Geometrie Modul 4b WS 2015/16 Mi HS 1

Größe: px
Ab Seite anzeigen:

Download "Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1"

Transkript

1 Geometrie Modul 4b WS 2015/16 Mi HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere V1 Geometrische Grundbegriffe V2 Grundkonstruktionen und Bestimmungslinien V3 Dreiecke und ihre Eigenschaften (Winkel, Kongruenzsätze, Linien/Punkte, Typisierung, Symmetrien, Winkelsätze) V4 Vierecke und ihre Eigenschaften (Typisierung, besondere Vierecke, Haus der Vierecke, Symmetrien) V5 Dreiecke (Flächensätze, Ähnlichkeit) V6 Vielecke (Sätze, Winkel, Symmetrien, Beziehungen zum Kreis) V7 Kreis (Geraden, Punkte, Typisierung, Symmetrien, Winkelsätze) V8 Kongruenzabbildungen - Symmetrie V9 Flächeninhalt und Umfang von Vielecken und Kreisen V10 Typisierung von Körpern (Quader, Prismen, Spitzkörper, Platonische Körper, Kugel) V11 Rauminhalt von Körpern (Rauminhalt von Prismen und Spitzkörpern, Rauminhalt und Oberfläche der Kugel) V12 Zusammenfassung (Freitag) Uhr, Klausur (HS 1, HS 2) 1

2 V6 Vielecke (Polygone) 1 Begriffe 2 Eigenschaften konvexer Vielecke Anzahl der Diagonalen Winkelsumme im n-eck 3 Eigenschaften regelmäßiger konvexer Vielecke 4 Praxiskurs: Falten regelmäßiger Vielecke Quellen: Krauter. Erlebnis Elementargeometrie; Duden. Mathematik; Kusch Mathematik. 2

3 1 Begriffe Vielecke (Polygone) sind abgeschlossene ebene Streckenzüge aus endlich vielen Strecken. 3

4 Beispiele: Arten von Fünfecken Liegt jede Verbindungsstrecke zweier Eckpunkte im Inneren (als Diagonale) oder auf dem Rand (als Seite), dann ist das n-eck konvex. Es hat keinen Innenwinkel, der größer als 180 ist. Ein konkaves n-eck besitzt mindestens einen Innenwinkel, der größer als 180 ist. Schneiden sich zwei Seiten, so heißt das Vieleck überschlagen. Ein n-eck heißt regelmäßig, wenn alle Seiten gleichlang und alle Winkel gleichgroß sind. Polygonion (griech.)-vieleck; polys viel; gonos - Winkel convexus (lat.) - gewölbt 4

5 2 Eigenschaften konvexer Vielecke -Anzahl der Diagonalen -Winkelsumme im n-eck 5

6 Anzahl der Diagonalen in Vielecken Ein Viereck hat 2 Diagonalen. Ein Fünfeck hat 5 Diagonalen. Ein Sechseck hat 9 Diagonalen. Mit welchem Zusammenhang lassen sich die Diagonalen in Vielecken ableiten? 6

7 Ausgangsüberlegung: Wie viele Strecken lassen sich ausgehend von einer Ecke zeichnen? Man kann in alle anderen Ecken außer die eigene Strecken zeichnen, also n-1 Strecken zu den übrigen Ecken ziehen. Jedoch sind 2 davon keine Diagonalen sondern Seiten des Vielecks, also gehen n-3 Diagonalen von jeder Ecke aus. Im gesamten Vieleck also n mal n-3 Diagonalen: n (n-3) Allerdings wird auf diese Weise jede Diagonale zweimal gezählt. Da eine Diagonale immer zwei Ecken miteinander verbindet, muss der gefundene Term noch durch 2 dividiert werden: n( n 3) 2 7

8 Ein Viereck hat also 2 Diagonalen: Ein Fünfeck hat 5 Diagonalen: Ein Sechseck hat 9 Diagonalen: Ein Siebeneck hat 14 7(7 3) Diagonalen: 2 Ein Achteck hat 20 Diagonalen: 8(8 3) 4(4 2 5(5 3) 2 6(6 3) 2 2 3) 8

9 Winkelsumme des n-ecks Die Winkelsumme in Dreiecken beträgt 180, in Vierecken 360. Wie kann man die Innenwinkelsumme für ein beliebiges n-eck bestimmen? Ausgangsüberlegung: Zerlegen eines n-ecks in Dreiecke bzw. Aufbau eines n-ecks aus Dreiecken 9

10 Denkt man sich von einem beliebigen Punkt P innerhalb eines n-ecks Strecken zu allen Eckpunkten gezeichnet, so entstehen n Dreiecke. Deren Innenwinkelsumme beträgt n 180. Diese Summe ist jedoch größer als die gesuchte, denn sie enthält nicht nur die Winkelgrößen in den Ecken des Vielecks sondern auch die Dreieckswinkel, rund um den Scheitel P. Diese für die Innenwinkelsumme nicht benötigten Winkelgrößen bilden um P einen Vollwinkel, also 360. Die Summe der Winkelgrößen im n-eck beträgt also n Überlegung 1 10

