Kapitel ML: III (Fortsetzung)

Größe: px
Ab Seite anzeigen:

Download "Kapitel ML: III (Fortsetzung)"

Transkript

1 Kapitel ML: III (Fortsetzung) III. Entscheidungsbäume Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning ML: III-87 Decision Trees c STEIN/LETTMANN

2 Missklassifikationskosten beim Splitting Lemma 2 Für jedes induzierte Splitting D(t 1 ),...,D(t s ) einer Menge von Beispielen D(t) in einem Entscheidungsbaum T gilt: Err cost (t,d(t)) Err cost (t i,d(t i )), i {1,...,s} mit Gleichheit in dem Fall, dass allen Knoten t,t 1,...,t s dieselbe Klasse zugewiesen wird. ML: III-88 Decision Trees c STEIN/LETTMANN

3 Missklassifikationskosten beim Splitting Lemma 2 Für jedes induzierte Splitting D(t 1 ),...,D(t s ) einer Menge von Beispielen D(t) in einem Entscheidungsbaum T gilt: Err cost (t,d(t)) Err cost (t i,d(t i )), i {1,...,s} mit Gleichheit in dem Fall, dass allen Knoten t,t 1,...,t s dieselbe Klasse zugewiesen wird. Das Algorithmenschema DT -construct zur Konstruktion von Entscheidungsbäumen bevorzugt große Bäume, d.h. eine weitestmögliche Zerlegung der Menge D von Beispielen, und minimiert so die Missklassifikationskosten auf der Trainingsmenge. ML: III-89 Decision Trees c STEIN/LETTMANN

4 Missklassifikationskosten beim Splitting (Fortsetzung) Beweisidee: Err cost (t,d(t)) = min c C cost(c c) p(c t) p(t) c C = c C cost(label(t) c) p(c,t) = c C cost(label(t) c) (p(c,t 1 )+...+p(c,t ks )) = i {1,...,k s } c C cost(label(t) c) (p(c,t i ) Err cost (t,d(t)) i {1,...,k s } Err cost(t i,d(t i )) = ( ) cost(label(t) c) (p(c,t i ) min cost(c c) p(c,t i ) c C i {1,...,k s } c C c C Jeder Summand der rechten Seite ist größer als Null. ML: III-90 Decision Trees c STEIN/LETTMANN

5 Bemerkungen: Das Lemma gilt auch bei Verwendung des Missklassifikationsanteils als Gütemaß. ML: III-91 Decision Trees c STEIN/LETTMANN

6 Overfitting Definition 9 (Überanpassung (Overfitting) ) Sei D eine Menge von Beispielen und H ein Hypothesenraum. Dann stellt h H eine Überanpassung (Overfitting) von D dar, falls ein h H mit folgender Eigenschaft existiert: Err(h,D) < Err(h,D) und Err (h) > Err (h ) ML: III-92 Decision Trees c STEIN/LETTMANN

7 Overfitting Definition 9 (Überanpassung (Overfitting) ) Sei D eine Menge von Beispielen und H ein Hypothesenraum. Dann stellt h H eine Überanpassung (Overfitting) von D dar, falls ein h H mit folgender Eigenschaft existiert: Err(h,D) < Err(h,D) und Err (h) > Err (h ) Ursachen für Overfitting: D ist verrauscht D ist nicht repräsentativ ein zu kleines D täuscht nicht vorhandene Regelmäßigkeiten vor... ML: III-93 Decision Trees c STEIN/LETTMANN

8 Bemerkungen: Hierbei stellen Err(h,D) und Err (h) monoton steigende Funktionen in der Anzahl der mit einer Hypothese inkonsistenen Beispiele dar. ML: III-94 Decision Trees c STEIN/LETTMANN

9 Overfitting Err (h) kann mit Hilfe einer von der Trainingsmenge unabhängig gezogenen Validierungsmenge D V geschätzt werden: h H stellt eine Überanpassung (Overfitting) von D dar, falls ein h H mit folgender Eigenschaft existiert: Err(h,D) < Err(h,D) und Err(h,D V ) > Err(h,D V ) Feststellung von Overfitting erfordert weitere Aufteilung der Beispielmenge D: D = {(x 1,c(x 1 )),...,(x n,c(x n ))} X C ist eine Menge von Beispielen. D tr D Trainingsmenge zur Konstruktion des Entscheidungsbaumes mit DT -construct D V D Validierungsmenge zur Messung des Overfitting während des Pruning D ts D Testmenge zur Messung der Güte des Entscheidungsbaumes nach Pruning D tr,d V,D ts sind paarweise disjunkt. ML: III-95 Decision Trees c STEIN/LETTMANN

10 Overfitting Accuracy On training data On test data Size of tree (number of nodes) [Mitchell 1997] ML: III-96 Decision Trees c STEIN/LETTMANN

11 Bemerkungen: Auf der Ordinate ist die Accuracy, also der Anteil der korrekt klassifizierten Beispiele während des Konstruktionsprozesses aufgetragen. Der Trainingsfehler Err(T, D) für den Entscheidungsbaum T fällt monoton bei Vergrößerung von T. Wann wird der Wert 0 erreicht? Wo ist Err(T,D) am genauesten in Bezug auf Err (T)? Der Missklassifikationsanteil Err(T,D V ) auf einer Testmenge D V hat ein lokales Minimum häufig bei relativ geringer Blattzahl. ML: III-97 Decision Trees c STEIN/LETTMANN

12 Overfitting Ansätze, um Overfitting entgegenzuwirken: 1. Beschränkung der Entscheidungsbaumkonstruktion während des Trainings 2. Verkleinerung (Pruning) von Entscheidungsbäumen nach dem Training Aufteilung der Menge D in Trainings-, Validierungs- und Testmenge (a) Reduced-Error-Pruning (b) Minimal Cost-Complexity Pruning (c) Rule-Post-Pruning statistische Tests (z. B. χ 2 ), um Generalisierbarkeit zu beurteilen heuristische Minimierung der Entscheidungsbaums ML: III-98 Decision Trees c STEIN/LETTMANN

13 Stopping Einfache Kriterien: Größe von D(t) Ein Knoten t wird nicht weiter zerlegt, wenn die Anzahl der Beispiele in D(t) zu gering ist: D(t) < β. Reinheit von D(t) Ein Knoten t wird nicht weiter zerlegt, wenn die Impurity nicht ausreichend reduziert werden kann: ι(d(t),{d(t 1 ),...,D(t s )}) < β für alle Splittings. Problem: Abbruch des Splitting mit kleinem β führt zu übergroßen Entscheidungsbäumen. Abbruch des Splitting mit großem β kann nützliche Splittings verhindern. ML: III-99 Decision Trees c STEIN/LETTMANN

14 Pruning statt Stopping Idee: 1. Bilde einen ausreichend großen EntscheidungsbaumT max. 2. Beschneide T max auf die richtige Weise von Blättern in Richtung Wurzel. Wann ist T max groß genug? Aufbau von T max ist beendet, wenn jeder Blattknoten eine genügend kleine Teilmenge der Beispielmenge D repräsentiert oder nur Beispiele einer Klasse repräsentiert (Knoten ist pur) oder nur Beispiele mit identischen Merkmalsvektoren repräsentiert. ML: III-100 Decision Trees c STEIN/LETTMANN

15 Bemerkungen: Optimal für T max : genügend klein D(t) = 1 Kompromiss für T max : z.b. genügend klein D(t) 5 Der Trainingsfehler Err(T,D) ist als Schätzer für Err (T) ungeeignet wegen seiner Monotonie-Eigenschaft. Daher muss die richtige Größe des Entscheidungsbaums auf andere Weise bestimmt werden. ML: III-101 Decision Trees c STEIN/LETTMANN

16 Terminologie für Teilbäume Baum T mit Knoten t, Zweig T t, Resultat des Pruning von T t T T t t T \T t t t t bezeichnet den Teilbaum mit Wurzel t. ML: III-102 Decision Trees c STEIN/LETTMANN

17 Definition 10 (Pruning) Für einen Baum T mit innerem Knoten t besteht das Pruning des Zweiges T t aus der Entfernung aller Nachfolgerknoten von t und der durch diese Elimination betroffenen Kanten. Der so beschnittene Baum wird mit T \T t bezeichnet. Der Knoten t ist in T \T t ein Blattknoten. Definition 11 (Pruning-induzierte Ordnung) Entsteht ein Baum T durch (mehrfaches) Pruning aus einem Baum T, schreiben wir kurz T T. Die Relation bildet eine Halbordnung auf der Menge der Bäume. ML: III-103 Decision Trees c STEIN/LETTMANN

18 Definition 10 (Pruning) Für einen Baum T mit innerem Knoten t besteht das Pruning des Zweiges T t aus der Entfernung aller Nachfolgerknoten von t und der durch diese Elimination betroffenen Kanten. Der so beschnittene Baum wird mit T \T t bezeichnet. Der Knoten t ist in T \T t ein Blattknoten. Definition 11 (Pruning-induzierte Ordnung) Entsteht ein Baum T durch (mehrfaches) Pruning aus einem Baum T, schreiben wir kurz T T. Die Relation bildet eine Halbordnung auf der Menge der Bäume. Welches Maß kann die Güte der durch Pruning entstehenden Kandidaten bewerten? Problematik: Kandidaten-Teilbäume sind nicht angeordnet bzgl.. Gute Kandidaten-Teilbäume entstehen oft nicht durch wiederholtes Pruning von T max bei einem Greedy-Vorgehen. ML: III-104 Decision Trees c STEIN/LETTMANN

19 Pruning mit Validierungsmenge Sei D V eine fest gewählte Validierungsmenge. Reduced-Error-Pruning: 1. Pruning des Zweiges T t für einen inneren Knoten t. 2. label(t) ist die von DT -construct auf Basis von D(t) dem Knoten zugeordnete Klasse. 3. Falls Err(T,D V ) < Err(T \T t,d V ), Rücknahme der Ersetzung. 4. Weiter bei 1., bis alle Elternknoten der Blattknoten des aktuellen Entscheidungsbaums überprüft wurden. ML: III-105 Decision Trees c STEIN/LETTMANN

20 Pruning mit Validierungsmenge Sei D V eine fest gewählte Validierungsmenge. Reduced-Error-Pruning: 1. Pruning des Zweiges T t für einen inneren Knoten t. 2. label(t) ist die von DT -construct auf Basis von D(t) dem Knoten zugeordnete Klasse. 3. Falls Err(T,D V ) < Err(T \T t,d V ), Rücknahme der Ersetzung. 4. Weiter bei 1., bis alle Elternknoten der Blattknoten des aktuellen Entscheidungsbaums überprüft wurden. Nachteil: Ist D klein, so geht durch eine Aufteilung in Trainings- und Validierungsmenge wertvolle Information zur Konstruktion des Entscheidungsbaums verloren. Verbesserung: Rule-Post-Pruning ML: III-106 Decision Trees c STEIN/LETTMANN

21 Pruning mit Validierungsmenge Accuracy On training data On test data On test data (during pruning) Size of tree (number of nodes) [Mitchell 1997] ML: III-107 Decision Trees c STEIN/LETTMANN

22 Pruning mit Maß für Kosten-Komplexität Einfache Idee: 1. Teile die von T max aus durch Pruning erreichbaren Teilbäume auf Teilmengen auf nach der Anzahl ihrer Blätter. 2. Wähle aus den Teilmengen jeweils einen Teilbaum T mit minimalem Wert für Err(T,D V ) als Kandidaten. ML: III-108 Decision Trees c STEIN/LETTMANN

23 Pruning mit Maß für Kosten-Komplexität Einfache Idee: 1. Teile die von T max aus durch Pruning erreichbaren Teilbäume auf Teilmengen auf nach der Anzahl ihrer Blätter. 2. Wähle aus den Teilmengen jeweils einen Teilbaum T mit minimalem Wert für Err(T,D V ) als Kandidaten. Definition 12 (Kostenkomplexität) Für einen Entscheidungsbaum T und eine Validierungsmenge D V wählen wir ein von Missklassifikationsanteil und leaves(t), also der Anzahl der Blattknoten in T, abhängiges Maß für die Komplexität (Complexity) von T. Für einen Komplexitätsparameter α R, α 0 bezeichnet die Kostenkomplexität von T. Err α (T,D V ) := Err(T,D V )+α leaves(t) ML: III-109 Decision Trees c STEIN/LETTMANN

24 Pruning mit Maß für Kosten-Komplexität (Fortsetzung) Definition 13 (kleinster minimierender Teilbaum) Ausgehend von einem Entscheidungsbaum T und einem Komplexitätsparameter α R,α 0 bezeichnen wir einen Baum T(α) T als kleinsten optimal beschnittenen (Optimally Pruned) Teilbaum von T für α, wenn er folgende Bedingungen erfüllt: 1. Err α (T(α),D) = min T T Err α (T,D) 2. Falls für einen Teilbaum T T gilt Err α (T(α),D) = Err α (T,D), so folgt T(α) T. ML: III-110 Decision Trees c STEIN/LETTMANN

25 Pruning mit Maß für Kosten-Komplexität (Fortsetzung) Lemma 3 Für jeden Baum T und jeden Komplexitätsparameter α R, α 0 existiert ein kleinster optimal beschnittener Teilbaum T(α) T. Beweis (Skizze) Induktion unter Verwendung von Err α (T(α),D) = min{err α (t,d), Err α (T L,D(T L ))+Err α (T R,D(T R ))} für t Wurzel von T sowie T L,T R als linker und rechter Teilbaum von t. ML: III-111 Decision Trees c STEIN/LETTMANN

26 Pruning mit Maß für Kosten-Komplexität (Fortsetzung) Beobachtung: T max Blattanzahl minimaler optimal beschnittener Teilbäume von Tmax { root } 0 α Fragen: Müssen alle Werte für α durchlaufen werden? Sind die Teilbäume geordnet? ML: III-112 Decision Trees c STEIN/LETTMANN

27 Weakest Link Pruning 1. Bestimmung von T 1 = T(α 1 ) mit α 1 = 0 ausgehend von T max. Wegen Err(T 1,D) = Err(T max,d) und Err(t,D(t)) Err(t L,D(t L ))+Err(t R,D(t R )) für innere Knoten t von T max mit Nachfolgern t L und t R schneide alle Blätter t L und t R ab, für die mit ihrem Vorgänger t gilt: Err(t,D(t )) = Err(t L,D(t L))+Err(t R,D(t R)) ML: III-113 Decision Trees c STEIN/LETTMANN

28 Weakest Link Pruning (Fortsetzung) 2. Bestimmung von T k+1 ausgehend von T k. Für jeden inneren Knoten t von T k gilt Err(t,D(t)) > Err(T t,d(t)). Wegen Err α ({t},d(t)) = Err(t,D(t))+α und Err α (T t,d(t)) = Err(T t,d(t))+α leaves(t t ) gilt damit Err α (T t,d(t)) < Err α ({t},d(t)) für genügend kleine Werte für α. Setze: g k (t) := { Err(t,D(t)) Err(Tt,D(t)) leaves(t t ) 1 für t innerer Knoten von T k + für t Blattknoten von T k α k+1 := min t T k g k (t) Die von t k = argmin t Tk g k (t) ausgehenden Kanten bezeichnet man als schwächste Kanten (weakest links) in T k. Durch Abschneiden dieser Zweige T tk (weakest link pruning) erhält man T k+1 = T(α 2 ). ML: III-114 Decision Trees c STEIN/LETTMANN

29 Weakest Link Pruning (Fortsetzung) 3. Bewertung der Teilbäume T k. Bestimme Err(T k,d V ) für alle Teilbäume T k und wähle den Teilbaum mit minimalem Fehler auf der ValidierungsmengeD V. ML: III-115 Decision Trees c STEIN/LETTMANN

30 Weakest Link Pruning (Fortsetzung) 3. Bewertung der Teilbäume T k. Bestimme Err(T k,d V ) für alle Teilbäume T k und wähle den Teilbaum mit minimalem Fehler auf der ValidierungsmengeD V. Satz 2 Die durch das Weakest Link Pruning erhaltene endliche Folge (α k ) ist streng monoton wachsend, d.h. α k < α k+1 für alle k und es gilt sowie T(α) = T(α k ) = T k für alle k und α k α < α k+1 T 1 T 2 T 3 T 4... {t} mit t Wurzel von T max. ML: III-116 Decision Trees c STEIN/LETTMANN

31 Bemerkungen: Schritt 1 und zwei werden mit der Trainingsmenge D für T max durchgeführt, Schritt 3 mit einer Validierungsmenge D V. Anstelle der Verwendung einer Validierungsmenge D V in Schritt 3. kann für die Bewertung der Teilbäume T k auch mit einer Kreuzvalidierung erfolgen. Dazu werden die Schritte 1. bis 3. zunächst für die gemäß der Kreuzvalidierung vorgesehenen Aufteilungen von D in Trainings- und Validierungsmenge vorgenommen. Es ergeben sich entsprechend viele Folgen von kleinsten optimal beschnittenen Teilbäumen. Die mit D ermittelten Bäume T k, die ja von α k bis α k+1 unverändert bleiben, werden bewertet mit dem Mittel des Missklassifikationsanteils der zum geometrischen Mittel αk α k+1 gehörenden kleinsten, optimal beschnittenen Teilbäume aus den Kreuzvalidierungsläufen. D α ML: III-117 Decision Trees c STEIN/LETTMANN

32 Erweiterungen Berücksichtigung von Missklassifikationskosten beim Splitting Surrogate Splittings für fehlende Merkmalwerte Linearkombinationen von Merkmalen Regression Trees ML: III-118 Decision Trees c STEIN/LETTMANN

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning Kapitel ML: III III. Entscheidungsbäume Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning ML: III-1 Decision Trees c STEIN/LETTMANN 2005-2011 Spezifikation von Klassifikationsproblemen

Mehr

Splitting. Impurity. c 1. c 2. c 3. c 4

Splitting. Impurity. c 1. c 2. c 3. c 4 Splitting Impurity Sei D(t) eine Menge von Lernbeispielen, in der X(t) auf die Klassen C = {c 1, c 2, c 3, c 4 } verteilt ist. Illustration von zwei möglichen Splits: c 1 c 2 c 3 c 4 ML: III-29 Decision

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume Repräsentationsformalismus Tests Semantik: Klassifikation Ausdrucksfähigkeit Lernen von Entscheidungsbäumen Szenario vollst. Suche vs. TDIDT Maße:

Mehr

Kapitel 1: Motivation / Grundlagen Gliederung

Kapitel 1: Motivation / Grundlagen Gliederung Gliederung 1. Motivation / Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen Kapitel 9 Perfekte Graphen 9.1 α- und χ-perfektheit Eine Clique in einem Graphen G ist ein induzierter vollstäniger Teilgraph. Die Cliquenzahl ω(g) ist die Kardinalität einer größten in G enthaltene Clique.

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume als Repräsentationsformalismus Semantik: Klassifikation Lernen von Entscheidungsbäumen vollst. Suche vs. TDIDT Tests, Ausdrucksfähigkeit Maße: Information

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume

Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer. *Entscheidungsbäume Decision Trees* von Julia Heise, Philipp Thoms, Hans-Martin Wulfmeyer *Entscheidungsbäume Gliederung 1. Einführung 2. Induktion 3. Beispiel 4. Fazit Einführung 1. Einführung a. Was sind Decision Trees?

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

Kapitel ML: X (Fortsetzung)

Kapitel ML: X (Fortsetzung) Kapitel ML: X (Fortsetzung) X. Clusteranalyse Einordnung Data Mining Einführung in die Clusteranalyse Hierarchische Verfahren Iterative Verfahren Dichtebasierte Verfahren Cluster-Evaluierung ML: X-31 Cluster

Mehr

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben?

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben? Kap. 4.4: B-Bäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14. VO DAP2 SS 2008 3. Juni 2008 Änderung zur Übung ab jetzt: weniger Ü-Aufgaben, aber immer

Mehr

4 Induktion von Regeln

4 Induktion von Regeln 4 Induktion von egeln Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- aare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die

Mehr

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten)

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Wissensrepräsentation und -verarbeitung in klassischer Aussagenlogik: Entscheidungstabellen,

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

fuzzy-entscheidungsbäume

fuzzy-entscheidungsbäume fuzzy-entscheidungsbäume klassische Entscheidungsbaumverfahren fuzzy Entscheidungsbaumverfahren Entscheidungsbäume Was ist ein guter Mietwagen für einen Familienurlaub auf Kreta? 27. März 23 Sebastian

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

2. Übungstest. Motivation Überblick. Motivation für B-Bäume. B-Bäume. Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

2. Übungstest. Motivation Überblick. Motivation für B-Bäume. B-Bäume. Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax, Beginn:

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

n t(2k + 1) in den P k s r = n t(2k + 1) Rest

n t(2k + 1) in den P k s r = n t(2k + 1) Rest Kette von P k s: Gesamtzahl der Elemente: top P k bottom P k P k }{{} t n t(2k + 1) in den P k s r = n t(2k + 1) Rest EADS 4 Schönhage/Paterson/Pippenger-Median-Algorithmus 365/530 Wenn r < t 1, dann wissen

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

8 Das Flussproblem für Netzwerke

8 Das Flussproblem für Netzwerke 8 Das Flussproblem für Netzwerke 8.1 Netzwerke mit Kapazitätsbeschränkung Definition 15 Ein Netzwerk N = (V, E, γ, q, s) besteht aus einem gerichteten Graph G = (V, E), einer Quelle q V und einer Senke

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Der Alpha-Beta-Algorithmus

Der Alpha-Beta-Algorithmus Der Alpha-Beta-Algorithmus Maria Hartmann 19. Mai 2017 1 Einführung Wir wollen für bestimmte Spiele algorithmisch die optimale Spielstrategie finden, also die Strategie, die für den betrachteten Spieler

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n)

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) ( ( ) n 3 T + T m ) 4 n n 3 c + m 4 n c + n n + C m + cn; dies gilt, falls m 2 n m C m + n 2 (bis auf, ) c m + 3

Mehr

Classification and Regression Trees. Markus Müller

Classification and Regression Trees. Markus Müller Classification and Regression Trees Markus Müller Gliederung Lernen Entscheidungsbäume Induktives Lernen von Bäumen ID3 Algorithmus Einfluß der Beispielmenge auf den Baum Möglichkeiten zur Verbesserung

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 19 Fünfzehnte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 19 Definition

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

KAPITEL 4. Posets Hasse Diagramm

KAPITEL 4. Posets Hasse Diagramm KAPITEL 4 Posets Im Abschnitt über Relationen (1.4) wurde Eigenschaften von Relationen über einer einzigen Grundmenge X definiert. Mithilfe dieser Eigenschaften wurden z.b. Äquivalenzrelationen definiert.

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Randomisierte Datenstrukturen

Randomisierte Datenstrukturen Seminar über Algorithmen DozentInnen: Helmut Alt, Claudia Klost Randomisierte Datenstrukturen Ralph Schäfermeier 13. 2. 2007 Das Verwalten von Mengen, so dass ein schneller Zugriff auf deren Elemente gewährleistet

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007.

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007. Modellierung Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest Wolfgang Konen Fachhochschule Köln Oktober 2007 W. Konen DMC WS2007 Seite - 1 W. Konen DMC WS2007 Seite - 2 Inhalt Typen der Modellierung

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 Binärer Suchbaum Außerdem wichtig: Struktur der Schlüsselwerte! 2 Ordnungsstruktur Linker

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure 7. Dynamische Datenstrukturen Bäume Informatik II für Verkehrsingenieure Übersicht dynamische Datenstrukturen Wozu? Oft weiß man nicht von Beginn an, wieviele Elemente in einer Datenstruktur untergebracht

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n)

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n) Beim Logarithmischen Kostenmaß wird, im Gegensatz zum EKM, die Stelligkeit der Werte berücksichtigt und mit in die Laufzeit eingerechnet. Beispiel: R1 := R2 (R3), wobei R2 den Wert 5, R3 den Wert 10 und

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2 Einführung Binäre Suchbäume Höhe h O(h) für Operationen

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Induktion von Entscheidungsbäumen

Induktion von Entscheidungsbäumen Induktion von Entscheidungsbäumen Christian Borgelt Institut für Wissens- und Sprachverarbeitung Otto-von-Guericke-Universität Magdeburg Universitätsplatz 2, 39106 Magdeburg E-mail: borgelt@iws.cs.uni-magdeburg.de

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Was wissen Sie jetzt?

Was wissen Sie jetzt? Was wissen Sie jetzt?! Sie haben drei Prinzipien für die Regelbewertung kennen gelernt:! Unabhängige Mengen sollen mit bewertet werden.! Der Wert soll höher werden, wenn die Regel mehr Belege hat.! Der

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2013/14 Relationalstrukturen 59 Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Kapitel 7: Optimalcodierung und Huffman Coding

Kapitel 7: Optimalcodierung und Huffman Coding Kapitel 7: codierung und Huffman Coding Ziele des Kapitels Auftreten von Fehlern bei zu starker Kompression Konstruktion optimaler Codes Huffman Coding 2 Bisher Theorem (Shannon I): Die mittlere Codewortlänge

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Anwendungsbeispiel MinHeap

Anwendungsbeispiel MinHeap Anwendungsbeispiel MinHeap Uns seien n ganze Zahlen gegeben und wir möchten darin die k größten Zahlen bestimmen; zudem gelten, dass n deutlich größer als k ist Wir können das Problem mit Laufzeit in O(n

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr