Prozentrechnung. 1. Von 360 Schülern fahren. b) gehen zu Fuß. 2. Wieviel sind 2 7. von 210? 3. Wieviel sind 3. von 500?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prozentrechnung. 1. Von 360 Schülern fahren. b) gehen zu Fuß. 2. Wieviel sind 2 7. von 210? 3. Wieviel sind 3. von 500?"

Transkript

1 Prozentrechnung. Von 60 Schülern fahren a) mit dem Fahrrad zur Schule 9 7 b) gehen zu Fuß 8 Wie viele Schüler sind das?. Wieviel sind 7 von 0?. Wieviel sind 00 von 500? 4. Wieviel sind (Typ ) a) 4% von 500 b) 5% von 6000 c) 8% von 40 d) % von 500? 5. Gib den Anteil als Bruch an. a) von 9 b) 4 von 8 c) 550 von Gib den Anteil in Prozent an. (Typ ) a) 5 von 50 b) von 5 c) 00 von 500 d) von 5 7. der Äpfel in einem Korb sind faul, und zwar 0 Stück. Wieviel Äpfel sind in dem Korb? 8. Wieviel sind es insgesamt (00%)? (Typ ) a) % sind 8 b) 0% sind 4 c) 8% sind Gib den Anteil in Prozent an. a) 4 b) c) d) 5 5 8

2 Prozentrechnung. Von 60 Schülern fahren a) mit dem Fahrrad zur Schule 9 7 b) gehen zu Fuß 8 Wie viele Schüler sind das?. Wieviel sind von 0? 7. Wieviel sind von 500? Wieviel sind (Typ ) a) 4% von 500 b) 5% von 6000 c) 8% von 40 d) % von 500? 5. Gib den Anteil als Bruch an. a) von 9 b) 4 von 8 c) 550 von Gib den Anteil in Prozent an. (Typ ) 7. a) 5 von 50 b) von 5 c) 00 von 500 d) von 5 der Äpfel in einem Korb sind faul, und zwar 0 Stück. Wieviel Äpfel sind in dem Korb? 8. Wieviel sind es insgesamt (00%)? (Typ ) a) % sind 8 b) 0% sind 4 c) 8% sind Gib den Anteil in Prozent an. a) 4 b) c) d) a) 80 Schüler, Erläuterung: von 60 (d.h. der 9.te Teil) sind 9 40, sind das Doppelte, 9 Merke: Anteil von bedeutet Anteil mal b) 40 Schüler, Erläuterung: von 60 (d.h. der 8.te Teil) 8 7 sind 0, sind das Siebenfache, 8. 60, von 0 sind , von 500 sind 5 00 Für schreiben wir %. 00 4a) 0 4b) 00 4c), 4d) 65 5a) 5b) 5c) 6a) 6b) 6c) 6d) 9 = 4 8 = von bedeutet hier geteilt durch = = 0 55 Für schreiben wir 55% = = 50% 5 = 8 00 = 8% = 0 00 = 0% 5 = = 40% 7. 45, Erläuterung: sind 0, sind 5, (alle) sind 45. 8a) 600, % sind 6 8b) 70, 0% sind 7 8c) 500, % sind 5 9a) 9b) 9c) 9d) 4 = 5 00 = 5% 5 = 0 00 = 0% 5 = 4 00 = 4% 7,5 = : 8 = 0,75 = 8 00 = 7,5%

3 Prozentrechnung Typisches Typ % von 7000 sind = = 90 Typ 4 von 80 Der Anteil in Prozent beträgt = 0 = 0 00 = 0% oder 4 : 80 = 0,0 = 0% Typ 8% sind 48 00% sind... 8% 48 % 6 00% % sind % sind... 90% 450 0% 50 00% 500 0% sind 0 00% sind... 0% 0 0% 0 00% 00 Typ und Typ sollten ohne Dreisatz und in einfachen Fällen auch im Kopf bearbeitet werden können. Das erleichtert Überschlagsrechnungen, den Hauptanwendungsfall im Alltag und damit wesentliches Lernziel.

4 Prozentsätze veranschaulichen a) 8 = : 8 = 0,5 =,5 00 =,5% b) 6 = c) 7 = 4

5 Übung. Rechne aus: a) b) 5 6 : 7 9 c) d) : 8 e) f) 5 : 0 g) 7 8 h) a) 7% von 5000 b) 5% von 0 c) 8% von. Wieviel sind 00%? a) 5% sind 40 b) 0% sind 8 c) 4% sind 4. Wieviel Prozent sind a) 8 von 400 b) 5 von 5 c) von Suche die passende Zahl: a) = 8 b) = 5 c) : = Schreibe für die folgenden Aufgaben unbedingt den Rechenweg und einen kurzen Antwortsatz auf! 6. In einem Korb befinden sich Äpfel, von denen nicht wurmstichig sind. Der Anteil der nicht wurmstichigen Äpfel beträgt für den Korb. Wie viele Äpfel sind wurmstichig? 4 7. Eine Mieterhöhung von 4% macht 0e aus. Wie hoch sind alte und neue Miete? 8. Der Preis von 0e pro Fliese wird um 0% erhöht. Anna muss nun 4e mehr bezahlen. Wie viele Fliesen hat sie gekauft? 9. Liter 40%-ige Traubensaft-Schorle (40% Traubensaft und 60% Mineralwasser) werden mit 6 Litern 60%-iger Traubensaft-Schorle gemischt. Wie groß ist der Traubensaft-Anteil (in Prozent) in der Mischung? 5

6 Übung Ergebnisse. Rechne aus: 8 a) = 4 5 b) 5 6 : 7 9 = 5 4 = 4 c) = 55 d) : 8 = 7 e) = 5 6 f) 5 : 0 = 50 g) 7 8 = 08 8 h) = 0. a) 7% von 5000 b) 5% von 0 c) 8% von 850,5 0,08. Wieviel sind 00%? a) 5% sind 40 b) 0% sind 8 c) 4% sind Wieviel Prozent sind a) 8 von 400 b) 5 von 5 c) von 600 % 0% 0,5% 5. Suche die passende Zahl: a) = 8 b) = 5 c) : = Schreibe für die folgenden Aufgaben unbedingt den Rechenweg und einen kurzen Antwortsatz auf! 6. In einem Korb befinden sich Äpfel, von denen nicht wurmstichig sind. Der Anteil der nicht wurmstichigen Äpfel beträgt für den Korb 4. Wie viele Äpfel sind wurmstichig? 4 Äpfel 7. Eine Mieterhöhung von 4% macht 0e aus. Wie hoch sind alte und neue Miete? 500e, 50e 8. Der Preis von 0e pro Fliese wird um 0% erhöht. Anna muss nun 4e mehr bezahlen. Wie viele Fliesen hat sie gekauft? Fliesen (Preiserhöhung e) 9. Liter 40%-ige Traubensaft-Schorle (40% Traubensaft und 60% Mineralwasser) werden mit 6 Litern 60%-iger Traubensaft-Schorle gemischt. Wie groß ist der Traubensaft-Anteil (in Prozent) in der Mischung? 0,8 +,6 = 0,55 = 55% 8 6

7 Prozentrechnung Zusatztyp a) In einem Aquarium sind 0% des Wassers verdunstet. Nun sind es nur noch 60 Liter. Wie viel waren es vorher? b) Die Anzahl der Fische ist in einem Monat um 0% gestiegen. Nun sind es Fische. Wie viel waren es vorher? 7

8 Grundwert (der Bezug) +0% 0% In einem Aquarium sind 400 Wasserflöhe. Sie vermehren sich in einer Woche ungestört um 0%. Nach dieser Woche werden 0% von ihnen gefressen. Wie viele sind es nun noch? 8

9 Übung. Rechne aus: a) 0 7 ( 5) b) 5+9 c). Suche die passende Zahl: a) 9+ = b) 4+ = 5 c) = 8. a) % von 400 b) 7% von 40 c) 7% von 4 d) 9% von 500 e) 9% von 50 f) 6% von 0 4. Wieviel sind 00%? a) 8% sind 4 b) 4% sind 8 c) 8% sind 0 5. Wieviel Prozent sind a) 8 von 40 b) von 000 c) von 48 Schreibe für die folgenden Aufgaben unbedingt auch einen Ansatz und einen kurzen Antwortsatz auf! 6. In einem Korb befinden sich Äpfel, von denen 4 wurmstichig sind. Der Anteil der wurmstichigen Äpfel beträgt für den Korb 7. Wie viele Äpfel sind ohne Wurm? 7. Im Schlussverkauf ist der Preis für Rollschuhe um 0% gesenkt worden. Er beträgt jetzt 05e. Wieviel e haben die Rollschuhe vor dem Schlussverkauf gekostet? 8. Eine Mieterhöhung von 4% macht 6e aus. Wie hoch ist die neue Miete? 9. In einer Porzellanfabrik gib es bei der Auslieferung von Geschirr regelmäßig 0% Bruch. Wie viele Teller müssen hergestellt werden, um einen Auftrag über 60 Stück (unzerbrochen) erfüllen zu können? 0. Der Fliesenpreis von 0e pro m wird um 5% erhöht. Kai muss nun 0e mehr bezahlen. Wieviel m Fliesen hat er gekauft? 9

10 Übung Ergebnisse. Rechne aus: a) 0 7 ( 5) b) 5+9 c) Suche die passende Zahl: a) 9+ = b) 4+ = 5 c) = a) % von 400 b) 7% von 40 c) 7% von 4 5,8 0,8 d) 9% von 500 e) 9% von 50 f) 6% von ,5,6 4. Wieviel sind 00%? a) 8% sind 4 b) 4% sind 8 c) 8% sind Wieviel Prozent sind a) 8 von 40 b) von 000 c) von 48 0% 0,% 5% Schreibe für die folgenden Aufgaben unbedingt auch einen Ansatz und einen kurzen Antwortsatz auf! 6. In einem Korb befinden sich Äpfel, von denen 4 wurmstichig sind. Der Anteil der wurmstichigen Äpfel beträgt für den Korb. Wie viele Äpfel sind ohne Wurm? 7 5 Äpfel 7. Im Schlussverkauf ist der Preis für Rollschuhe um 0% gesenkt worden. Er beträgt jetzt 05e. Wieviel e haben die Rollschuhe vor dem Schlussverkauf gekostet? 50 e 8. Eine Mieterhöhung von 4% macht 6e aus. Wie hoch ist die neue Miete? 900e + 6e 9. In einer Porzellanfabrik gib es bei der Auslieferung von Geschirr regelmäßig 0% Bruch. Wie viele Teller müssen hergestellt werden, um einen Auftrag über 60 Stück (unzerbrochen) erfüllen zu können? 00 Teller 0. Der Fliesenpreis von 0e pro m wird um 5% erhöht. Kai muss nun 0e mehr bezahlen. Wieviel m Fliesen hat er gekauft? 80 Fliesen 0

11 Aufgaben. Beim Fahrradverleih beträgt die Leihgebühr für ein Fahrrad pro Woche e. Familie N. leiht vier Fahrräder für zwei Wochen und bekommt 5% Rabatt gewährt. Wie hoch ist die Leihgebühr?. Eine Schulklasse leiht 6 Fahrräder für eine Woche und bezahlt 550e (Leihgebühr für ein Fahrrad pro Woche e). Wie viel Prozent Rabatt wurde gewährt?. Der Besitzer des Fahrradverleihs kauft neue Fahrräder. Er bezahlt für jedes Fahrrad 45,50 e. Wie viele Wochen muss ein Fahrrad zur Leihgebühr von e mindestens verliehen werden, damit die Einnahmen so hoch sind wie der Kaufpreis? 4. Ein Skianzug hat im November 5e gekostet. Nach Weihnachten wurde der Preis um 0% gesenkt. Anfang März wurde der Preis noch einmal um 0% gesenkt. Jetzt kauft Marta den Anzug und freut sich: Ich habe 50% gespart. Beurteile diese Aussage.

12 Aufgaben Ergebnisse. Beim Fahrradverleih beträgt die Leihgebühr für ein Fahrrad pro Woche e. Familie N. leiht vier Fahrräder für zwei Wochen und bekommt 5% Rabatt gewährt. Wie hoch ist die Leihgebühr? 56,40 e. Eine Schulklasse leiht 6 Fahrräder für eine Woche und bezahlt 550e (Leihgebühr für ein Fahrrad pro Woche e). Wie viel Prozent Rabatt wurde gewährt? 8,0%. Der Besitzer des Fahrradverleihs kauft neue Fahrräder. Er bezahlt für jedes Fahrrad 45,50 e. Wie viele Wochen muss ein Fahrrad zur Leihgebühr von e mindestens verliehen werden, damit die Einnahmen so hoch sind wie der Kaufpreis? 8,5 Wochen 4. Ein Skianzug hat im November 5e gekostet. Nach Weihnachten wurde der Preis um 0% gesenkt. Anfang März wurde der Preis noch einmal um 0% gesenkt. Jetzt kauft Marta den Anzug und freut sich: Ich habe 50% gespart. Beurteile diese Aussage. Die Behauptung ist falsch. Der Preis wurde nur um 44% gesenkt.

13 Bundestagswahl 0 Sitzverteilung CDU/CSU SPD 9 Die Linke 64 Bündnis 90/Die Grünen 6

14 Bundestagswahl 0 Sitzverteilung CDU/CSU SPD 9 Die Linke 64 Bündnis 90/Die Grünen 6 Bündnis 90/ Die Grünen SPD CDU/CSU 8,0 55, 88,7 Die Linke 8, 4

15 Prozentuale Veränderung Wie groß ist die Preisveränderung in Prozent? a) alter Preis 50e neuer Preis 80e b) alter Preis 80e neuer Preis 0e c) alter Preis 0e neuer Preis 8e d) alter Preis 400 e neuer Preis 50e e) alter Preis 40e neuer Preis 5e Lösungen a) Preiserhöhung um 0 50 = 60% b) Preissenkung um = 75% c) Preiserhöhung um 8 0 = 40% d) Preissenkung um =,5% e) Preissenkung um 5 40 = 6,5% 5

Brüche und Prozentrechnung (Wiederholung) c) 24 100 9 i) 10. c) 80 400 i) 3200 800. d) 360 900 k) 450 1500. d) 1 4. c) 4 5. k) 23.

Brüche und Prozentrechnung (Wiederholung) c) 24 100 9 i) 10. c) 80 400 i) 3200 800. d) 360 900 k) 450 1500. d) 1 4. c) 4 5. k) 23. Brüche und Prozentrechnung (Wiederholung) Jg. 10 (G) Prozentrechnung Grundlagen % dezi Zenti milli 10 0 10-1 10-2 10-3 E Zehntel Hundertstel Tausendstel 1. Schreibe als Prozent ( pro Hundert ). a) g) 7

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Das Thema verlangt von dir die Berechnung von Preisauf- bzw. Preisabschlägen, Mehrwertsteuerberechnungen usw. Vom Prinzip ist dieses Kapitel der Prozentrechnung zuzuordnen. Du musst hierbei

Mehr

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode:

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode: Kompetenztest für Schülerinnen und Schüler der Klassenstufe 8 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2008/2009) Name:

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8%

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8% Prozentrechnung Lösungen 1. Schreibe als Prozent. 4 5 21 88 b) c) d) = % = % = 4% = 5% = 21% = 88% 2. Schreibe als Prozent. 4 b) 50 c) 10 d) 450 85 540 200 700 400 00 500 00 = 2% = 80% = 40% = 50% = 17%

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Proportionale und antiproportionale Zuordnungen

Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen findet man in vielen Bereichen des täglichen Lebens. Zum Beispiel beim Tanken oder beim Einkaufen. Bei proportionalen

Mehr

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille?

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 1 RE 8.711 Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 8,02% 80,2 2 Spannungsverbrauch Auf einer mit Gleichspannung betriebenen

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 3 Name: Datum: Von Punkten hast du Punkte erreicht Zensur: 1. Kreuze jeweils die richtigen se (Umrechnungen) an! 2. Ergänze jeweils! Gib jeweils unbedingt die entsprechende

Mehr

ALLGEMEINE ANWEISUNGEN *

ALLGEMEINE ANWEISUNGEN * Mathematik 2009 ALLGEMEINE ANWEISUNGEN * In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz, andere etwas länger, ein paar Aufgaben werden dir schwerer

Mehr

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten.

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten. Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 1 40% (a) Benenne die Folgenden Zeichen: /5 G: Grundwert 1 G neu : neuer 1 W: Prozentwert 1 G alt : alter 1 : Prozentsatz oder -Zahl 1 (b) Jedes

Mehr

Test zum. Bruchrechnen

Test zum. Bruchrechnen SZ Förderkonzept Test zum Bruchrechnen M.T Seite Der folgende Kurztest zum Bruchrechnen, soll dir deine Stärken und Schwächen bei diesem aufzeigen. Bereiche, in denen du noch Lücken hast, kannst du anschließend

Mehr

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des Anteile als Darstellung von n Berechnung des Prozentsatzes Berechnung des Rabatt und Mehrwertsteuer Prozentwertes Berechnung des Grundwertes 8 Zinsen mehr als Jahr K K (+ Das magisches Dreieck decke die

Mehr

Download. Mathematik üben Klasse 8 Prozentrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Prozentrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Prozentrechnung Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Prozentrechnung

Mehr

65 Prozentrechnen Klasse

65 Prozentrechnen Klasse 65 Prozentrechnen 6. 9. Klasse Inhaltsverzeichnis Vorwort................................................................................................... Seite 1 10 Lerntipps zum Lösen von Sachaufgaben........................................

Mehr

DOWNLOAD. Mein Taschengeld. Mathe-Aufgaben aus dem Alltag. Karin Schwacha. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Mein Taschengeld. Mathe-Aufgaben aus dem Alltag. Karin Schwacha. Downloadauszug aus dem Originaltitel: DOWNLOAD Karin Schwacha Mein Taschengeld Mathe-Aufgaben aus dem Alltag 7 8 Downloadauszug aus dem Originaltitel: Taschengeld Katrin und Simon sind befreundet und gehen in dieselbe Klasse. Sie verbringen

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Sachaufgaben auf der Spur

Sachaufgaben auf der Spur Sachaufgaben auf der Spur Lehrgang zur Förderung von Sach- und Textverständnis 60 Arbeitsblätter Lösungsheft von Anne Lenze und Helga Schubert illustriert von Barbara Stachuletz Übersicht Tipps Lerner-Mini

Mehr

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

Malnehmen Multiplizieren

Malnehmen Multiplizieren . Malnehmen Multiplizieren Lademannbogen 5, 9 Hamburg; Postfach 6 05 00, Hamburg 5 = Als Multiplikation bezeichnet man das Malnehmen. Man multipliziert die Stellen der Zahlen einzeln miteinander und addiert

Mehr

Aufgabe 1: Wandle in die angegebene Einheit um. a) 534 kg = t b) 87 dm = m. c) 7 min = s d) 0,145 l = ml / 4 P. von 4,5 m = m b) 10 % von 2,3 m = m

Aufgabe 1: Wandle in die angegebene Einheit um. a) 534 kg = t b) 87 dm = m. c) 7 min = s d) 0,145 l = ml / 4 P. von 4,5 m = m b) 10 % von 2,3 m = m a) 534 kg = t b) 87 dm = m c) 7 min = s d) 0,145 l = ml Aufgabe 2: Schriftliches Rechnen a) 5 3 8 b) 6 1 8 9 c) 8 7 2 3 d) 9 8 4 : 8 = 2 6 9 + 1 8 2 3 Aufgabe 4: Bruchteile a) 1 5 von 4,5 m = m b) 10 %

Mehr

M6 : Übungsaufgaben zur zentralen Klassenarbeit 6 / G8 Januar 2014

M6 : Übungsaufgaben zur zentralen Klassenarbeit 6 / G8 Januar 2014 M6 : Übungsaufgaben zur zentralen Klassenarbeit 6 / G8 Januar 0!!! Gib alle Ergebnisse zur Bruchrechnung gekürzt und gegebenenfalls als gemischte Zahlen an. Rechne ohne Taschenrechner!!! Rechenübungen.

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG PROZENTRECHNUNG Der Begriff Prozent taucht im Alltag häufig auf und wird oft intuitiv richtig verwendet. Was ist aber nun 1 Prozent (Schreibweise: %) wirklich? Dies sei nun an einem einfachen Beispiel

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Zinsrechnung Z leicht 1

Zinsrechnung Z leicht 1 Zinsrechnung Z leicht 1 Berechne die Jahreszinsen im Kopf! a) Kapital: 500 Zinssatz: 1 % b) Kapital: 1 000 Zinssatz: 1,5 % c) Kapital: 20 000 Zinssatz: 4 % d) Kapital: 5 000 Zinssatz: 2 % e) Kapital: 10

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

Prozentrechnen. Teil 1: Grundlagen. Trainingseinheiten zum Üben und Vertiefen. Datei Nr Friedrich Buckel. Stand 21.

Prozentrechnen. Teil 1: Grundlagen. Trainingseinheiten zum Üben und Vertiefen. Datei Nr Friedrich Buckel. Stand 21. Mathematik für Klasse 6/7 Prozentrechnen Teil : Grundlagen Trainingseinheiten zum Üben und Vertiefen Datei Nr. 0 Stand 2. Juni 207 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.schule 0 Prozentrechnung

Mehr

1 Vorgehen bei Textaufgaben

1 Vorgehen bei Textaufgaben Vorgehen bei Tetaufgaben Im folgenden werden Vorgehensweisen bei Tetaufgaben geschildert, die sich aus dem Alltagsleben entwickeln. Generelle Bemerkungen Um eine Tetaufgabe erfolgreich lösen zu können,

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% =

Prozentrechnung. Prozent bedeutet: von hundert; bezogen auf die Anzahl 100 25% = Prozentrechnung Aufgabe: In einer Klasse 7 mit 32 Schülern haben sich 25% für das Fach Latein entschieden. Wie viele Schüler sind das? Prozent bedeutet: von hundert; bezogen auf die Anzahl 25% = 25 Man

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.

Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum. Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente

Mehr

Schulinterne Lehrer Fortbildung, g 11 Hamburg Gewerbeschule für Gastronomie und Ernährung

Schulinterne Lehrer Fortbildung, g 11 Hamburg Gewerbeschule für Gastronomie und Ernährung Mathe Basis verstehen: Es ist nie zu spät! Schulinterne Lehrer Fortbildung, 1142017 11.4.2017 g 11 Hamburg Gewerbeschule für Gastronomie und Ernährung Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg,

Mehr

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer Seite 1 Beim gibt es zwei Aufgabengruppen. Die erste umfasst Aufgaben, die mit Hilfe der wirksamen Substanz ( = 100 % ) innerhalb einer Lösung oder mit der Mischungsformel errechnet werden können. Bei

Mehr

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27

In der Klasse sind 11 der 27 Schüler Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse beträgt 11 27 Prozentrechnung I Anteile - Berechnung des Prozentsatzes In der Klasse 8a mit 30 Schülern sind 12 Jungen. Der Anteil der Jungen an allen Schülern dieser Klasse 12 6 2 beträgt also = =. 30 15 5 Um die Größe

Mehr

1) Für 2,5 kg Birnen hat David 9,50 Fr. bezahlt. Wie viel muss er für 3,5 k9 zahlen?

1) Für 2,5 kg Birnen hat David 9,50 Fr. bezahlt. Wie viel muss er für 3,5 k9 zahlen? Wenn man von einem möglichen Rabatt bei grösseren Stückzahlen absieht, ist das Verhältnis von Anzahl und Preis ein Verhältnis der direkten Proportionalität: Kauft man doppelt so viel, so muss man doppelt

Mehr

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg 5/27/09 1.5 Anwendungen der Bruchzahlen Sachaufgaben im 6. und 7. Schuljahr a) Prozentrechnung b) Zinsrechnung c) Zinseszinsrechnung Prozentrechnung Zwei Möglichkeiten zum Einstieg I. Man geht von Prozentangaben

Mehr

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat.

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat. 0.2.2003 Klassenarbeit 2 Klasse 7k Mathematik Lösung Teil Öffne die Datei Aufgabe und 2 auf deiner CD. Dort findest du diese beiden Texte, allerdings sind dort die richtigen Werte eingesetzt und nicht

Mehr

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst?

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? Üben für die 1. Schularbeit Mathematik 3 TEIL 2 (1) Rationale Zahlen ordnen a) ANGABE: In welche Richtung musst du auf dem Zahlenstrahl gehen, wenn du von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? von

Mehr

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll.

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll. Prozentrechnung Wozu Prozentrechnung? Bei der Prozentrechnung geht es immer darum, einen Teil von einem Ganzen zu berechnen. Das Ganze stellt immer den Grundwert aller Aufgaben dar und das Ganze = der

Mehr

R.: A.:Frau Müller bezahlt. 2. Im Turnsaal gibt es 16 rote, 21 blaue und 32 gelbe Springschnüre. Wieviele Springschnüre sind das zusammen?

R.: A.:Frau Müller bezahlt. 2. Im Turnsaal gibt es 16 rote, 21 blaue und 32 gelbe Springschnüre. Wieviele Springschnüre sind das zusammen? 1. Frau Müller kauft beim Spar um 41 ein, im Kleidergeschäft kauft sie noch einen Pullover um 51. Wieviel muss Frau Müller bezahlen? A.:Frau Müller bezahlt. 2. Im Turnsaal gibt es 16 rote, 21 blaue und

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

C- 4.) 14 20 5.) 1000 4500 20 15 37 54 C-

C- 4.) 14 20 5.) 1000 4500 20 15 37 54 C- 1.) Die Drehleiter hat eine Länge von 30 Metern. Auf einem Meter sind 3 Sprossen. Wie viel Sprossen muss der Angriffstrupp klettern, wenn er die Leiter ganz hoch laufen soll? 2.) Der B-Schlauch ist 20

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Mathematik 6. Jahrgangsstufe

Mathematik 6. Jahrgangsstufe M 6 Zahlenrechnen Probeunterricht 20 an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe Punkte- und Notenschlüssel Zahlenrechnen (2 Punkte) und Textrechnen (2 Punkte) = 0 Punkte Prozent Punkte

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Qualifizierender Hauptschulabschluß 1997 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 120 Minuten. Zusätzlich zur Arbeitszeit

Mehr

Alle Themen Typische Aufgaben

Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.1 Rechnen mit natürlichen Zahlen 1 Gemeinsame Teiler und Vielfache Das kleinste gemeinsame Vielfache (kgv)

Mehr

Ansgar Schiffler Übungsaufgaben zu Grundlagen der Mathematik Seite 1

Ansgar Schiffler Übungsaufgaben zu Grundlagen der Mathematik Seite 1 Seite 1 1. Für einen Mietwagen ist eine Grundgebühr in Höhe von 19 zu zahlen und jeder km kostet 0 cent. Du musst 37 bezahlen. Wie viele km bist Du gefahren?. Nachdem der Preis eines Produktes um 40% reduziert

Mehr

MATHEMATIK 6. Schulstufe Schularbeiten

MATHEMATIK 6. Schulstufe Schularbeiten MATHEMATIK 6. Schulstufe Schularbeiten 1. Schularbeit Gleichungen Teilbarkeitsregeln Primzahlen ggt kgv Rechnen mit Bruchzahlen Löse die Gleichungen und mache die Probe durch Einsetzen! a) 24 x + 1 = 313

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 15.02.2013 SEK I Lösungen zur Prozentrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Prozenten I Prozentrechenaufgaben zur Vorbereitung

Mehr

Zentrale Abschlüsse Mathematik HSA

Zentrale Abschlüsse Mathematik HSA Zentrale Abschlüsse Mathematik HSA max. 20 min Vorbereitungszeit zusätzlich Jede Komplexaufgabe steht unter einem zusammenfassenden Thema aus der Umwelt der Schülerinnen und Schüler. Beide Aufgaben haben

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate

a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit: 3 Monate Zinsrechnung 2 1 leicht Monatszinsen Berechne jeweils die Zinsen! a) Kapital: 4 800 Zinssatz: 1,75 % Zeit: 7 Monate b) Kapital: 1 500 Zinssatz: 2 % Zeit: 9 Monate c) Kapital: 23 500 Zinssatz: 4,5 % Zeit:

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2011 Kurzgymnasium (Neues Lehrmittel) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt folgende

Mehr

Sachaufgaben mit Malreihen

Sachaufgaben mit Malreihen Sachaufgaben mit Malreihen 4 3 Mäuse laufen hinter 6 3 Mäusen nach. Wie viele Mäuse laufen da? Nach Zahlenreise 2 Silvia Jetz 2004 7 3 Äpfel hängen an einem Baum. Anna pflückt 4 3 Äpfel. Wie viele Äpfel

Mehr

Warum ist Teilen schwer?

Warum ist Teilen schwer? Warum ist Teilen schwer? Zum Entwickeln guter Vorstellungen zu Brüchen und Prozenten 1. Dresdner Fachtagung zum Thema Lernschwierigkeiten Duden Institut für Lerntherapie Dresden Dr. Lorenz Huck (DIL Berlin-Steglitz)

Mehr

Mathematische Zusammenhänge beschreiben und begründen

Mathematische Zusammenhänge beschreiben und begründen 2 Mathematik Mathematische Zusammenhänge beschreiben und begründen 1 Einführung Vergleiche auch die Tipps zum Verfassen von Sachtexten! In deiner neuen Schule und vielleicht schon im Probeunterricht wird

Mehr

Lösungen. rz7zb4 Lösungen. rz7zb4. Name: Klasse: Datum: 2) Gib den gefärbten Flächeninhalt als Teil der Gesamtfläche in Prozent an.

Lösungen. rz7zb4 Lösungen. rz7zb4. Name: Klasse: Datum: 2) Gib den gefärbten Flächeninhalt als Teil der Gesamtfläche in Prozent an. Testen und Fördern Name: Klasse: Datum: 1) Welche der angegebenen Zahlen entsprechen 30 %? 2) Gib den gefärbten Flächeninhalt als Teil der Gesamtfläche in Prozent an. 3) Welche beiden Möglichkeiten haben

Mehr

Forum Berufsschule Übungsheft Mathematik

Forum Berufsschule Übungsheft Mathematik Forum Berufsschule Übungsheft Mathematik 1. Auflage Forum Berufsschule Übungsheft Mathematik schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG FORUM Merching 2007 Verlag C.H. Beck

Mehr

Plus im Zahlenraum bis 10

Plus im Zahlenraum bis 10 -1- Plus im Zahlenraum bis 10 Ein kleiner Lehrgang für die Grundschule von Rainer Mohr 2006 -2- Vorwort Dieser kleine Lehrgang bearbeitet ausführlich Additionsaufgaben im Zahlenraum bis 10. Das Ziel der

Mehr

Mathematik für Gymnasien

Mathematik für Gymnasien Mathematik für Gymnasien Übungsaufgaben- LÖSUNGEN -Jahrgangsstufe I. Brüche. Allgemein: a) Zähler, Bruchstrich, Nenner b) Der Nenner gibt die Anzahl der gleichen Teile an, in die das Ganze zerlegt werden

Mehr

Mengen, Zahlen, Maße, Prozente

Mengen, Zahlen, Maße, Prozente Welche der beiden Zahlen ist größer? (A) 7,03 10 7 (B) 7,03 10 6 Michael Langer (HLW Graz) Mengen, Zahlen, Maße, Prozente 1 / 27 Welche der beiden Zahlen ist größer? (A) 7,03 10 7 (B) 7,03 10 6 Lösung

Mehr

Übungen. a) 7+6y = 37 (G) b) 9y-39 = 7 (U) c) 1+y = 6 (L) d) 4+3y = 13 (R) e) 3y-6 = 9 (Ü) f) 4+5y = 29 (C) g) y:2+2,5 = 5 (K) h) 2y-7,2 = 2,8 (S)

Übungen. a) 7+6y = 37 (G) b) 9y-39 = 7 (U) c) 1+y = 6 (L) d) 4+3y = 13 (R) e) 3y-6 = 9 (Ü) f) 4+5y = 29 (C) g) y:2+2,5 = 5 (K) h) 2y-7,2 = 2,8 (S) Übungen Inhalt 5. Gleichungen... 1 6. Daten, Diagramme und Prozentrechnung... 3 7. Kongruenz und Dreiecke... 4 8. Besondere Linien im Dreieck und Konstruktionen... 5 [nach Lambacher Schweizer 7, Arbeitsheft]

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung-

Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung- Senatsverwaltung für Stadtentwicklung Abteilung III -Geoinformation, Vermessung, Wertermittlung- Senatsverwaltung für Stadtentwicklung III Z 32 Hohenzollerndamm 177, 10713 Berlin Einstellungstest für den

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Selbstüberprüfungsbogen Bruchrechnung

Selbstüberprüfungsbogen Bruchrechnung Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche mit der? c) Wie

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Probeunterricht 2015 an Wirtschaftsschulen in Bayern

Probeunterricht 2015 an Wirtschaftsschulen in Bayern Probeunterricht 2015 - Haupttermin Probeunterricht 2015 an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 5: 45 Minuten Arbeitszeit Teil II (Textrechnen)

Mehr

Vorwort. Liebe Schülerin, lieber Schüler!

Vorwort. Liebe Schülerin, lieber Schüler! Vorwort Liebe Schülerin, lieber Schüler! Wenn du dieses Buch aufschlägst und die hier zusammengestellten Aufgaben zum ersten Mal genau durchliest, wirst du wahrscheinlich zunächst einmal erstaunt sein,

Mehr

1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen!

1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen! 1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen! 1. Ein Zug soll um 14.32 Uhr ankommen. Er hat 85 Minuten Verspätung. Wann kommt er jetzt an? Der Zug

Mehr

Multiplikation und Division - Division

Multiplikation und Division - Division Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren

Mehr

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi. Copyright Francesco Grassi

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi.  Copyright Francesco Grassi Prozentrechnung Theorie und Aufgaben von Francesco Grassi www.educationalapps.ch Inhaltsverzeichnis VORWORT...3 KAP.1 Prozentanteil... 4 KAP.2 Prozentuelle Änderung...23 VORWORT Mit ProzenTutor kann man

Mehr

Prozentrechnung Lösungen

Prozentrechnung Lösungen 1) Welche der angegebenen Zahlen entsprechen 30 %? 2) Gib den gefärbten Flächeninhalt als Teil der Gesamtfläche in Prozent an. 50 % 40 % 37,5 % 40 % 3) Welche beiden Möglichkeiten haben denselben Wert

Mehr

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche

Mehr

Lösungen zu delta 5 neu

Lösungen zu delta 5 neu Lösungen zu delta neu Kann ich das? Lösungen zu Seite 32. Zahl Vorgänger Nachfolger a) 99999 9999 einhundertneunundneunzigtausendneunhundertachtundneunzig 200000 zweihunderttausend b) 2949 294 neunundzwanzigtausendvierhundertachtundachtzig

Mehr

1. Runde 8. Klasse 1999

1. Runde 8. Klasse 1999 1. Runde 8. Klasse 1999 Es gilt: 1 = 2 (2 2) : (2 + 2) 2 = (22 : 22) 2 3 = 2 + 22 : 22 Stelle die Zahlen 4, 5, 6 und 7 ebenfalls mit Hilfe von genau fünf Zweiern dar. Verwende dabei nur die Rechenzeichen

Mehr

Rechentrainer 2. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger

Rechentrainer 2. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Rechentrainer Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Erarbeitet von Nadine Binder, Kurt Hönisch, Claudia Neuburg, Dr. Thomas Rottmann, Michaela Schmitz, Gerhild Träger

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40 % ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I.

Der Anteil der Jungen beträgt 68%, der der Mädchen 32%. Der Verbrauch von Auto II liegt um 20% unter dem von Auto I. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Prozentrechnung I se: E1 E2 E E4 E5 E6 E7 E8 E9 E10 E11 E12 E1 E14 E15 Der Anteil der Jungen beträgt 68%, der der Mädchen 2%. Der Kaufpreis

Mehr

1.3 Malnehmen Multiplizieren

1.3 Malnehmen Multiplizieren . Malnehmen Multiplizieren Beim Multiplizieren mit Kommazahlen gibt es im Ergebnis so viele Stellen nach dem Komma, wie bei allen Zahlen der Aufgabe zusammen. Beispiel:,5, =, 5, Stellen nach dem Komma

Mehr

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt 1 In diesem Modul werden alle Spielarten des es behandelt Inhalt: 1... 1 1.1 Der normale... 2 1.1.1 Erstes direktes Berechnen... 2 1.1.2 Berechnung mittels Schema... 3 1.1.3 Lösen als Tabelle... 4 Seite

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Grundwissen Mathematik 6. Jahrgangsstufe Flächen und Prozentrechnung. StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11.

Grundwissen Mathematik 6. Jahrgangsstufe Flächen und Prozentrechnung. StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11. Flächen und Prozentrechnung StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11. April 2015 1 Inhaltsverzeichnis 1 Der Flächeninhalt von Figuren 3 1.1 Das Parallelogramm...........................

Mehr

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7 Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Linearen Gleichungssystemen Gleichsetz-,

Mehr

Einnahmen und Ausgaben

Einnahmen und Ausgaben Einnahmen und Ausgaben Sophie in der Zwickmühle Stolz schüttelt Sophie ihre kleine Kiste. Darin ist das ganze Geld, das sie gestern auf dem Flohmarkt verdient hat. Spiel - sachen, Comics und Kleidung,

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 4 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

4 + 1 = 5 + 5 = 3 + 4 = 1 + 7 = 2 + 2 = 4 + 5 = 3 + 2 = 1 + 1 = 2 + 5 = 3 + 6 = 3 + 7 = 6 + 2 = 7 + 3 = 9 + 1 = 0 + 1 = 8 + 1 = 5 + 0 = 5 + 5 =

4 + 1 = 5 + 5 = 3 + 4 = 1 + 7 = 2 + 2 = 4 + 5 = 3 + 2 = 1 + 1 = 2 + 5 = 3 + 6 = 3 + 7 = 6 + 2 = 7 + 3 = 9 + 1 = 0 + 1 = 8 + 1 = 5 + 0 = 5 + 5 = Rechne aus und schreibe das Ergebnis auf den Strich. 4 + 1 = 5 + 5 = 3 + 4 = 1 + 7 = 2 + 2 = 4 + 5 = 7 + 3 = 9 + 1 = 0 + 1 = 8 + 1 = 5 + 0 = 5 + 5 = 3 + 2 = 1 + 1 = 2 + 5 = 3 + 6 = 3 + 7 = 6 + 2 = 4 +

Mehr

Mit Dezimalzahlen multiplizieren

Mit Dezimalzahlen multiplizieren Vertiefen 1 Mit Dezimalzahlen multiplizieren zu Aufgabe 1 Schulbuch, Seite 134 1 Multiplizieren im Bild darstellen Zeichne zur Aufgaben 1,63 2,4 ein Bild und bestimme mit Hilfe des Bildes das Ergebnis

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Mathematik Übungsaufgaben mit Lösungen Berlin

Mathematik Übungsaufgaben mit Lösungen Berlin 7 Mathematik Übungsaufgaben mit Lösungen Berlin Rechnen mit natürlichen und gebrochenen Zahlen Rechnen mit natürlichen und gebrochenen Zahlen. Rechne vorteilhaft. a) 7 + 6 + + 8 b) 87 + 7 + 9 c) 6 + (

Mehr