Geometrie Modul 4b WS 2015/16 Mi HS 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1"

Transkript

1 Geometrie Modul 4b WS 2015/16 Mi HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere V1 Geometrische Grundbegriffe V2 Grundkonstruktionen und Bestimmungslinien V3 Dreiecke und ihre Eigenschaften (Winkel, Kongruenzsätze, Linien/Punkte, Typisierung, Symmetrien, Winkelsätze) V4 Vierecke und ihre Eigenschaften (Typisierung, besondere Vierecke, Haus der Vierecke, Symmetrien) V5 Dreiecke (Flächensätze, Ähnlichkeit) V6 Vielecke (Sätze, Winkel, Symmetrien, Beziehungen zum Kreis) V7 Kreis (Geraden, Punkte, Typisierung, Symmetrien, Winkelsätze) V8 Kongruenzabbildungen - Symmetrie V9 Flächeninhalt und Umfang von Vielecken und Kreisen V10 Typisierung von Körpern (Quader, Prismen, Spitzkörper, Platonische Körper, Kugel) V11 Rauminhalt von Körpern (Rauminhalt von Prismen und Spitzkörpern, Rauminhalt und Oberfläche der Kugel) V12 Zusammenfassung (Freitag) Uhr, Klausur (HS 1, HS 2) 1

2 Programm Vorwort 1 Entwicklung des Geometrieunterrichts 2 Geometrische Grundbegriffe 3 Winkelarten 4 Axiome der Geometrie Folien zur Vorlesung: Intranet, Verzeichnis G, Mathematik Internet: 2

3 Vorwort Die Geometrie ist die älteste Wissenschaft. Sie ist vor langer Zeit aus praktischen Bedürfnissen der Menschen wie z. B. dem Entwerfen von Bauwerken, dem Vermessen von Land, dem Deuten des Laufs der Gestirne entstanden. In der Auseinandersetzung mit der Umwelt, im Bestreben, die Bedürfnisse der Menschen immer besser zu befriedigen, wurden immer mehr geometrische Erkenntnisse gefunden und gesammelt. Räumlichen Gebilden und Bestandteilen wurden Namen gegeben: Würfel, Kugel, Strecke, Punkt, Gerade u. a. Es entstanden Begriffe, welche die Beziehungen zwischen räumlichen und ebenen Gebilden widerspiegeln: parallel sein, zueinander senkrecht sein, sich schneiden usw. 3

4 Männer wie THALES, PYTHAGORAS und HIPPOKRATES sorgten für eine wachsende Fülle geometrischen Materials, das wiederum andere Gelehrte ordneten und in Beziehung setzten. Dazu gehörte vor allem EUKLID. Er trug wesentlich dazu bei, dass ein System entstand, das die logischen Beziehungen zwischen geometrischen Begriffen und Aussagen widerspiegelt, so dass die Geometrie sich als Wissenschaft entwickeln konnte. Die Bücher von Euklid, die Elemente waren dafür wesentliche Grundlagen. 4

5 1 Entwicklung des Geometrieunterrichts a. Bundesrepublik KMK 1968: Geometrieunterricht wird für die Grundschule verankert (Was sollte hinein in ein Geometriecurriculum?) Geometrische Grundvorstellungen: Würfel und Quadrat; Quader und Rechteck; Kugel und Kreis 5

6 KMK 1976 Fördern geometrischen Vorstellungsvermögens Kl. 1/2 Lagebeziehungen Muster Grundformen (Dreieck, Quadrat, Rechteck, Kreis, Würfel, Quader, Kugel) Zeichnen auf Gitterpapier spiegelsymmetrische Figuren 6

7 Kl. 3/4 einfache Körper aufbauen und zerlegen, Modelle, Netze Zeichnen auf Gitterpapier deckungsgleiche Figuren Parkette, Auslegen mit Einheitsflächen, Flächeninhalt achsensymmetrische Figuren 7

8 b. in der DDR Mathematikbeschluss 1962 Kl. 1: Grundbegriffe: Punkt, Gerade; Strecke; Dreieck, Rechteck, Quadrat; Würfel Kl. 2: Lagebeziehungen (zueinander parallel/senkrecht); Strahl, Winkel, Streifen; Vierecksarten (auch Parallelogramm und Trapez); Quader Kl. 3: Zylinder, Pyramide, Kegel Kl. 4: Verschiebung c. Ende der siebziger Jahre: Einfluss der Psychologie Erfahrungswelt u. vielfältige praktische Tätigkeiten einbeziehen 8

9 Bildungsstandards Geometrie seit 2004 Raum und Form sich im Raum orientieren über räumliches Vorstellungsvermögen verfügen räumliche Beziehungen erkennen, beschreiben und nutzen (Anordnungen, Wege, Pläne, Ansichten) zwei- und dreidimensionale Darstellungen von Bauwerken (z. B. Würfelgebäude) zueinander in Beziehung setzen (nach Vorlage bauen, zu Bauten Baupläne erzeugen, Kantenmodelle und Netze untersuchen) 9

10 geometrische Figuren erkennen, benennen und darstellen Körper und ebene Figuren nach Eigenschaften sortieren und Fachbegriffe zuordnen Körper und ebene Figuren in der Umwelt wiedererkennen Modelle von Körpern und ebenen Figuren herstellen und untersuchen (Bauen, Legen, Zerlegen, Zusammenfügen, Ausschneiden, Falten,...) Zeichnungen mit Hilfsmitteln sowie Freihandzeichnungen anfertigen 10

11 einfache geometrische Abbildungen erkennen, benennen und darstellen ebene Figuren in Gitternetzen abbilden (verkleinern und vergrößern) Eigenschaften der Achsensymmetrie erkennen, beschreiben und nutzen symmetrische Muster fortsetzen und selbst entwickeln 11

12 Flächen- und Rauminhalte vergleichen und messen Die Flächeninhalte ebener Figuren durch Zerlegen vergleichen und durch Auslegen mit Einheitsflächen messen Umfang und Flächeninhalt von ebenen Figuren untersuchen Rauminhalte vergleichen und durch die enthaltene Anzahl von Einheitswürfeln bestimmen 12

13 13

14 2 Geometrische Grundbegriffe Punkte, Strecken, Geraden, Strahlen, Ebene, Winkel, 14

15 Punkte Strecken Das Bild zeigt: Die Strecke ist die kürzeste Verbindung von A und B. 15

16 Geraden Die Gerade g ist in beiden Richtungen über die Begrenzung des Zeichenblattes hinaus unbegrenzt zu denken. Geradenbüschel 16

17 17

18 Lagebeziehungen: parallel und orthogonal 18

19 g 19

20 Strahlen Ein beliebiger Punkt S auf einer Geraden zerlegt diese in zwei Halbgeraden oder Strahlen. a: Strahl von S ausgehend durch A b: Strahl von S ausgehend durch B p: Strahl aus S durch P 20

21 Ebene Die Ebene E ist über die Begrenzung des Zeichenblattes hinaus nach allen Seiten unbegrenzt zu denken. In der Ebene E liegt die Gerade g und ein Punkt P außerhalb von g. 21

22 Winkel Die Ebene wird durch zwei von S ausgehende Strahlen in zwei Felder geteilt. Eine Figur, die aus den Punkten eines Strahlenpaares und eines von diesem erzeugten Feldes entsteht, wird als Winkel bezeichnet. Zwei von einem Punkt ausgehende Strahlen erzeugen in der Ebene zwei Winkel. 22

23 Um zu kennzeichnen, welchen der beiden Winkel man meint, markiert man diesen durch einen Bogen. Der gemeinsame Anfangspunkt S der Strahlen heißt Scheitel des Winkels, die Strahlen heißen Schenkel des Winkels. < (s, t) und < (t, s) Winkelschenkel werden entgegen dem Uhrzeigerdrehsinn aufgeführt. 23

24 Winkel können mit Hilfe ihrer Schenkel (p, q) bezeichnet werden mit Hilfe von Großbuchstaben, die auf den Schenkeln liegen oder mit kleinen griechischen Buchstaben. 24

25 3 Winkelarten 25

26 Winkelgrößen Winkelarten -spitzer Winkel -rechter Winkel -stumpfer Winkel -gestreckter Winkel -überstumpfer Winkel -Vollwinkel Jeder Winkel hat eine Größe. Um diese festzustellen, vergleicht man den gegebenen Winkel mit einem Einheitswinkel. Seit alters her teilt man den gestreckten Winkel in 180 gleiche Teile ein. Man nennt eine solches Einhundertachtzigstel des gestreckten Winkels ein Grad. 26

27 27

28 Winkel an Geraden Scheitelwinkel; Nebenwinkel Stufenwinkel; Wechselwinkel 28

29 Winkel zwischen Geraden Schneiden sich zwei Geraden g 1 und g 2 in einem Punkt S, so werden vier Strahlen (s 1 bis s 4 ) erzeugt. Diese Strahlen bilden vier Winkel, die jeweils kleiner als 180 sind. 29

30 Scheitelwinkel Winkel zwischen Geraden, die sich gegenüberliegen, werden als Scheitelwinkel bezeichnet. Scheitelwinkel sind gleich groß (Scheitelwinkelsatz). 30

31 Nebenwinkel Winkel zwischen Geraden, die nebeneinander liegen, werden als Nebenwinkel bezeichnet. Nebenwinkel ergänzen sich zu einem gestreckten Winkel. Die Summe ihrer Winkelgrößen beträgt 180 (Nebenwinkelsatz). 31

32 Winkel an geschnittenen Geraden Werden zwei voneinander verschiedene Geraden g 1 und g 2 von einer Geraden h in den Punkten P 1 und P 2 geschnitten, so entstehen zweimal vier Winkel, bei P 1 und P 2 jeweils Scheitel- und Nebenwinkel. 32

33 Stufenwinkel an geschnittenen Geraden α 1 und α 2 ; β 1 und β 2 ; γ 1 und γ 2 ; δ 1 und δ 2 sind Stufenwinkel. Stufenwinkel liegen auf gleichen Seiten der schneidenden Geraden h und der geschnittenen Geraden g 1 und g 2. 33

34 Wechselwinkel an geschnittenen Geraden α 1 und γ 2 ; β 1 und δ 2 ; γ 1 und α 2 ; δ 1 und β 2 sind Wechselwinkel. Wechselwinkel liegen auf verschiedenen Seiten der schneidenden Geraden h und der geschnittenen Geraden g 1 und g 2. 34

35 Winkel an geschnittenen Parallelen Stufenwinkel an geschnittenen Parallelen sind gleich groß. Wechselwinkel an geschnittenen Parallelen sind gleich groß. 35

36 Winkel, die wie α1 und γ2 zueinander liegen, sind Wechselwinkel. Sie wechseln auf verschiedene Seiten der Parallelen und der schneidenden Geraden. Mit dem bisherigen Wissen kann man am Beispiel dieser beiden Winkel begründen, dass auch Wechselwinkel an geschnittenen Parallelen gleich groß sind. 36

37 entgegengesetzte Winkel an geschnittenen Parallelen liegen auf der gleichen Seite der schneidenden Gerade aber auf verschiedenen Seiten der Parallelen. Entgegengesetzte Winkel ergänzen sich zu

38 Übung Zeichnen Sie eine doppelte Geradenkreuzung mit parallelen Geraden, tragen Sie die Winkel ein und reproduzieren Sie für sich die Winkelarten und Winkelbeziehungen ohne auf die Vorlagen zu schauen. 38

39 5 Axiome der Geometrie 39

40 Einstein schreibt in Geometrie und Erfahrung: Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit. Zuverlässigkeit und Zulässigkeit mathematischer Argumentationen wurde immer wieder angezweifelt. Dies führte zur Entwicklung von Axiomensystemen. 40

41 Zunächst erfolgte die Formalisierung (Axiomatisierung) der Geometrie durch Euklid. Euklids Axiomensystem versuchte auch Grundbegriffe zu erklären, z.b.: Ein Punkt ist, was keine Teile hat. Er hob außerdem das Parallelenpostulat ( Zu jeder Geraden g und jedem Punkt P existiert genau eine Parallele zu g durch P. ) von den anderen Axiomen ab, erklärte aber nicht, warum er dies tat. 41

42 Auszüge aus dem Axiomensystem von David Hilbert ( ) aus dem Jahre 1899 Undefinierte Grundbegriffe sind Punkt, Gerade und Inzidenz. Es sei P eine Menge, deren Elemente Punkte heißen, G eine Menge, deren Elemente Geraden heißen, I eine Relation zwischen P und G. 42

43 Inzidenzaxiome, z. B.: Jede Gerade inzidiert mit mindestens zwei Punkten. Je zwei Punkte inzidieren mit genau einer Geraden. Parallelenaxiom Zu jedem Punkt P und jeder Geraden g existiert genau eine Gerade h mit P h und g II h. 43

44 Anordnungsaxiome Für jede Gerade g ist in der Menge der Punkte, die mit g inzidieren, eine Relation < ( vor ) definiert, so dass gilt: P < P gilt für kein P g. Aus P, Q, R g und P < Q, Q < R folg P < R. Aus P, Q g und P Q folg P < Q oder Q < P. Für P, Q g mit P < Q existieren A, B, C g mit A < P < B < Q < C. Die Anordnungsaxiome besagen, dass < eine strenge lineare Ordnungsrelation in der Menge der Punkte von g ist. Die letzte Forderung erzwingt, dass jede Gerade unendlich viele Punkte enthält und damit P und G unendliche Mengen sind. Aufgrund der Anordnungsaxiome kann man den Begriff der Strecke PQ definieren (Menge der Punkte aus g zwischen P und Q) und den Begriff der Halbgeraden PQ + und der Begriff des Winkels (als Halbgeradenpaar). 44

45 Des weiteren kann man sich auf Teilungsaxiome, Bewegungsaxiome und Stetigkeitsaxiome berufen. Die Vollständigkeit des Axiomensystems bedeutet, dass man jede Aussage der ebenen euklidischen Geometrie aus ihm herleiten kann. Man könnte aber auch sagen, zur ebenen euklidischen Geometrie gehören genau die Sätze, die sich aus dem Axiomensystem herleiten lassen. 45

46 Begleitender Praxiskurs zu Grundbegriffen 46

47 Zusammenfassend 47

48 Studienaufgaben zur Vorbereitung auf die Übung 1 in der Woche vom Wiederholung der Grundbegriffe und Winkelarten Die Geraden g 1 und g 2 sowie h 1 und h 2 sind jeweils parallel. Es gilt β 1 = 120. Wie groß sind die anderen Winkel? Finden Sie verschiedene Möglichkeiten für die Bestimmung der Winkelgrößen. 48

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013 SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Marianne Franke Didaktik der Geometrie Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 7 1.1 Entwicklung des Geometrieunterrichts 8 1.2 Überlegungen

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 4 Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 4 Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 4 Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen Millionen 1 Wiederholung: Rechnen im ZR bis 1 000 LEITIDEEN: ZAHLEN UND OPERATIONEN

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27 Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 5 1.1 Entwicklung des Geometrieunterrichts 6 1.2 Überlegungen für ein neues Geometriecurriculum 11 1.3 Zur Gestaltung des Geometrieunterrichts

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

SRB- Schulinterner Lehrplan Mathematik Klasse 5

SRB- Schulinterner Lehrplan Mathematik Klasse 5 Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien Mathematik 5. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, beschreiben und

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Lerninhalte des 1. Schuljahres beherrschen. Eingangsdiagnostik. Diagnosebögen zum Lehrwerk. Wiederholung mit abgewandelten Übungen (z.b.

Lerninhalte des 1. Schuljahres beherrschen. Eingangsdiagnostik. Diagnosebögen zum Lehrwerk. Wiederholung mit abgewandelten Übungen (z.b. : 1.-10. Woche Lernvoraussetzungen erfassen Wiederholung des in Klasse 1 Gelernten Lerninhalte des 1. Schuljahres beherrschen Eingangsdiagnostik Diagnosebögen zum Lehrwerk Zahlvorstellungen Raumorientierung

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6 1 Teilbarkeit und Brüche Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern Kommunizieren über eigene und vorgegebenen Lösungswege,

Mehr

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden 1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Bildungsstandards Grundschule MATHEMATIK. Skriptum

Bildungsstandards Grundschule MATHEMATIK. Skriptum Bildungsstandards Grundschule MATHEMATIK Skriptum erstellt auf Basis der vom Bildungsministerium zur Verfügung gestellten Fassung Bildungsstandards für Mathematik 4. Schulstufe Version 2.2. von den Mitgliedern

Mehr

Bildungsstandards und sicheres geometrisches Können

Bildungsstandards und sicheres geometrisches Können Prof. Dr. Hans-Dieter Sill Universität Rostock DUDEN PAETEC Schulbuchverlag 1. Aktuelle Entwicklungen Bildungsstandards und sicheres geometrisches Können Bildungsstandards im Fach Mathematik: Bildungsstandards

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 1000 LEITIDEEN: ZAHLEN UND OPERATIONEN RAUM UND FORM MUSTER UND STRUKTUREN

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse Statistiken und Präsentationen Projekt: Meine neue Klasse 6 Lernbereich 1: Natürliche Zahlen Beherrschen des Veranschaulichens am Zahlenstrahl Beherrschen des Überschlagens, Abschätzens und Rundens sowie

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen Module für den Geometrieunterricht Geometrie lehren Geometrie lernen 1 Ein Kind muss genügend Erfahrungen zu geometrischen Ideen erwerben können (classroom or otherwise), um ein höheres Entwicklungsstadium

Mehr

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II Klasse : 5 3 Wochen 1. Zahlen und Größen Große Zahlen, Dezimalsystem, Potenzen, Runden, Größen, (optional: Einfache Bruchteile von Größen), Messen und schätzen, Diagramme Projekt Weltraum 2. Die vier Grundrechenarten

Mehr

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6 Klasse 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Zeitraum Natürliche Zahlen Stochastik Erheben: Daten erheben, in Ur- und Strichlisten zusammenfassen Darstellen: Häufigkeitstabellen, Säulendiagramme

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Lernen an Stationen mit den geometrischen Körpern

Lernen an Stationen mit den geometrischen Körpern Lernen an Stationen mit den geometrischen Körpern 1.Fühlstation 2.Baustation 3.Kubusstation 4.Rätselstation 5.Netzstation 6.Computerstation 7.Detektivstation 8.Knobelaufgabe Die Aufträge der einzelnen

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Geometrie 1.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 1.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 1.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 1.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Schuleigener Arbeitsplan für das Fach Mathematik Klasse 1. - Stand: Juni 2012 - Inhaltsbezogener Kompetenzbereich Zahlen und Operationen

Schuleigener Arbeitsplan für das Fach Mathematik Klasse 1. - Stand: Juni 2012 - Inhaltsbezogener Kompetenzbereich Zahlen und Operationen Schuleigener Arbeitsplan für das Fach Mathematik Klasse 1 - Stand: Juni 2012 - Inhaltsbezogener Kompetenzbereich Schuljahres (laut Zahldarstellungen, Zahlbeziehungen, Zahlvorstellungen - fassen die Zahlen

Mehr

Mathematik Klasse 6. Inhaltsbezogene Kompetenzen Zahlen und Operationen I

Mathematik Klasse 6. Inhaltsbezogene Kompetenzen Zahlen und Operationen I Mathematik Klasse 6 Woche Thema/ Anforderungen Inhaltsbezogene Kompetenzen Zahlen und Operationen I prozessbezogene Kompetenzen Materialien/ Anregungen KA 1 (32) Erster Tag + Klassenfahrt 2 (33) Teilbarkeit

Mehr

Werkzeuge/ Medien Lineal, Geodreieck. Problemlösen - finden Beispiele, überprüfen durch Probieren

Werkzeuge/ Medien Lineal, Geodreieck. Problemlösen - finden Beispiele, überprüfen durch Probieren Kernlehrplan Jahrgangsstufe 5 Kapitel Inhaltsbezogene Kompetenzen I Arithmetik/ Algebra (Stochastik) Natürliche Zahlen Prozessbezogene Kompetenzen Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten

Mehr

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen

Bereich: Raum und Form Schwerpunkt: Ebene Figuren. Klasse 1. Beobachtungshinweise. Kompetenzerwartungen AB 5: Schuleigener Arbeitsplan Mathematik Kontinuität von Klasse 1-4 aufgezeigt an einer ausgewählten Kompetenzerwartung aus dem Bereich Raum und Form Schwerpunkt Ebenen Figuren Bereich: Raum und Form

Mehr

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden September Es geht weiter... 1 Ganze Zahlen 1.1 Zahlen gegensätzlich deuten 1.2 Die Zahlengerade 1.3 Ganze Zahlen ordnen 1.4 Ganze Zahlen addieren und subtrahieren 1.5 Ganze Zahlen multiplizieren und dividieren

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema 1: Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Zahlensysteme 4 Rechnen mit natürlichen Zahlen 5 Runden 6 Größen messen und schätzen (Zeit, Länge, Gewicht) 7 Mit Größen rechnen 1. Klassenarbeit

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

Prozessbezogenen Kompetenzen

Prozessbezogenen Kompetenzen Klasse 5 Version 09/10 Inhaltsbezogene Arithmetik/Algebra - mit Zahlen und Symbolen umgehen Prozessbezogenen Methodische Vorgaben/ Erläuterungen/Ergänzungen Regelheft und schuleigene Software. Natürliche

Mehr

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Nach Jahresplanung: 1.) Mein Wissen aus der 1. Klasse (Zahlen und Maße, Variable und funktionale Abhängigkeiten, Geometrische Figuren und

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

2 Einfache Folgerungen aus den Axiomen. 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q

2 Einfache Folgerungen aus den Axiomen. 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q 2 Einfache Folgerungen aus den Axiomen 2.1 Anordnung 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q d(a, P ) < d(p, Q) und d(a, Q) < d(p, Q). Bew.: :

Mehr

Arbeitsplan. C Sich im Raum orientieren $ über räumliches Vorstellungsvermögen verfügen $ räumliche Beziehungen erkennen, beschreiben und nutzen

Arbeitsplan. C Sich im Raum orientieren $ über räumliches Vorstellungsvermögen verfügen $ räumliche Beziehungen erkennen, beschreiben und nutzen Arbeitsplan zum Teilrahmenplan Mathematik unter Einbeziehung der Bildungsstandards Klassenstufe Didaktisch-methodische Hinweise Buch S. Anschluss-/anwendungsfähiges Wissen Inhaltsbezogene mathematische

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September Oktober 1. Die Teilbarkeit natürlicher Zahlen wichtige Teilbarkeitsregeln kennen und anwenden können größten gemeinsamen Teiler berechnen können kleinstes gemeinsames Vielfaches berechnen können

Mehr

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 6 (G8) - rationale Zahlen - mit Zahlen und Symbolen umgehen Grundregeln für Rechenaus- einfache Brüche und Größen, Rechnen mit rationalen

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Ebene Geometrie Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Ebene Geometrie 5.

Mehr