11 Den auf der vorangegangen Folie gewonnenen Term (n ) kann man noch geschickt umformen, indem man 360 als schreibt, also n und 180 ausklammert: 180 (n 2) oder S n = (n-2) 180. Die Summe der Innenwinkel eines n-ecks beträgt (n-2)

12 Überlegung 2 Dreieck Viereck Fünfeck Sechseck 12

13 Überlegung 3 Ein konvexes n-eck kann in (n-2) Dreiecke zerlegt werden. Das Zerlegen in Dreiecke erfolgt ausgehend von einem Eckpunkt. (s. Beispiel unregelmäßiges Sechseck). Für die Innenwinkelsumme S n eines beliebigen n-ecks ergibt sich S n = (n-2)

14 Die Innenwinkelsumme im Dreieck beträgt also (3-2) 180 = 180. Die Innenwinkelsumme im Viereck beträgt (4-2) 180 = 360. Die Innenwinkelsumme im Fünfeck beträgt (5 2) 180 = 540. Die Innenwinkelsumme im Sechseck beträgt (6-2) 180 =

15 3 Eigenschaften regelmäßiger konvexer Vielecke - Innenwinkel im regelmäßigen n-eck - Symmetrien - In- und Umkreis 15

16 Ein n-eck ist dann regelmäßig, wenn es n gleichgroße Winkel und n gleichlange Seiten besitzt. (Eine Bedingung allein genügt nicht.) Wir wissen, dass die Winkelsumme im n-eck (n-2) 180 beträgt. Im regelmäßigen n-eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-ecks verteilt. Für die Größe jedes Innenwinkels in einem regelmäßigen n-eck gilt demzufolge: (n-2) 180 n Jedes regelmäßige n-eck weist genau n Achsenspiegelungen und n Drehungen (einschließlich der Identität) auf. Nur regelmäßige Vielecke mit gerader Eckenzahl sind auch punktsymmetrisch. 16

17 Jedes regelmäßige n-eck besitzt einen Inkreis und einen Umkreis. Inkreis und Umkreis besitzen denselben Mittelpunkt. Dieser Mittelpunkt ist ausgehend vom Umkreis konstruktiv bestimmbar. Weil jede Seite des n-eckes Sehne des Umkreises ist, geht Ihre Mittelsenkrechte durch den Mittelpunkt des Kreises. Verbindet man den Kreismittelpunkt mit jedem Eckpunkt, so wird das n-eck in n gleichschenklige, zueinander kongruente Dreiecke Die am Mittelpunkt liegenden Winkel der Dreiecke sind alle gleich groß: (Bestimmungsdreiecke) zerlegt. α = 360 n Umkreisradius r 2 Inkreisradius r 1 17

18 regelmäßiges Fünfeck Alle regelmäßigen n-ecke haben jeweils gleich große Innenwinkel. Beim regelmäßigen Fünfeck beträgt die Größe eines Innenwinkels 108. Innenwinkelsumme: (n-2) = 540 Größe eines Innenwinkels: 540 : 5 =

19 Besonderheit: regelmäßiges Sechseck Jedes regelmäßige n-eck kann man in n gleichschenklige Dreiecke zerlegen. Beim regelmäßigen Sechseck sind die Winkel an jeder Dreieckspitze 60 (360 : 6), dann müssen die beiden Winkel an der Basis auch jeweils 60 sein. Die Bestimmungsdreiecke im regelmäßigen Sechseck sind also gleichseitig. Deshalb entspricht auch die Seite des 6-Ecks dem Radius des Umkreises (sonst nur die Schenkel). Die am Mittelpunkt liegenden Winkel der Dreiecke sind alle gleich groß: α = 360 n So ist jeder Kreis durch seinen Radius in ein regelmäßiges Sechseck zerlegbar. Wenn man also einen Kreis zeichnet und seinen Radius 5 mal abträgt, erhält man immer ein regelmäßiges Sechseck. 19

20 Quadrat und regelmäßiges Achteck Zwei beliebige, aber senkrecht aufeinander stehende Durchmesser schneiden einen Kreis in vier Punkten, den vier Seiten eines regelmäßigen Vierecks (Quadrat). Halbiert man die Quadratseiten und zeichnet durch die Seitenmitten Durchmesser, so erhält man vier weitere Ecken, die uns zum regelmäßigen Achteck führen. 20

21 regelmäßiges Neuneck Die Gleichheit der Winkel am Mittelpunkt der Figur ermöglicht das Zeichnen regelmäßiger Vielecke. 360 : 9 = 40 21

22 Konstruieren mit Hilfe des Kreises Durch sechsmaliges Abtragen des Radius eines Kreises auf der Kreislinie entsteht ein regelmäßiges Sechseck. Verbindet man drei nicht benachbarte Punkte, so erhält man ein gleichseitiges Dreieck. Über das Prinzip der Seitenhalbierung lässt sich ausgehend vom Quadrat ein Achteck usf. konstruieren. Konstruieren mit Hilfe des Quadrates Regelmäßige Achtecke kann man unter Nutzung der Seitenmitten des Quadrates konstruieren. 22

23 4 Praxiskurs: Falten regelmäßiger Vielecke Sechseck gleichseitiges Dreieck Ecken zur Mitte Achteck aus dem Zauberquadrat Fünfeck Papierstreifen knoten 23

24 regelmäßiges Achteck Quelle: Besuden 24

25 Aufgabe zur Übung, Woche vom Falten oder zeichnen Sie ein Vieleck. Berechnen Sie die Anzahl der Diagonalen und die Innenwinkelsumme Ihres Vielecks. Leiten Sie eine der beiden Formeln gedanklich her. 25

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Einfache Parkettierungen

Einfache Parkettierungen Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3

Mehr

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. 38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h.

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Raumgeometrie - Würfel, Quader (Rechtecksäule)

Raumgeometrie - Würfel, Quader (Rechtecksäule) Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann.

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann. X. Flächenmessung ================================================================= 10.1 Einführung Welches Rechteck ist am größten? I II III Den Inhalt einer Fläche messen, heißt feststellen, mit wie

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Der Spitzbogen wird mit Hilf e von zwei Kreisbögen konstruiert.

Der Spitzbogen wird mit Hilf e von zwei Kreisbögen konstruiert. Ornament Gotik Grundkonstruktionen (S. 1 von 6) / www.kunstbrowser.de Grundkonstruktionen Der Sp i t zb o g en Die Baukunst der Gotik benutzt f ast ausschließlich den Spitzbogen. Erst ganz zu Ende der

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE

PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE 21. Auflage Mit 581 Bildern, 556 Aufgaben mit Lösungen 150 Wiederholungsaufgaben ohne Lösungen, einer Beilage mit 15 Raumbildern und einer Formelsammlung

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Westermann Seite 52 Aufgabe 2 b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Nach dem Einzeichnen des Urdreiecks und des Punktes A erkennt man: Der Vektor verschiebt den Punkt A um 3

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Geometrische Figuren Fotoassoziation

Geometrische Figuren Fotoassoziation Ausgehend von Figuren aus dem Alltag erfolgt eine Abstraktion auf mathematische Figuren und deren Eigenschaften. Vorbereitung und Hinweise Bilder und Kärtchen werden aufgelegt. Bei einer großen Zahl an

Mehr

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und

Mehr

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β :

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β : Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr 2. Erstellen

Mehr

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen:

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Kapitel 8 Platonische Körper Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Die Begrenzungsflächen sind regelmäßige Vielecke, die untereinander kongruent sind An

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 5

SRB- Schulinterner Lehrplan Mathematik Klasse 5 Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren

Mehr

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik Kopiervorlagen zur ufgabensammlung GEOMETRIE 1 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik utoren: ownload: Michael Graf, Heinz Klemenz www.geosoft.ch/buecher Inhaltsverzeichnis

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen DOWNLOAD Michael Körner Achsensymmetrie Grundwissen Mathematik Michael Körner Grundwissen Geometrische Abbildungen 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Das Werk

Mehr

Mathematik Klasse 6. Inhaltsbezogene Kompetenzen Zahlen und Operationen I

Mathematik Klasse 6. Inhaltsbezogene Kompetenzen Zahlen und Operationen I Mathematik Klasse 6 Woche Thema/ Anforderungen Inhaltsbezogene Kompetenzen Zahlen und Operationen I prozessbezogene Kompetenzen Materialien/ Anregungen KA 1 (32) Erster Tag + Klassenfahrt 2 (33) Teilbarkeit

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am 13.02.2013 haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am 13.02.2013 haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende Version

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Basiswissen 7. Klasse

Basiswissen 7. Klasse Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie Zueinander symmetrische Punkte können durch Kongruenzabbildungen (= Abbildungen, bei denen Form und Größe von Figuren gleich bleiben) aufeinander abgebildet

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

Sphärische Vielecke. Hans Walser

Sphärische Vielecke. Hans Walser Sphärische Vielecke Hans Walser Sphärische Vielecke ii Inhalt 1 Sphärische Vielecke...1 1.1 Sphärische Dreiecke...1 1.2 Sphärische Zweiecke...2 1.3 Der Flächeninhalt sphärischer Dreiecke...3 2 Regelmäßige

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

Kapitel 6 Kapitel 6 Begriffserwerb

Kapitel 6 Kapitel 6 Begriffserwerb Begriffserwerb 6.1. Das Lehren und Lernen geometrischer Begriffe 6.1.1 Überblick 6.1.2. Theorie 6.1.3. Beispiele 6.1.3.1. Aufbau angemessener Vorstellung 6.1.3.2. Erwerb von Kenntnissen 6.1.3.3. Aneignung

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

Sicheres Wissen und Können zu Dreiecken 1

Sicheres Wissen und Können zu Dreiecken 1 Sicheres Wissen und Können zu Dreiecken 1 Die Schüler verwenden den egriff Figur für beliebige geradlinig oder krummlinig begrenzte ebene Figuren. Die Namen der Figuren sind im Denken der Schüler sowohl

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr