Reihenentwicklung die Taylorentwicklung
|
|
- Catharina Färber
- vor 1 Jahren
- Abrufe
Transkript
1 Rihtwicklug di Taylortwicklug Motivatio: Es lig i Potrih olgdr Form vor: Durch Umorm rgibt sich: s s s s s K K K Für udlich groß rgibt sich im Wrtbrich < < i dlich Summ s. Dis lässt sich als Fuktio vo darstll. s Somit lässt sich i udlich Rih als iachr aalytischr Ausdruck darstll. Frag, di dr Mathmatikr stllt: - Gligt das auch bi adr Fuktio? - Gibt s ötr so iach Zuordug ir udlich Rih u im aalytisch Ausdruck? Frag, di dr Physikr stllt: - Ist umgkhrt di Etwicklug ir Fuktio als Rih (Potrih) möglich? Di Atwort lautt ja - i solch Potrih wird als Taylorrih bicht. Wori ligt dr Nut dr Darstllug ir Fuktio als Taylorrih? - Numrisch Brchug vo Fuktioswrt mit blibigr gordrtr Gauigkit. - Vrwdug dr rst (dr vom Wrt hr domiat) Glidr als Nährug. - Glidwis Itgratio, sollt di Fuktio icht gschloss itgrirbar si. Bachtt wrd muss allrdigs, dass di Etwicklug dr Taylorrih immr i dr Näh is ausgwählt Pukts gschiht - j ähr ma mit si Btrachtug am gwählt Pukt blibt, um so gaur ist das Ergbis. Hir gibt s rut i Utrschid wisch mathmatischr ud physikalischr Fragstllug. - Mathmatik: Etwickl Si di Fuktio ( ) ach Pot vo ( ). - Physik: Wi lässt sich ( ) i dr Näh ds Pukts darstll? (Lösug: ( ) ( ) ( ) ( ) ) Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit
2 Bhauptug: Wir hm a, di Fuktio () lässt sich als Potrih i olgdr Form darstll: ( ) a Da sollt utr dr Vorausstug, dass () blibig ot dirirbar ist, di Bstimmug dr Koiit a möglich si. Sid di Fuktio () ud di Potrih tatsächlich idtisch, sollt.b. a dr Stll di Fuktio () ud all ihr Ablitug mit dr Rih ud all ihr Ablitug übristimm. Damit rgibt sich ür di Stll : () a () a () a K ( ) ()! a Di Etwicklug ir Fuktio als Taylorrih lautt: () () ( ) ()!! ( ) () K K! Es gibt Fuktio, bi d di Taylorrih ur ür i bstimmt Brich vo -Wrt kovrgirt (sih Bispil ob: ( ) /( ) ). Dr Brich, i dm sich i Fuktio als Potrih twickl lässt, hißt Gültigkitsbrich odr Kovrgbrich. Vrallgmirug: Bishr wurd di Fuktio () a dr Stll twicklt. Ist i Etwicklug a ir blibig Stll möglich? Asat: ( ) ( ) a a( ) a ( ) K a ( ) Di Koiit a wrd durch dirir dr Fuktio () bi bstimmt: ( ) ( ) a ( ) a ( ) a K ( Damit lässt sich di Rihtwicklug a dr Stll auschrib: Taylorrihtwicklug dr Fuktio () a dr Stll ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) K ( ) K!!! )! a Di Dir h ) im Asat lässt sich auch als u Vrädrlich auass: ( () () ( ) ( h) () h h!! ( ) () K h K! Di Etwicklug dr Fuktio (h) dr Fuktio () a dr Stll a dr Stll. h ist da glichbdutd mit dr Etwicklug Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit
3 Taylortwicklug häuig gbrauchtr Fuktio. Epotialuktio (Bolmavrtilug, baromtrisch Höhorml, Dämpugsrschiug, radioaktivr Zrall, Lad- ud Etladvorgäg) Fuktio: () ( ) () () () K () Damit rgibt sich als Etwicklug: ( ) K!!!!! Fuktio: () - () ; () ( ) ; () ( ) ; () ( ) ; K ( ) () ( ) Damit rgibt sich als Etwicklug: ( )!!! K ( )! Aus d Rihtwicklug ist rsichtlich: ür << ± ± Aalog ur Epotialuktio mit dr Basis lässt sich di Fuktio ( ) a twickl, wobi di Basis a i blibig rll Zahl ist. Für di -t Ablitug gilt: ( ) a (l a) ud damit ür di Rihtwicklug: l a (l a) ( ) a!! K a (l a)! Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit
4 . Hyprbolisch Fuktio Fuktio: y cosh y cosh (!!! K) (!!! K) (! 4 4! K) Somit rgibt sich: cosh! 4 4! K ()! Für -Wrt << gilt somit als Nährug: cosh Fuktio: () sih y sih (!!! K) (!!! K) (!! K)! Somit rgibt sich: sih!! K ( )! ( ) Für -Wrt << gilt somit als Nährug: sih Aalog u cosh ud sih lass sich auch tah ud coth twickl. Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit 4
5 . Trigoomtrisch Fuktio Fuktio: () si ( ) si ( ) cos ( ) si ( ) cos (4) ( ) si Bi ir Etwicklug a dr Stll vrschwid all grad Ablitug. Zusammassd gilt: si!! 7 K 7! ( ) ( )! Aus disr Etwicklug olgt als Nährug ür kli ( << ) si Fuktio: () cos Da di cos-fuktio als rst Ablitug dr si-fuktio, läßt si sich rcht iach gwi: cos! 4 6 K 4! 6! ( ) ()! Für kli -Wrt olgt: cos si- ud cos- Fuktio ud ihr Zusammhag mit d Epotialuktio Als Rih u twickl si di Fuktio: ( ) cos i si Utr Vrwdug dr bkat Rihtwicklug ür 4 6 cos i si K i i K! 4! 6!! ( i) i! ( i)! ( i) 4! 4 K Dis Rihtwicklug ist abr idtisch mit dr Rihtwicklug si ud cos rgibt sich: ( ) i Etsprchd ka gigt wrd, dass cos i si i cos ± i si ± i (Moivrsch Forml) Ählich lass sich ta ud cot twickl ud Additiosthorm bwis. Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit
6 4. Logarithmusuktio Di Logarithmusuktio wird.b. ur Bschribug dr Dämpug butt. l l l d Da di Fuktio a dr Stll icht diirt ist, wrd ur Etwicklug als Rih i dr Näh vo i paar Tricks butt: a) y ( ) l( ) () () () () (4) () 6 Daraus olgt di Rihtwicklug: l( 4 ( ) ) K ( ) ( < 4 ) b) y ( ) l( ) () () () () (4) () 6 Daraus olgt di Rihtwicklug: 4 l( ) K 4 Daraus rgibt sich di olgd Rihtwicklug: ( ) ( ) l l( ) l( ) ( K) ( ) ud mit ür das Argumt ds Logarithmus rgibt sich Durch Eist rhält ma:. l K ( ) Für kli -Wrt rgibt sich als Nährug: y Dr. Hmpl / Mathmatisch Grudlag Taylorrih Sit 6
L Hospital - Lösungen der Aufgaben B1
L Hospital - Lösug dr Aufgab B Gsucht: = Übrprüf ob di Rgl vo L'Hospital agwdt wrd darf Für ght dr Zählr gg L'Hospital darf agwdt wrd, Für ght dr Nr gg = da Zählr ud Nr gg gh Zählr ud Nr diffrzir: ' =
e = lim ( n n) und Folgerungen
= lim + ud Folgrug Ergäzug zur Vorlsug Aalysis I, Dail Grisr, Dz. 2005 Satz: Si x = +, y = + +. Da gilt lim x = lim y = x ist strg mooto wachsd, y ist strg mooto falld. Isbsodr gilt für all x < < y. Bmrug:
R. Brinkmann Seite Achsenschnittpunkte von e- Funktionen und Exponentialgleichungen
R. Brikma http://brikma-du.d Sit 08..009 Achsschittpukt vo - Fuktio ud Epotialglichug Eiführugsbispil Bispil : Zu bstimm sid di Achsschittpukt vo s + f = D Schittpukt mit dr y y=f 0 Achs fidt ma übr d
Quantenmechanik I. Musterlösung 4.
Quatmchaik I. Mustrlösug 4. Hrbst 011 Prof. Rato Rr Übug 1. Rch mit Kommutator. Dr Kommutator [A, B] AB BA zwir Oprator ist liar i A, B ud atisymmtrisch: [A, B] [B, A]. a Zig di Produktrgl ud di Jacobi-Idtität,
StudiumPlus- SS 2017 Torsten Schreiber
StudiumPlus- SS 07 Torst Schribr 44 Dis rg sollt Si uch oh Skript btwort kö: N Si di wichtigst Eigschft vo Mg! Wi kö Si i Itrvll dfiir? Wi fuktioirt di Modulo-Oprtio? Wofür brucht m ds d Morg Gstz? Ws
4. Thermische Eigenschaften von Kristallen - spezifische Wärme
4. rmisc igscaft vo Kristall - spzifisc Wärm f.: spz. Wärm bi ost. olum: S tropi, ir rgi, mpratur S primtll: - bi Zimmrtmpratur ist N M bi fast all Fstörpr (ulog-ptitsc Rgl), N Azal dr Atom, M Mass ds
Etablierung eines Qualitätsmanagementsystems (QMS) für Lehre und Studium an der TU Berlin
Etablirug is Qualitätsmaagmtsystms (QMS) für Lhr ud Studium a dr TU Brli Prof. Dr.-Ig. Jörg Stibach (Projktlitr) Prof. Dr.-Ig. Joachim Hrrma (fachlichr Bratr) Dipl.-Ig. Bjami Will (Projktmaagr) Dipl.-Psych.
Konfliktmanagement in der Psychiatrie. Christoph Hebborn, Fachkraft für Arbeitssicherheit Klinikum Oberberg GmbH
Kofliktmaagmt i dr Psychiatri Christoph Hbbor, Fachkraft für Arbitssichrhit Kliikum Obrbrg GmbH Kofliktmaagmt am Bispil ds Kriskrakhaus Gummrsbach Ztrum für slisch Gsudhit Kliik Marihid 01 Kliikum Obrbrg
Kostengünstig und einfach das
Kostgüstig ud ifach das SWIFT-Ntzwrk utz. Mit dm SWIFT Abidugssr vic dr OKB. W IF T- N t z w g U t r h m S du U ug rhm t b rk i t S W I F T- A i m i h S W I F T- A b d o Das SWIFT Abidugssr vic Ihr ifachr
Lsöungen Eigenschaften der Fourier-Transformation Mathematik 4 MST, Blatt 4
Lsöug Eigschaft dr Furir-Trasfrmati Mathmatik 4 MST, Blatt 4 grabwski@htw-saarlad.d Zu Aufgab aus! Füll Si di bigfügt Tabll zur FR ud zum FI vllstädig zum FI Sih Ahag! Zu Aufgab Ord Si jdr dr Fukti i a)
Direkt-Vertrieb Hersteller vertreibt seine Ware direkt an den Kunden (B2C; B2B)
(Eiführug) Optimirug Vrtribsprozss Sit: 1 Vrtribsart Dirkt-Vrtrib Hrstllr vrtribt si War dirkt a d Kud (B2C; B2B) Idirktr-Vrtrib War wrd übr Partr, Hädlr, Distributio, Ntzwrk agbot (B2C, B2B) Gmischtr
1 + n n. 1 n > 1
4. Fudamtal Kovrgzsätz für Folg 97 Bispil 4.11 Stirligsch Forml) Dazu btracht wir für IN zuächst di Folg c :=!. Wg c +1 c = + 1)+1 +1 + 1)!! = 1 ) + 1 = ) 1 + 1 < 1 ist c mooto falld, ud somit gilt für
INFLATIONSSCHUTZ 156,00 RAIFFEISEN BANK INTERNATIONAL 10 2012
Mi Lb INFLATIONSSCHUTZ 156,00 RAIFFEISEN BANK INTERNATIONAL 10 2012 Vorsorg Alg Mobilität Woh * szahlug u a t s d ag 156 % Mi ttobitr N d f au il: bzog! Ihr Vor t ih l A sschutz durch i io t a fl I ug
Poisson-Verteilung. Die Anwendung der Poisson-Verteilung ist breit gefächert:
oisso-vrtilug Di Noral-Vrtilug ist i kotiuirlich Vrtilug Di Bioial-Vrtilug ist diskrt. Ei witr diskrt Vrtilug ist di oisso-vrtilug. Di Awdug dr oisso-vrtilug ist brit gfächrt: Azahl dr Tlfogspräch, di
Schulinterner Lehrplan des Faches Physik (Sekundarstufe I)
Schulitrr Lhrpla ds Fachs Physik (Skudarstuf I) 1. Stllug i dr Studtafl Am Gymasium Sdastraß wird das Fach Physik i d Klass 6, 8 ud 9 utrrichtt. 2. Prozssbzog Komptz Vrwdt Abkürzug Gmäß KLP, S. 17-19,
2. Solarmodule und Solargeneratoren
. olarmodul ud olargrator Di Halblitrthori ud dr Aufbau dr olarzll sid wstlichr Bstadtil vom il A. dism il dr Vorlsug wir ur kurz auf d Aufbau ud das Fuktiosprizip vo olarzll iggag. Zur Erzugug praktisch
Hallo ich grüße Dich!
AaRot h 10Fa g, d i Dua u fd rsu c h a c hd i ms l t b a t wt s ot s t ud 3Go l d R g l wi Dua bh u t b s s rl b k a s t AaRot h www. a a r ot hc oa c hi g. c om Aa Roth Slortfidri AstroCoach - Prsoal
r = 2 y p = 1 und z p = 1 P(3; 1; 1) bzw. PS linear abhängig ist. 7 PS ist Höhe der Pyramide 14
Lösug Abitur Listugskurs Mthmtik www.mth-schul.d Sit vo 5 P Gomtri A(5;-;), B(;5;-) C(-;7;), D(-;;), S(;;5). Zichug: (Usichtbr Kt: AD, DS, CD ) A, B, C, D sid Eckpukt is Prlllogrmms, w j wi dr Vktor AB,
Makroökonomie I/Grundlagen der Makroökonomie
Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-
Die Spektren der Atome
Cusaus-Gyasiu Wittlich Di Spktr dr Ato Nils Bohr 885-96 96 H H Cusaus-Gyasiu Wittlich Di Spktr dr Ato So Wassrstoff Hliu Qucksilbr Ura Cusaus-Gyasiu Wittlich. Bohrschs Postulat: Elktro bwg sich auf bstit
Mein Raiffeisen Club-Paket. Bank, Versicherung und Freizeit in einem.
Mi Raiffis Club-Pakt. Bak, Vrsichrug ud Frizit i im. Di idividulls Club-Pakt. Di Koto bi Raiffis. Ei Club-Pakt ist i Kombiatio vo Bakprodukt, * Kostlos Kotoführug di du dir slbst ach di Wüsch ud Zil zusammstll
Übungsaufgaben "Vektorrechnung"
stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils
Lösungsmethoden für Differentialgleichungen 2. Ordnung
Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid
Diagramm. 1.2 Geben Sie das elektrische Potential an der Kugeloberfläche an!
Aufgab zum lktrich Pottial 9.0 Ei fldrzugd Ladug Q 5,0 0 C it auf i Koduktorkugl mit dm Radiu R,0cm aufgbracht.. Stll Si i im r Diagramm d Pottialvrlauf für r R dar! Q E gilt: (r) Diagramm 40 r. Gb Si
Weiterbildung WBA Allgemeine Zahnmedizin SSO: Beurteilung der Weiterbildungspraxis durch die Assistenzzahnärztinnen und Assistenzzahnärzte
Witrbildug WBA Allgmi Zhmdizi SSO: Burtilug dr Witrbildugprxi durch di Aitzzhärzti ud Aitzzhärzt Witrbildugtätt/-prxi: Aitti/Aitt: ---------------------------------------------- -----------------------------------------------
Aufgaben Interferenz am Gitter
Aufga Itrfrz a Gittr 38. Auf i optich Gittr it dr Gittrkotat 4,00 * 0-6 fällt Licht dr Wllläg 694 krcht i. Da Itrfrzild wird auf i,00 tfrt Schir oachtt, dr paralll zu Gittr tht. a) Brch Si d Atad dr auf
60.Differentialrechnung
60.Diffrtilrchug Vrsio: 60. Alitugsrgl Diffrttiosrgl Bschriug: Fuktio: Alitug: Bispil: Summrgl : Kosttrgl: f ± g f ud g si Fuktio k f g ' = f ' ± g' ± 5 ' 0 5 + 5 k = + = + = 5000 = 0 Alitug kosttr Fuktio
www.em4-remote-plc.com performance inside new business outside
www.m4-rmot-plc.com prformac isid w busiss outsid DIE NEUE INDUSTRIELLE REVOLUTION Im abrchd Zitaltr dr Digitalisirug ist s für Utrhm urlässlich, ihr Kud zusätzlich Mhrwrt zu bit. Di Etwicklug is achhaltig
8. Die Exponentialfunktion und die trigonometrischen Funktionen
8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3
:46 1/9 Kinder gut betreut
30.09.2017 02:46 1/9 gut btrut LANDKREIS AUGSBURG (DRUCKANSICHT) KINDER GUT BETREUT KINDERTAGESSTÄTTEN & SCHULISCHE BETREUUNGSANGEBOTE IM LANDKREIS AUGSBURG Di G mi d im La dkr is Aug sbu rg vrf üg üb
:20 1/9 Kinder gut betreut
10.01.2018 09:20 1/9 gut btrut LANDKREIS AUGSBURG (DRUCKANSICHT) KINDER GUT BETREUT KINDERTAGESSTÄTTEN & SCHULISCHE BETREUUNGSANGEBOTE IM LANDKREIS AUGSBURG Di G mi d im La dkr is Aug sbu rg vrf üg üb
Volksbank Wittenberg eg
Volksbak Wittbrg G Offlgugsbricht i. S. d. Istituts- Vrgütugsvrordug pr 31.12.2011 Ihaltsvrzichis 1 Ihaltsvrzichis 1 Ihaltsvrzichis... 2 2 Bschribug ds Gschäftsmodlls... 3 3 Agab zur Eihaltug dr Afordrug
Lösungsmethoden für Differentialgleichungen 2. Ordnung
Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T =f(,) ( kommt nicht vo) wid
Energieeffizienz: Herstellung und Design. Energieeinsparung zwischen 75% und 93% Jahre Garantie FORDERN SIE UNSEREN FACHKATALOG AN
5 Jahr Garati VERLÄNGERUNG AUF 10 JAHRE AUF ANFRAGE Ergiffiziz: Hrstllug ud Dsig Ergiisparug zwisch 75% ud 93% i S h b a g c s o Au g ur ri l h Za Ihrr bish % 25 für! g tu h c u l B FORDERN SIE UNSEREN
8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion
8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k
Bericht PV-Anlagen in Neuerkerode: Elm und Scheune
Umstzugsprojkt: Itgral Plaug ud Sturug dr achhaltig Modrisirug ds Gbäudbstads ud dr Ergivrsorgug dr Evaglisch Stiftug Nurkrod Bricht PV-Alag i Nurkrod: Elm ud Schu Dr Bricht wurd rstllt vo / Das Projkt
Zur Internetkompetenz - vor allem auch unter schulischen Aspekten
Zur Itrtkomptz - vor allm auch utr schulisch Aspkt Vo: Marti Wigartz 1. Eilitug Sit iig Jahr hat sich das Itrt als Wisss- ud Iformatiosplattform tablirt. Dabi ist disr Prozss kiswgs abgschloss, sodr i
Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1:
Bruskollg Marinschul Lippstadt Schul dr Skundarstu II mit gymnasialr Obrstu - staatlich anrkannt - Übungsaugabn zu Eponntialunktionn Schuljahr /7 Kurs: Mathmatik AHR. Kurslhrr: Gödd / Langnbach Bruskollg
Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831
Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng
Taylor-Reihen 1-E1. Ma 2 Lubov Vassilevskaya
Taylor-Reihe -E -E Brook Taylor (685-73) Brook Taylor war britischer Mathematiker. Nach ihm sid die Taylorreihe ud die Taylorsche Formel beat mit der ma stetig dierezierbare Fuktioe als Potezreihe darstelle
2011 Bachelorstudium RAUMPLANUNG UND RAUMORDNUNG KURZ UND BÜNDIG
2011 Bachlorstudiu RAUMPLANUNG UND RAUMORDNUNG KURZ UND BÜNDIG Zu Studiu vo Di Etfaltugsöglichkit dr Msch sid tschidd ch Räuli ig. abhäg gsgfüg ihr Nutzugsöglichkit i Sidlu sozial di bsti g Nutzug Stadorttschidu
Getreide-Lagersilos "Made by NEUERO" für Innen- und Außenaufstellung
mit Typprüfug vrzikt Ausfürug st abil Kostruktio o Frtigugsqualit ät Flacprofilirug dr Siloplatt, dadurc größr St abilit ät ud bssr gigt für Vrdlugsprodukt, z. B. S aatgut agpasst Blüftugssystm ud Blüftugsvtilator
Grundlegende Eigenschaften der Atomkerne: β-zerfall (Teil I)
Krhysik I Grudlgd Eigschaft dr Atomkr: β-zrfall (Til I) Motivatio Für di Bschribug dr Elmtsyths i astrohysikalisch Umgbug sid isbsodr gut Ktiss übr di β-zrfalls- Eigschaft vo istabil Kr frab vom Tal dr
Modul 10: Autokonfiguration
Hohshul BoRhiSig Pof. D. Mati Lish Ntzwksstm ud TK Lzil: Modul 1: Autokofiguatio Nah Duhait diss Tilkapitls soll Si di Aufgastllug Autokofiguatio läut ud di id Kozpt SLAAC ud DHCPv6 zu automatish Kofiguatio
SKILL software. Das Leitsystem: embiaguide Konzept, Kunden, erster Großauftrag in Aussicht! erster Großauftrag. Konzept. Kunden
Ds Lisysm: mbiguide Kozp, Kud, rsr Großufrg i Aussich! SKILL sofwr Kozp rsr Großufrg Kud Ds Lisysm: SKILLguid rsmlig i THE SQUAIRE/Trmil 1, Flughf Frkfur SKILLsofwr ms SKILL sofwr SKILLbudoc Projk dokumir
Kommunikation. Begriffsdefinitionen aus dem Web
Kommuikatio 28 I usrr Gsllschaft ist Kommuikatio shr wichtig. Oft vrstädig sich Msch problmlos mitiadr. Erst w s Schwirigkit gibt, mrk wir, dass Kommuikatiosprozss zimlich komplizirt si kö: Kommuikatio
Grundstrukturen: Speicherorganisation und Zahlenmengen
Zahlndarstllung Zahln und ihr Darstllung in Digitalrchnrn Grundstrukturn: Spichrorganisation und Zahlnmngn Linar organisirtr Spichr zu inr Adrss ghört in Spichr mit 3 Bit-Zlln ( Wort brit ) adrss Linarr
Satzungen der Hochschule für Musik und Theater München
Sn dr Hochschul für Musik und Thatr Münchn Bim Erlass von n stllt di Hochschul für Musik und Thatr Münchn zur bssrn Lsbarkit zusätzlich in Vrsion zur Vrfüun, in dr di nun Rlunsbstandtil in di bsthndn Vorschriftn
Formelsammlung Mathematik - Integralrechnung Seite 1 Stand: 26. März 1999
& + Forelsalug Matheatik - Itegralrechug Seite Stad: 6. Mär 999 Gruditegrale () d () si d cos (5) () (3) (4) d (9) cos d () ür (5) e c (6) a (7) cos d l d c ec a d la () () si (3) cosh d ta (6) d cot (7)
K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden)
Mathmati Lösung Klausur Nr. K1 10.1.1 Abürzungn bi dr Korrtur: S: Schribfhlr R: Rchnfhlr D: Dnfhlr Mist: Dr Lösungswg ist nicht brauchbar (falsch). Es ist dann oft sinnvoll, mit mir darübr zu rdn. Gnrll
Technische Universität München Zentrum Mathematik. Übungsblatt 1
Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für
4 Bäume und Minimalgerüste
4. Bäum un Wälr Charaktrisirung von Minimalgrüstn 4 Bäum un Minimalgrüst Dfinition 4.1. Es in G = (V, E) in zusammnhängnr Graph. H = (V, E ) hißt Grüst von G gw. wnn H in Baum ist un E E gilt. Bmrkung
( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.
Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab
Übungen zu Analysis II Blatt 2 Abgabe: Montag, , bis 12:15 Uhr
SS 0 Gesamt: 40 Pukte Übuge zu Aalysis II Blatt Abgabe: Motag, 30.04.0, bis :5 Uhr 6. (Tutoriumsaufgabe) Ma bestimme Stammfuktioe zu [+] (a) cos si µ für µ R, si > 0, (b) log ( + + ). + Lösug: (a) Für
TMN 1. Touristische Entwicklung in Niedersachsen
1 Touristisch Etwicklug i Nidrsachs 2001-2012 Positiv Tourismusbilaz i d ltzt Jahr. Übrachtug übrstig 2012 rstmalig di 40-Mio.- Grz. Jahrsrgbis 2012 im Vrglich zum Vorjahr Summfhlr sid rudugsbdigt +1,7
Nominalzinsen versus Realzinsen. Nominalzinsen versus Realzinsen
K A I T E L 5 Erwarug: Di Grudlag 5- Noialzis vrsus Ralzis Noialzis sid Zis, di i Währugsihi ausgdrück wrd. Ralzis sid Zis, di i Eihi ds Warkorbs ausgdrück wrd. rof. Dr. Volkr Claus Makroökooik Wirssr
Übungen mit dem Applet Taylor-Entwickung von Funktionen
Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3
5 Grenzwertregel von Bernoulli
Grnzwrtrgl von Brnoulli und d L Hospital Sit 5-5 Grnzwrtrgl von Brnoulli und d L Hospital Oft muss man dn Grnzwrt inr Funktion brchnn Ist di Funktion in Quotint zwir Funktionn, so kann di Grnzwrtbildung
Das Prozessmodell der ISO 9001. Dr.-Ing. Kira Stein Prozessoptimierung & TQM Prozessmodell ISO 9001
Das Prozssmodll dr ISO 9001 Notwdigkit dr Qualitätsmaagmtsystm Qualitätssichrug übr Edprüfug icht mhr möglich Sichr dr Qualitätsfähigkit ds gsamt Utrhms Vrpflichtug ds Maagmts Fhlrvrhütug aus Kostgrüd
4. Berechnung von Transistorverstärkerschaltungen
Prof. Dr.-ng. W.-P. Bchwald 4. Brchnng on Transistorrstärkrschaltngn 4. Arbitspnktinstllng Grndorasstzng für dn Entwrf inr Transistorrstärkrstf ist di alisirng ins Arbitspnkts, m dn hrm im Knnlininfld
Hohlleiter Quasioptische Ableitung der Felder der Hohlleiterwellen
ohllit Quasioptisch blitug d Fld d ohllitwll 8.3 Mod i Rchtck- ud Rudhohllit Zu gau Bhadlug d Vilahl öglich Wll i ohllit uß a üb di ifühd ggb aschaulich Dastllug hiausgh ud di gigt Lösug d Mawll sch Glichug
Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w
Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die
Konvergente, unendliche, ganzzahlige Reihen [1], [2]
Reihe Kovergete, uedliche, gaahlige Reihe [], [] Die kovergete, uedliche Reihe eige sich bei Beachtug der Wahrscheilichkeitsaxiome für die Erstellug vo diskrete Wahrscheilichkeitsverteiluge. Der Grewert
Kondensator an Gleichspannung
Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di
n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)
Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem
8. Übungsblatt Aufgaben mit Lösungen
8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium
Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT
Zu Aufgab 0) Folgnd Mssdatn wurdn von inr sttign Glichvrtilung R([a,b]) rhobn: 3,5,4, 5, 4, 3, 3, 5 Gbn Si in Schätzung für di Grnzn a und b nach dr Momntnmthod an! sih Vorlsung. Zu Aufgab ) Es wurd übr
Je nach Konfiguration. Je nach Konfiguration. Je nach Konfiguration. Wahlweise elektrisch oder pneumatisch. Pneumatische Vakuumpumpen 5-6 bar
ERE odrlösug idull v i d i lösug k r d t wrd! s o s p d g J dürfiss r uf Mrkml Ho Lbsdur durc Vrwdug qulittiv ocwrtigr Mtrili Wlwis lktrisc odr pumtisc Vkuumpump Azl dr ugr rictt sic c dr lcstärk Akustiscs
Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum
Erst-Moritz-Art-Uivrsität Griswal / Istitut ür Physik Physikalischs Grupraktikum Praktikum ür Physikr Vrsuch O3: Brwitbstimmug vo Lis Nam: Vrsuchsgrupp: atum: Mitarbitr r Vrsuchsgrupp: l Vrsuchs-Nr: Augab
Volkswagen. Powered by. Techniktreffen. Verlagssonderveröffentlichung
Powrd by Volkswag Tchiktrff Vrlagssodrvröfftlichug Vrlagssodrvröfftlichug Schi odr Si? Modratio: Katharia Skibowski, Gschäftsführri Vrlag Rommrskirch. Bim Thma Motorjouralismus dkt ma a schö Autos, schö
1 Übungen und Lösungen
ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln
Thema 8 Konvergenz von Funktionen-Folgen und - Reihen
Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche
Makroökonomie I/Grundlagen der Makroökonomie
Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn
Prof. Dr. Wolfgang Konen Mathematik 2, SS2015 06.05.2015
Prof. Dr. Wolfgag Ko Mathmatk, SS05 06.05.05. Komlx Zahl Dr kürst Wg wsch w Wahrht m Rll führt übr das Komlx. [Jacus Hadamard, fra. Mathmatkr, 865-96] Am Afag stad w so oft b wssschaftlch Etdckug d Nchtlösbarkt
Auswertung P2-60 Transistor- und Operationsverstärker
Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds
5.5.Abituraufgaben zu Logarithmusfunktionen
5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t
Führungskräfteentwicklung als Anleitung zur Übernahme von Verantwortung
Ladsschulamt ud Lhkäftakadmi Fühugsakadmi Fühugskäfttwicklug als Alitug zu Übahm v Vatwtug Wi müss wi us als Fühugskäft twickl, um vatwtlich hadl zu kö?? Gsllschaft zu Födug ädaggisch Fschug 2. Mai 2013
Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable
Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex
Leiterplatten und Modul Übersicht
Ltrplatt ud Modul Übrcht Stfro Stfa Na - www.tfpro.d fo@tfpro.d Datum:.. Wht pag Stfro Ltrplatt ud Modul Übrcht Rv_- St vo Stfro Stfa Na - www.tfpro.d fo@tfpro.d Datum:.. Ihaltvrzch Vorwort...4 Ma lat...
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
Gute Gründe für Französisch!
Gut Gründ für Französisch! Willkommn in dr Wlt ds Lrnns Französisch zum Grifn nah! Blgiqu Luxmbourg Suiss Franc Europ Vil unsrr uropäischn Nachbarn sprchn Tunisi Liban französisch! Ob in dr Schwiz, in
Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug
www.shullv.d Bsiswissn > Gomtri im Rum > Trigonomtri in Körprn > Strknzug Strknzug Spikzttl Augn 1. Läng ds Strknzugs rhnn In disr Aug sollst du dn Strknzug ds gzihntn Hus vom Nikolus rhnn. Am inhstn ist
Die Fourier-Transformation
D Fourr-Trasorato INHATSVERZEICHNIS EINEITUNG GRUNDIDEE EINER TRANSFORATION 3 DAS SAPINGTHEORE 4 DIE DISKRETE FOURIERTRANSFORATION DFT) 4 DIE INVERSE DISKRETE FOURIERTRANSFORATION IDFT) 8 DIE SCHNEE FOURIERTRANSFORATION
www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral
Innovative Spaltenböden Güte überwacht Güte geprüft EN 12737 geprüft
Iovaiv Spalböd Gü übrwach Gü gprüf EN 12737 gprüf www.salli.com Tchisch Uiv. Graz mach Säll saubr, rock ud warm Nu mi Quarzgummi-Airuschauflag bi all Schrägschlizlm für Ridr VORTEILE Absolu ruschsichr
Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg
Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +
Zentrale schriftliche Abiturprüfungen im Fach Mathematik
nalysis Listungskurs Zntral schriftlich biturprüfungn im Fach Mathmatik ufgab Prispolitik Ein Industriuntrnhmn, das nur in Produkt hrstllt, ntnimmt sinr tribsbuchhaltung (ostn- und Listungsrchnung) folgnd
Anforderungen/Termine (4 ECTS)
PS: Kommuikatiostraiig Nacbsprcug Jär 05 Uivrsität Salzburg Facbric Erziugswissscaft Adras Pasco & Grgö Horsa Afordrug/Trmi ( ECTS) Awsit: Trmi Vorbsprcug: Mo,. Oktobr 7.00-9.00.05 UN Tst: Mo, 7. Novmbr
[Arbeitsblatt Trainingszonen]
[Arbitsblatt Trainingszonn] H r z f r q u n z 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 RHF spazirn walkn lockrs zügigs MHF Jogging Jogging Gsundhits -brich Rohdatn
Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon
Entry Voic Mail für HiPath-Systm Bdinunsanlitun für Ihr Tlfon Zur vorlindn Bdinunsanlitun Zur vorlindn Bdinunsanlitun Dis Bdinunsanlitun richtt sich an di Bnutzr von Entry Voic Mail und an das Fachprsonal,
matheskript Analysis Teil III EXPONENTIAL- FUNKTIONEN 12. Klasse ABI - Vorbereitung Jens Möller
7 6 mthskript 5 Alsis Til III EXPONENTIAL- FUNKTIONEN. Klss ABI - Vorbritug Js Möllr Autor: Js Möllr Owig Tl. 0755-6889 jmollrowig@ol.com 5. Auflg Owig 0 Bstllug bi folgdr Adrss mthskript Simo Gigr Sohld
5. Textprobe (Auszug aus Kapitel 17.8: Die Lösung der 6. Aufgabe der Klausur )
5. Txtprob (Auszug aus Kapitl 7.8: Di Lösug dr 6. Aufgab dr Klausur 3.009) 7.8.6) Aufgab 6 Ggb si das folgd Modll: ) mi a b U ) U U c ( ) 3) 4) a) Brch si di optimal Höh dr Iflatiosrat. Prüf Si folgd Aussag
Die Jensensche Ungleichung
Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe
Panorama-Sternkarte. Anleitung & Pläne. STERNE erleben
lb Hiz Hof, Sophi Stauff 1. Jui 2012, 3. Auflag admi@stlb.ifo www.stlb.ifo Paoama-Stkat Alitug & Plä Macl Wyss Schülabit 4. Klass, Wildswil Fühugsschi Stblatt Paoamablatt Zwischhölzch Matiallist Paoamablatt
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
Finanzierung eines bedingungslosen Grundeinkommens (BGE) aus Einkommensteuern. Studium Generale der VHS München am 11. 6. 2015
Finanzirung ins bdingungslosn Grundinkommns (BGE) aus Einkommnsturn Vortrag bim BGE-Kurs im Studium Gnral dr VHS Münchn am 11. 6. 2015 Aufgzigt wurd di Finanzirbarkit ins bdingungslosn Grundinkommns in
Mengenbegriff und Mengendarstellung
R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5
Das neue. etzelgas-lager
Das tzlgas-lagr Vrborgs Potzial sivoll gtzt Ergi as d Nord g für di Erdgasvrsorg ds a sl i tfr Os g t Di Bd Das ist Ostfrislad: wits, grüs Lad, vil Hil, Küh, Wolk, Strad d Mr. Ei alrischs Flckch Erd, das
Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg
Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +