Flächenberechnung im Trapez

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Flächenberechnung im Trapez"

Transkript

1 Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift Eigenschaften von Ur- und Bildfigur... Fundamentalkonstruktionen... achsensymmetrische Figuren; Eigenschaften von achsensymmetrischen Dreiecken und Vierecken einfache geometrische Figuren zeichnen Jahrgangsstufe 8 / I M I 8.7 Dreiecke und Vierecke (ca. 28 Std) Beziehungen zwischen den Seitenlängen bzw. zwischen Seitenlängen und Winkelmaßen im Dreieck Konstruierbarkeit von Dreiecken; Kongruenzsätze Aufbau von kongruenz- und abbildungsgeometrischen Beweisen Symmetrische und nicht symmetrische Vierecke; Eigenschaften achsensymmetrischer und punktsymmetrischer Vierecke Umkreis und Inkreis von Vierecken Begründungen mithilfe von Konkruenzsätzen, Abbildungen und Vektoren Jahrgangsstufe 8 II / III M 8.5 Dreiecke und Vierecke (ca. 20 Std) Beziehungen zwischen den Seitenlängen bzw. zwischen Seitenlängen und Winkelmaßen im Dreieck Konstruierbarkeit und Konstruktion von Dreiecken; Kongruenzsätze Symmetrische und nicht symmetrische Vierecke; Eigenschaften achsensymmetrischer und punktsymmetrischer Vierecke Umkreis und Inkreis von Vierecken Begründungen mithilfe von Konkruenzsätzen und Vektoren

2 Jahrgangsstufe 9 I M 9.6 Flächeninhalt ebener Vielecke (ca. 11 Std) Die S vergleichen die Flächeninhalte von Figuren durch Zerlegung in paarweise kongruente Teilfiguren und entdecken, dass zerlegungsgleiche Figuren flächengleich sind. Sie erarbeiten grundlegende Flächeninhaltsformeln, mit denen sie die Flächeninhalte beliebiger Vielecke bestimmen. Sie erweitern damit ihre Fähigkeit, geometrische Probleme algebraisch zu bearbeiten und funktionale Abhängigkeiten zu untersuchen. Zerlegungsgleichheit von Figuren; Höhen in Dreieck, Parallelogramm, Trapez Formeln für den Flächeninhalt von Parallelogramm, Dreieck, Trapez, Drachenviereck Flächeninhalte ebener Figuren auch mithilfe zweireihiger Determinanten berechnen; Aufgaben unter Berücksichtigung funktionaler Abhängigkeiten lösen und Extremwerte berechnen Jahrgangsstufe 9 II / III M 9.5 Flächeninhalt ebener Vielecke (ca. 12 Std) Inhalt wie in Zweig I Fazit: Während der Begriff Trapez schon in der 6. bzw. 8. Jahrgangsstufe eingeführt werden kann bei Eigenschaften achsensymmetrischer Vierecke (6. Klasse) oder bei symmetrische und nicht symmetrische Vierecke (8. Klasse) -, wird die Flächenberechnung im Trapez nur in der 9. Jahrgangsstufe behandelt.

3 Möglichkeiten zur Herleitung der Flächenformel 1 Punktspieglung an der Mitte einer nichtparallelen Seite Diese Herleitung der Trapezflächenformel baut auf Kenntnissen zu Punktspiegelung und Flächenformel des Parallelogramms auf (allgemein) Ein beliebiges Trapez ABCD wird an der Seitenmitte M einer nicht-parallelen Seite punktgespiegelt. Das dadurch entstandene Parallelogramm hat den doppelten Flächeninhalt gegenüber dem ursprünglichen Trapez, da es ja aus dem (Ur-)Trapez und dem gespiegelten Trapez zusammengesetzt ist. trapez1.gxt geg.: Höhe h, Seitenlängen a und c Beweis: a = a, c =c (Punktsymmetrie) A trapez = 0,5 * A parallelogramm = 0,5 * [h * (a+c )] = 0,5 * [h * (a+c)]

4 2 Zerlegung in ein Rechteck und zwei Dreiecke Aufbauend auf Kenntnissen zu Flächenzerlegung und Flächenberechnung bei Dreiecken und Rechtecken. Ein Trapez ABCD wird in zwei Dreiecke und ein Viereck zerlegt. Danach wird die Trapezformel aus den drei Teilflächenformeln hergeleitet. trapez2.gxt geg.: h, a, c, x, y Beweis: A trapez = A rechteck + A dreieck1 + A dreieck2 1.Fall: x und y auf a: = (a-x-y) * h + 0,5 * x * h + 0,5 * y * h = h * ((a-x-y) + 0,5 * x + 0,5 * y) = h * 0,5 * (x + 2(a-x-y) + y) a-x-y = c = h * (x +a x + c - y+ y)/2 2.Fall(x und y auf c): analog zu 1. Fall 3.Fall(x=>a, y=>c): = (a x) * h + 0,5 * x * h + 0,5 + y * h = 0,5 * ( 2 * (a x) + x + y) * h a x = c - y = 0,5 * (a x + x + c y + y) * h = 0,5 * (a + c) * h

5

6 3 Umwandlung des Trapezes durch Scherung in ein Dreieck Diese Herleitung der Trapezflächenformel baut auf Kenntnissen zur Scherung auf: Scherungen sind flächentreu. Als kleiner Schönheitsfehler ist anzumerken, dass die Scherung im Gegensatz zur Trapezflächenformel nicht in der neunten, sondern erst in der zehnten Jahrgangsstufe behandelt wird. In ein beliebiges Trapez ABCD wird eine Diagonale eingezeichnet. Zu der Diagonale zeichnet man nun eine Parallele durch einen freien Eckpunkt. Dieser wird in der Art entlang der Parallele geschert, dass ein Dreieck mit der Grundseite a + c entsteht. Wegen der Flächentreue der Scherung hat das Dreieck D BC den gleichen Flächeninhalt wie das ursprüngliche Trapez ABCD. trapez3.gxt geg.: Höhe h, Seitenlängen a und c Beweis: A trapez = A dreieck = 0,5 * [h * (a+c)]

7

8 4 Zerlegung in ein Parallelogramm und ein Dreieck Aufbauend auf den Flächenformeln von Parallelogramm und Dreieck wird die Trapezflächenformel entwickelt. Dazu wird in ein Trapez ABCD ein Parallelogramm so einbeschrieben, dass drei Seiten von Trapez und Parallelogramm deckungsgleich sind. Als Restfläche verbleibt ein Dreieck im Trapez. Da die Flächenformeln für Dreieck und Parallelogramm vorausgesetzt werden, kann man nun die Trapezformel leicht herleiten. geg.: h, a, c, x Beweis: A trapez = A parallelogramm + A dreieck = (a-x) * h + 0,5 * x * h = h * ((a-x) + 0,5 * x ) = h * 0,5 * (x + 2(a-x)) a-x = c => 2(a-x) = c + a - x = h * (x +a x + c)/2

9 5 Überführung in ein Parallelogramm der Höhe h/2 Für diese Herleitung wird die Kenntnis der Flächenformel für das Trapez vorausgesetzt. Ein Trapez ABCD wird entlang der Mittelparallelen m getrennt und einer der beiden entstehenden Teile wie in der Abbildung gezeigt gedreht. Es entsteht ein Parallelogramm mit den Kantenlängen h/2 und a+c. geg.: Höhe h, Seitenlängen a und c Beweis: A trapez = A parallelogramm = (a + c) * (h /2) An dieser Stelle lässt sich nun auch leicht zeigen, warum in der Flächenformel zum Trapez gilt : m = (a + c) / 2.

10 Nach der Definition eines Parallelogrammes sind bei einem solchen jeweils die gegenüberliegenden Seiten parallel und insbesondere gleichlang. Deshalb gilt a + c = 2 * m. Löst man diesen Term nun nach m auf, so erhält man den bekannten, für Schüler nicht unbedingt sofort einsichtigen Ausdruck m = (a + c) / 2.

11 6 Zerlegung des Trapezes in zwei Dreiecke Voraussetzung hierfür ist lediglich die Kenntnis der Flächenformel für Dreiecke. Ein Trapez ABCD wird hierbei entlang einer der beiden Flächendiagonalen in zwei Dreiecke unterteilt und die Fläche aus den beiden Teilflächen berechnet. trapez6.gxt geg.: Höhe h, Seitenlängen a und c Beweis: A trapez = A dreieck + A dreieck = 0,5 * a * h + 0,5 * c * h = h * (a + c) * 0,5

12 7 Zerlegung des Trapezes in ein Rechteck und ein Dreieck Voraussetzungen hierfür sind die Kenntnis der Flächenformeln für Dreiecke und Vierecke. Es handelt sich hierbei um einen Spezialfall von (4) und eignet sich nur für Trapeze mit rechtem Winkel. In seiner Einfachheit ist dieser Fall nach meiner Einschätzung für matheschwache Schüler recht gut geeignet, da ein Trapez kaum einfacher und übersichtlicher sein kann. Das Trapez ABCD wird in das Rechteck AHCD und das Dreieck HBC zerlegt. geg.: Höhe h, Seitenlängen a und c Beweis: A trapez = A rechteck + A dreieck = c * h + 0,5 * [h * (a - c)] = h * [ c + 0,5 * (a c)] = h * 0,5 *[2c + a c] = h * [c + a]/2

13 8 Überführung des Trapezes in ein Rechteck Hierbei wird durch geschickten Umbau des Trapezes ein Rechteck erzeugt. Diese Variante hat große Haken: Zum einen eignet sie sich nur, solange das Trapez nicht zu schief ist, zumindest ein kleines Stück der Seite a sich mit der Seite c überlappt. Trifft dies nicht zu, so entsteht beim Umklappen der Dreiecke kein Recht-, sondern ein Vieleck. Zum anderen lässt sich nur schwer ohne weiterführende Überlegungen verdeutlichen, weshalb für die Kante mit der Länge m gilt: m = (a + c) / 2. Dies ist nur mit z.b. dem Wissen aus Herleitung 5 zu zeigen. geg.: Höhe h, Mittelparallele m Beweis: A trapez = A rechteck = m * h m = (a + c) / 2 [muß man zeigen werden; siehe 5] Einzig interessant ist eine Variante, bei der durch scheinbar falsches Umklappen nicht ein, sondern zwei Rechtecke entstehen: eines mit den Seitenlängen a und h/2 und eines mit c und h/2. Aber auch hierbei ist zu beachten, dass sich a und c ein bisschen überlagern sollten. geg.: Höhe h, Seitenlängen a und c Beweis: A trapez = A rechteck + A rechteck = a * (h / 2) + c * (h / 2)

14 = (h / 2) * (a + c)

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Flächeninhalt 1 Kapitel 7: Der Flächeninhalt Flächeninhalt einer Figur soll etwas über deren Größe aussagen Flächeninhaltsbegriff intuitiv irgendwie klar, ab der Grundschule durch Auslegen von Figuren

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen Inhaltsverzeichnis Grundwissen Geometrische Abbildungen Achsensymmetrie 1 Achsensymmetrie erkennen 2 Symmetrieachsen finden (1) 3 Symmetrieachsen finden (2) 4 Symmetrieachsen finden (3) 5 Achsensymmetrische

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

Sicheres Wissen und Können zu Dreiecken 1

Sicheres Wissen und Können zu Dreiecken 1 Sicheres Wissen und Können zu Dreiecken 1 Die Schüler verwenden den egriff Figur für beliebige geradlinig oder krummlinig begrenzte ebene Figuren. Die Namen der Figuren sind im Denken der Schüler sowohl

Mehr

Musterlösung zur 3. Übung

Musterlösung zur 3. Übung Musterlösung zur 3. Übung a) Didaktische Aufbereitung des Themas: Flächenberechnung eines Dreiecks Einführung Flächeninhalt eines Dreiecks: 2 Grundideen: (vgl. S. 5-7) (1) Rechteck rechtwinkliges Dreieck

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Mathematik. Allgemeine Hinweise. Grundwissen und Kernkompetenzen. 9.1 Terme (ca. 24 Std.)

Mathematik. Allgemeine Hinweise. Grundwissen und Kernkompetenzen. 9.1 Terme (ca. 24 Std.) Mathematik Mathematik Vorbereitungsklasse 1 Allgemeine Hinweise Die Beziehungen zwischen Geometrie und Algebra werden in der Jahrgangsstufe 9 weiter ausgebaut. Die Schüler erweitern ihre Fähigkeiten, geometrische

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Referat für das Seminar. Mathematik und Didaktik in der Hauptschule. Sommersemester 2004. Flächenverwandlung. erstellt von.

Referat für das Seminar. Mathematik und Didaktik in der Hauptschule. Sommersemester 2004. Flächenverwandlung. erstellt von. Referat für das Seminar Mathematik und Didaktik in der Hauptschule Sommersemester 2004 Thema: Flächenverwandlung erstellt von Sandra Hellgoth (5. Sem.; LA HS) und Hermann Angstl (5. Sem.; LA HS) Bayreuth,

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Definitionen des Flächeninhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Flächeninhalt 1 Kapitel 6: Der Flächeninhalt Flächeninhalt einer Figur soll etwas über deren Größe aussagen Flächeninhaltsbegriff intuitiv irgendwie klar, ab der Grundschule durch Auslegen von Figuren

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Umfangsgleiche und inhaltsgleiche Rechtecke

Umfangsgleiche und inhaltsgleiche Rechtecke Umfangsgleiche und inhaltsgleiche Rechtecke Geometrieunterricht an Realschulen Allgemein: Durch den Geometrieunterricht sollen die Schüler dazu befähigt werden Lagebeziehungen, Größenverhältnisse und figürliche

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

8 Mathematik I (4-stündig)

8 Mathematik I (4-stündig) (4-stündig) Die Schüler verfügen bereits über viele mathematische Grundkenntnisse, die auch in der Jahrgangsstufe weiter gesichert, vertieft und ausgebaut werden. Sie sind in der Lage, einfache Gleichungen

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Beginn mit einer Einführungsstunde im Frontalunterricht: Wiederholung von Flächeninhalt und Umfang beim Rechteck und Quadrat

Mehr

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann.

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann. X. Flächenmessung ================================================================= 10.1 Einführung Welches Rechteck ist am größten? I II III Den Inhalt einer Fläche messen, heißt feststellen, mit wie

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

7 Mathematik I (4-stündig)

7 Mathematik I (4-stündig) (4-stündig) In der Wahlpflichtfächergruppe I mit Schwerpunkt im mathematisch-naturwissenschaftlich-technischen Bereich wird das Fach Mathematik vertieft unterrichtet. Die Schüler lernen in der Jahrgangsstufe,

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen.

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. 4. Symmetrien 25 4. Symmetrien 4.1 Gruppen Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. Eine Verknüpfung auf einer Menge M ist eine Abbildung, die zwei Elementen

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Flächeninhalt und Umfang von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Einfache Parkettierungen

Einfache Parkettierungen Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck

Mehr

Vom Rechteck, das ein Quadrat werden wollte

Vom Rechteck, das ein Quadrat werden wollte Vom Rechteck, das ein Quadrat werden wollte Schule: Hohenstaufen-Gymnasium Kaiserslautern Idee und Erprobung der Unterrichtseinheit: Klaus Merkert Die folgende Unterrichtseinheit ist ein Beispiel für Problemstellungen

Mehr

Flächeninhalt von Dreiecken

Flächeninhalt von Dreiecken Flächeninhalt von Dreiecken Übungen Antje Schönich Thema Stoffzusammenhang Jahrgangsstufe 6 Übungen zur Flächeninhaltsberechnung von Dreiecken Flächeninhalt von Dreiecken Inhaltsbezogene Kompetenzbereiche

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Werkzeuge/ Medien Lineal, Geodreieck. Problemlösen - finden Beispiele, überprüfen durch Probieren

Werkzeuge/ Medien Lineal, Geodreieck. Problemlösen - finden Beispiele, überprüfen durch Probieren Kernlehrplan Jahrgangsstufe 5 Kapitel Inhaltsbezogene Kompetenzen I Arithmetik/ Algebra (Stochastik) Natürliche Zahlen Prozessbezogene Kompetenzen Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten

Mehr

Grundwissen 8II/11. Terme

Grundwissen 8II/11. Terme Grundwissen 8II/11 Termumformungen 1. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Anwendungen 1 - Lösungen

Anwendungen 1 - Lösungen Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr. Erstellen

Mehr

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

. Wo liegt das Zentrum S? d) E ist das Bild von I mit

. Wo liegt das Zentrum S? d) E ist das Bild von I mit Zentrische Streckung, Ähnlichkeit 1. Eine gegebene Strecke ist durch Konstruktion im Verhältnis 5 3 harmonisch zu teilen. 1 U und V teilen die Strecke mit der Länge 24 cm harmonisch im Verhältnis 5 3.

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β :

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β : Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr 2. Erstellen

Mehr

Stoffverteilungsplan Klasse 7

Stoffverteilungsplan Klasse 7 Stoffverteilungsplan Klasse 7 Rahmenlehrplan Im Blickpunkt: Mathematische Kompetenzen 6 Viel Erfolg im neuen Schuljahr 1 Zahlen und Operationen 30 Basiswissen: Brüche und Dezimalzahlen Kapitel 1: Rationale

Mehr

GRUPPENPUZZLE GRUPPE 1

GRUPPENPUZZLE GRUPPE 1 GRUPPENPUZZLE GRUPPE 1 In der Abbildung unten findest du links eine Figur mit den Eckpunkten A, B und C. Von dieser Figur geht man aus und wird folglich als Originalfigur bezeichnet. Die rechte Figur ist

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

5. Flächenlehre ohne Rechnen

5. Flächenlehre ohne Rechnen 5. Flächenlehre ohne Rechnen Die Zielsetzung. Was ist der Flächeninhalt eines Quadrats? Zunächst erscheint die Frage als ganz leicht zu beantworten: man messe die Länge der Quadratseite und quadriere die

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

8 Mathematik I (4-stündig)

8 Mathematik I (4-stündig) Mathematik I (4-stündig) Die Schüler verfügen bereits über viele mathematische Grundkenntnisse, die auch in der Jahrgangsstufe weiter gesichert, vertieft und ausgebaut werden. Sie sind in der Lage, einfache

Mehr

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN MTHEMTIK-WETTEWER 2000/2001 ES LNES HESSEN UFGEN ER GRUPPE PFLIHTUFGEN P1. Von 11000 Schülern sind 070 Mitglied in einem Verein. Wie viel Prozent sind das? P2. Ein -Player kostete bisher 80 M. ei einem

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Symmetrie als fundamentale Idee

Symmetrie als fundamentale Idee Symmetrie als fundamentale Idee "Ideen, die starke Bezüge zur Wirklichkeit haben, verschiedene Aspekte und Zugänge aufweisen, sich durch hohen inneren Beziehungsreichtum auszeichnen und in den folgenden

Mehr