscharfe Mengen.......................... 2 2 Unscharfe Mengen 3 2.1 Zugehörigkeit.............................

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Bayessches Lernen Aufgaben

Bayessches Lernen Aufgaben Bayessches Lernen Aufgaben martin.loesch@kit.edu (0721) 608 45944 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen 2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen In der Modellierung von Systemen, Aufgaben, Lösungen kommen Objekte unterschiedlicher Art und Zusammensetzung vor. Für Teile des Modells

Mehr

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar FH-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Verteilungsfunktionen (in Excel) (1)

Verteilungsfunktionen (in Excel) (1) Verteilungsfunktionen (in Excel) () F(x) Veranschaulichung der Sprungstellen: Erst ab x=4 ist F(x) = 0,75! Eine Minimal kleinere Zahl als 4, bspw. 3,9999999999 gehört noch zu F(x)=0,5! 0,75 0,5 0,25 0

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen Workshops zur VO Einführung in das mathematische Arbeiten im SS 2007 Geraden und Ebenen Handout von Thérèse Tomiska (Oktober 2006) überarbeitet von Evelina Erlacher 9. & 13. März 2007 1 Geradengleichungen

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

1 Logik und Mengenlehre

1 Logik und Mengenlehre 1 LOGIK UND MENGENLEHRE 1 1 Logik und Mengenlehre Definition. (Cantor, 1895) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Informationen zur Modulprüfung im Modul 13 Psychologie

Informationen zur Modulprüfung im Modul 13 Psychologie Informationen zur Modulprüfung im Modul 13 Psychologie 21.Oktober 2008 4.November 2008 Lernziele Modul 13: Psychologie Die Studierenden kennen die psychologischen Grundlagen der Arbeit in Organisationen.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm Histogram / Histogramm / histogram Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012 Antwortkategorien und Skalen Jasmin Hügi Herbstschule 2012 Übersicht Zeit 09h00 09h10 09h10 09h40 09h40 10h30 10h30 11h00 11h00 11h20 11h20 12h15 12h15 13h30 13h30 14h00 14h00 15h00 15h00 15h30 15h30 15h50

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

A b, d, B a, b, c, d, e somit gilt: A B. A 4, 5, 6, B 4, 5, 6 somit gilt: A B

A b, d, B a, b, c, d, e somit gilt: A B. A 4, 5, 6, B 4, 5, 6 somit gilt: A B 1 1.1 egriff der Menge Unter einer Menge versteht man die Zusammenfassung von voneinander unterscheidbaren Dingen (Elementen) zu einem Ganzen. Eine Menge kann in aufzählender Form, mithilfe eines Mengenbildes

Mehr

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 51 Für eine stetig differenzierbare Funktion ϕ: R R mit ϕ (P) > 0 in einem Punkt P R gibt es ein offenes Intervall P I =]P δ,p +δ, auf dem ϕ

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet.

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 1 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 1 Die Statistik besitzt drei Grundaufgaben im Rahmen der

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

I. Allgemeine Bestimmungen. II. Studieninhalte. III. Studienverlauf. IV. Prüfungselemente und Prüfungen. V. Übergangs- und Schlußbestimmungen

I. Allgemeine Bestimmungen. II. Studieninhalte. III. Studienverlauf. IV. Prüfungselemente und Prüfungen. V. Übergangs- und Schlußbestimmungen I. Allgemeine Bestimmungen 1 Ziel des Studiums 2 Fächerkombinationen 3 Regelstudienzeit, Studienumfang und Studienbeginn 4 Zugangsvoraussetzungen 5 Allgemeiner Studienverlauf II. Studieninhalte 6 Bereiche

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Der Kalkül der Mengen 1 / 58

Der Kalkül der Mengen 1 / 58 Der Kalkül der Mengen 1 / 58 Präzise beschreiben und argumentieren: Aber wie? In welcher Sprache sollten wir versuchen, komplexe Sachverhalte vollständig und eindeutig zu beschreiben? Natürliche Sprachen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Klaus Knopper 26.10.2004 Repräsentation von Zahlen Zahlen können auf unterschiedliche Arten dargestellt werden Aufgabe: Zahlen aus der realen Welt müssen im Computer abgebildet

Mehr

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten)

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Wissensrepräsentation und -verarbeitung in klassischer Aussagenlogik: Entscheidungstabellen,

Mehr

Algebraische Kurven - Vorlesung 5. Homogene Komponenten

Algebraische Kurven - Vorlesung 5. Homogene Komponenten Algebraische Kurven - Vorlesung 5 Homogene Komponenten Definition 1. Sei S ein kommutativer Ring und R = S[X 1,...,X n ] der Polynomring über R in n Variablen. Dann heißt zu einem Monom G = X ν = X ν 1

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

2 Häufigkeitsverteilungen

2 Häufigkeitsverteilungen 14 Häufigkeitsverteilungen 2 Häufigkeitsverteilungen Lernziele In diesem Kapitel geht es um beschreibende Statistik. Nach erfolgreicher Bearbeitung sind Sie in der Lage, eine zunächst unübersichtliche

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr