5. Vorlesung: Normalformen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5. Vorlesung: Normalformen"

Transkript

1 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1

2 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) X X X X X X ( X X ) ( X X )

3 XOR, 3

4 XNOR (Äquivalenz) X X X X X X ( X X ) ( X X ) X X X X X X ( X X ) ( X X )

5 XNOR, 5

6 Vollständige Systeme 6

7 Vollständiges System aus UND, ODER und NICHT Die drei Grundverknüpfungen der Booleschen Algebra bilden ein vollständiges System. Dies bedeutet, dass mit diesen drei Verknüpfungen eine beliebige Schaltung aufgebaut werden kann. Für den Schaltungsentwurf müssen demnach nur drei Verknüpfungen zur Verfügung stehen. 7

8 Vollständiges System aus NAND I Bildet die NAND Verknüpfung ebenfalls ein vollständiges System? Es ist zu überprüfen ob UND,ODER und NICHT ausschließlich mit NAND Gattern realisiert werden können. 8

9 Vollständiges System aus NAND II NICHT Y = X X = X 1 X = X X Schaltungsaufbau? 9

10 Vollständiges System aus NAND III UND Y = ( X X ) 1 2 ( X X ) = ( X X ) = ( X X ) ( X X ) Schaltungsaufbau? 10

11 Vollständiges System aus NAND IV ODER Y = ( X X ) 1 2 ( X X ) = ( X X ) = ( X X ) = ( X X ) ( X X ) Schaltungsaufbau? 11

12 Vollständiges System aus NOR I Bildet die NOR Verknüpfung ebenfalls ein vollständiges System? Es ist zu überprüfen ob UND,ODER und NICHT ausschließlich mit NOR Gattern realisiert werden können. 12

13 Vollständiges System aus NOR II NICHT Y = X X = X 0 X = X X Schaltungsaufbau? 13

14 Vollständiges System aus NOR III UND Y = ( X X ) 1 2 ( X X ) = ( X X ) = ( X X ) = ( X X ) ( X X ) Schaltungsaufbau? 14

15 Vollständiges System aus NOR IV ODER Y = ( X X ) 1 2 ( X X ) = ( X X ) = ( X X ) ( X X ) Schaltungsaufbau? 15

16 Laufzeit von Schaltungen Zur Lösung anspruchsvoller Aufgaben werden mehrstufige Schaltungen benötigt. Gemäß der Anzahl der Ebenen, wobei Negationen an Ein- und Ausgang nicht berücksichtigt werden, wird eine Schaltung als n-stufige Logik bezeichnet. Die Laufzeit der Schaltung ergibt sich als Summe der Laufzeiten aller Ebenen. 16

17 Komplexität von Schaltungen Die Komplexität bzw. der Aufwand von Schaltungen wird durch die Anzahl der Gattereingänge abgeschätzt. Zur Berechnung werden alle Eingänge aller Ebenen berücksichtigt. 17

18 Normalformen Normalformen dienen der Darstellung Boolescher Funktionen in einheitlicher Form. Jeder Term der Darstellung enthält alle Eingangsvariablen. Für die Boolesche Algebra ist die konjunktive und die disjunktive Normalform von Interesse. 18

19 Minterm (Vollkonjunktion) Ein Minterm ist eine Konjunktion, die alle Eingangsvariablen, nicht negiert oder negiert, enthält. Für eine Boolesche Funktion mit n Eingangsvariablen existieren daher genau 2 n Minterme. Für exakt eine Kombination der Zustände der Eingangsvariablen nimmt ein Minterm den Zustand wahr bzw. 1 an. Für alle anderen Kombinationen liefert der Minterm 0. 19

20 Minterme für zwei Eingänge X X m m m m Bitte notieren Sie die algebraische Darstellung für alle vier Minterme. X X m m m m X X X X X X X X

21 Maxterm (Volldisjunktion) Ein Maxterm ist eine Disjunktion, die alle Eingangsvariablen, nicht negiert oder negiert, enthält. Für eine Boolesche Funktion mit n Eingangsvariablen existieren daher genau 2 n Maxterme. Für exakt eine Kombination der Zustände der Eingangsvariablen nimmt ein Maxterm den Zustand falsch bzw. 0 an. Für alle anderen Kombinationen liefert der Maxterm 1. 21

22 Maxterme für zwei Eingänge X X M M M M Bitte notieren Sie die algebraische Darstellung für alle vier Maxterme. X X M M M M X X X X X X X X

23 Konvention Für die Indizierung der Min- bzw. Maxterme ist die Anwendung einer Konvention üblich. Die Zustände der Eingangsvariablen werden als Binärdarstellung einer Dezimalzahl interpretiert. Beispiel: X = 1, X = 1, X = 0 (110) (6)

24 Übung Bitte notieren Sie die algebraische Darstellung für den Term M 3 und die Darstellung für den Term m 7 einer Booleschen Funktion mit drei Eingangsvariablen. M (0,1,1) = X X X m (1,1,1) = X X X

25 Disjunktive Normalform X1 X2 Y Wie kann die XOR-Funktion mit Mintermen dargestellt werden? m1 = X1 X m2 = X1 X2 Y = ( X X ) ( X X )

26 Disjunktive Normalform (DNF) Eine beliebige Boolesche Funktion Y kann durch eine disjunktive Verknüpfung der Minterme realisiert werden, die für die Kombinationen der Eingangsvariablen eine 1 erzeugen, für welche Y = 1 gilt. Diese Beschreibung einer Booleschen Funktion wird als DNF bezeichnet. 26

27 Übung X1 X2 X3 Y Bitte bilden Sie die DNF für Y und zeichnen Sie den Schaltungsaufbau. Y = m0 m3 m5 m6 = ( X X X ) ( X X X ) ( X X X ) ( X X X )

28 Übung (Fortsetzung) X1 X2 X3 Y Y = ( X X X ) ( X X X ) ( X X X ) ( X X X )

29 Konjunktive Normalform X1 X2 Y Wie kann die XOR-Funktion mit Maxtermen dargestellt werden? M 0 = X1 X M 3 = X1 X2 Y = ( X X ) ( X X )

30 Konjunktive Normalform (KNF) Eine beliebige Boolesche Funktion Y kann durch eine konjunktive Verknüpfung der Maxterme realisiert werden, die für die Kombinationen der Eingangsvariablen eine 0 erzeugen, für welche Y = 0 gilt. Diese Beschreibung einer Booleschen Funktion wird als KNF bezeichnet. 30

31 Übung X1 X2 X3 Y Bitte bilden Sie die KNF für Y und zeichnen Sie den Schaltungsaufbau. Y = M1 M2 M4 M7 = ( X X X ) ( X X X ) ( X X X ) ( X X X )

32 Übung (Fortsetzung) X1 X2 X3 Y Y = ( X X X ) ( X X X ) ( X X X ) ( X X X )

33 Minimierungsverfahren Jede Boolesche Funktion kann wahlweise in disjunktiver oder konjunktiver Normalform dargestellt werden (DNF bzw. KNF). Diese Darstellungen können so vereinfacht werden, dass man die disjunktive bzw. konjunktive Minimalform erhält (DMF bzw. KMF). Zur Minimierung können drei verschiedene Verfahren zur Anwendung kommen: Boolesche Algebra, Algorithmische Verfahren, Graphische Verfahren. 33

6. Vorlesung: Minimalformen

6. Vorlesung: Minimalformen 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme 24..26 fällt aus wegen Dozentenfachexkursion 2 Normalformen

Mehr

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016 Einführung in die Zentralavionik-Hardware Logische Grundschaltungen Frank Flederer Informatik VIII: Informationstechnik für Luft- und Raumfahrt Wintersemester 2015/2016 1 / 46 Logik in Elektronik 2 Zustände:

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery.  WOCHE 4 AM DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 finkbeiner@cs.uni-saarland.de Prof. Bernd Finkbeiner, Ph.D. finkbeiner@cs.uni-saarland.de 1 Schaltfunktionen! Schaltfunktion:

Mehr

Normalformen von Schaltfunktionen

Normalformen von Schaltfunktionen Disjunktive Normalform (DNF) Vorgehen: 2. Aussuchen der Zeilen, in denen die Ausgangsvariable den Zustand 1 hat 3. Die Eingangsvariablen einer Zeile werden UND-verknüpft a. Variablen mit Zustand 1 werden

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

a. Welche der folgenden Terme können als Minterm, Maxterm, beides oder keines von beidem dargestellt werden:

a. Welche der folgenden Terme können als Minterm, Maxterm, beides oder keines von beidem dargestellt werden: Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / hen Übungsblatt 1 oolesche lgebra /Kombinatorische Logik ufgabe 1: a. Welche der folgenden Terme können als Minterm,

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Digitaltechnik FHDW 1.Q 2007

Digitaltechnik FHDW 1.Q 2007 Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 6 am 0.2.200 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung 2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3) 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4

Mehr

Verwendung eines KV-Diagramms

Verwendung eines KV-Diagramms Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der

Mehr

Boolesche Funktionen und Schaltkreise

Boolesche Funktionen und Schaltkreise Boolesche Funktionen und Schaltkreise Die Oder-Funktion (Disjunktion) und die Und-Funktion (Konjunktion), x y 0 0 0 0 1 1 1 0 1 1 1 1 x y 0 0 0 0 1 0 1 0 0 1 1 1 1 (Implikationsfunktion), ( umgekehrte

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen

Mehr

Minimierung von logischen Schaltungen

Minimierung von logischen Schaltungen Minimierung von logischen Schaltungen WAS SIND LOGISCHE SCHALTUNGEN Logische Verknüpfungszeichen: & = Logisches Und-Verknüpfung (Konjunktion). V = Logische Oder-Verknüpfung (Disjunktion). - = Nicht (Negation).

Mehr

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel:

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: Seite 1 Aufgabe 1 Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: f 1 = a b c d + a b c d + a b c d + a b c d + a

Mehr

Teil 1 Digitaltechnik 1 Grundlagen: Zahlensysteme, Dualzahlen und Codes 3 1.1 Dezimalzahlensystem 3 1.2 Bündelung 4 1.3 Das dezimale Positionensystem 6 1.4 Römische Zahlen 7 1.5 Ägyptische Zahlen 8 1.6

Mehr

Stichwortverzeichnis. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN:

Stichwortverzeichnis. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN: Stichwortverzeichnis Gerd Wöstenkühler Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen ISBN: 978-3-446-42737-2 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42737-2

Mehr

4^ Springer Vi eweg. SPS-Programmierung. nach IEC in Anweisungsliste. und handlungsorientierte Einführung. Hans-Joachim Adam Mathias Adam

4^ Springer Vi eweg. SPS-Programmierung. nach IEC in Anweisungsliste. und handlungsorientierte Einführung. Hans-Joachim Adam Mathias Adam Hans-Joachim Adam Mathias Adam SPS-Programmierung in Anweisungsliste nach IEC 61131-3 Eine systematische und handlungsorientierte Einführung in die strukturierte Programmierung 4., bearbeitete Auflage

Mehr

2. Funktionen und Entwurf digitaler Grundschaltungen

2. Funktionen und Entwurf digitaler Grundschaltungen 2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung

Mehr

Algorithmen & Programmierung. Logik

Algorithmen & Programmierung. Logik Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage

Mehr

Inhaltsverzeichnis Teil I Digitaltechnik Grundlagen: Zahlensysteme, Dualzahlen und Codes Logische Funktionen und Boolesche Algebra

Inhaltsverzeichnis Teil I Digitaltechnik Grundlagen: Zahlensysteme, Dualzahlen und Codes Logische Funktionen und Boolesche Algebra Teil I Digitaltechnik 1 Grundlagen: Zahlensysteme, Dualzahlen und Codes............. 3 1.1 Dezimalzahlensystem.............................. 3 1.2 Bündelung..................................... 4 1.3 Das

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Kombinatorische Schaltwerke

Kombinatorische Schaltwerke Informationstechnisches Gymnasium Leutkirch Kombinatorische Schaltwerke Informationstechnik (IT) Gemäß Bildungsplan für das berufliche Gymnasium der dreijährigen Aufbauform an der Geschwister-Scholl-Schule

Mehr

Digitalelektronik - Inhalt

Digitalelektronik - Inhalt Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge

Mehr

Einführung in die Boolesche Algebra

Einführung in die Boolesche Algebra Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische

Mehr

1. Boolesche Algebra und Schaltalgebra

1. Boolesche Algebra und Schaltalgebra 1 oolesche lgebra und Schaltalgebra Folie 1 1. oolesche lgebra und Schaltalgebra 1.1 Was ist Informatik? Definition des egriffs Informatik Die Informatik ist die Wissenschaft, die sich mit der systematischen

Mehr

8. Tutorium Digitaltechnik und Entwurfsverfahren

8. Tutorium Digitaltechnik und Entwurfsverfahren 8. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

GTI ÜBUNG 8 FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 8 FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 8 NELSON/PETRICK, QUINE/MCCLUSKEY, NAND FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 Aufgabe 1 Nelson/Petrick Beschreibung Gegeben sei die folgende Funktionstabelle Achtung:

Mehr

2. Schaltfunktionen und ihre Darstellung

2. Schaltfunktionen und ihre Darstellung 2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 58 Schaltalgebra Wir untersuchen

Mehr

2. Schaltfunktionen und ihre Darstellung

2. Schaltfunktionen und ihre Darstellung 2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 60 Schaltalgebra Wir untersuchen

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Digitale Elektronik. Vom Transistor zum Speicher

Digitale Elektronik. Vom Transistor zum Speicher Digitale Elektronik Vom Transistor zum Speicher Begleitheft Universität Stuttgart Schülerlabor 1 Inhaltsverzeichnis 1. Einleitung... 3 2. Versuchshintergrund... 4 2.1. Bildungsstandards... 4 2.1.1 Leitgedanken

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Übungen zu Informatik Technische Grundlagen der Informatik - Übung 9 Ausgabedatum: 2. November 22 Besprechung: Übungsstunden in der Woche ab dem 9. November 22 ) Schaltungen und Schaltnetze Communication

Mehr

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen

Mehr

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze 82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

Technische Informatik 2 Zahlensysteme

Technische Informatik 2 Zahlensysteme Technische Informatik 2 Zahlensysteme Studiengänge MB, EL, MM, RA, ASE. Semester, Wintersemester 26 Prof. Dr.-Ing. Jürgen Schröder Fakultät für Technik Mechanik und Elektronik Technische Informatik, 2

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 5. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Feldeffekttransistoren (FET) Logikschaltungen in CMOS-Technologie

Mehr

Inhaltsverzeichnis Teil I Digitaltechnik Grundlagen: Zahlensysteme, Dualzahlen und Codes Logische Funktionen und Boolesche Algebra

Inhaltsverzeichnis Teil I Digitaltechnik Grundlagen: Zahlensysteme, Dualzahlen und Codes Logische Funktionen und Boolesche Algebra Inhaltsverzeichnis Teil I Digitaltechnik 1 Grundlagen: Zahlensysteme, Dualzahlen und Codes... 3 1.1 Dezimalzahlensystem... 3 1.2 Bündelung... 4 1.3 Das dezimale Positionensystem... 5 1.4 Römische Zahlen...

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ

GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ 1 GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ Aufgabe 1 - Boolesche Algebra 2 Beweisen oder widerlegen Sie die folgenden Aussagen, ohne Wahrheitstabellen zu verwenden. Für Aussagen, die

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Einführung in Informatik 1

Einführung in Informatik 1 Einführung in Informatik Prof. Dr.-Ing. Andreas Penningsfeld Zahlensysteme Allgemein: Zahl b := zn * bn +... + z * b + z ( ) * b (-) +... + z (-m) * b (-m) ; zi: Koeffizienten b: Basis Dezimalsystem Dualsystem

Mehr

Grundlagen der diskreten Mathematik

Grundlagen der diskreten Mathematik Grundlagen der diskreten Mathematik Prof. Dr. Romana Piat WS 25/6 Allgemeine Informationen Vorlesungen:./C Zug D (Mi., 3. Block + Do., 4. Block, y-raster) Zug E (Di., 5. Block + Do.,. Block, y-raster)

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Grundlagen der Technischen Informatik. 8. Übung

Grundlagen der Technischen Informatik. 8. Übung Grundlagen der Technischen Informatik 8. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 8. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine/McCluskey-Verfahren

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Grundlagen der Technischen Informatik. 7. Übung

Grundlagen der Technischen Informatik. 7. Übung Grundlagen der Technischen Informatik 7. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 7. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine/McCluskey-Verfahren

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d

C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d 6.3 Beispiel: Siebensegmentanzeige Typische Anzeige für Ziffern a f g b 0 1 2 3 4 5 6 7 8 9 e d c Schaltfunktionen zur Ansteuerung der Segmente Parameter: binär codierte Zahl bzw. Ziffer Gesucht: Schaltfunktion

Mehr

SPS-Programmierung in Anweisungsliste nach IEC

SPS-Programmierung in Anweisungsliste nach IEC SPS-Programmierung in Anweisungsliste nach IEC 61131-3 Eine systematische und handlungsorientierte Einführung in die strukturierte Programmierung Bearbeitet von Hans-Joachim Adam, Mathias Adam 5. Auflage

Mehr

Black Box erklärt Logische Verknüpfungen

Black Box erklärt Logische Verknüpfungen Black Box erklärt Logische Verknüpfungen Jeden Tag treffen wir Entscheidungen wie Trinke ich Cola ODER Kaffee? oder Heute ist es sonnig UND warm!. Dabei verwenden wir unbewusst logische Verknüpfungen (UND,

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr