Mittelwertvergleiche, Teil II: Varianzanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mittelwertvergleiche, Teil II: Varianzanalyse"

Transkript

1 FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II:

2 FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als zwei Gruppen. Bei mehr als zwei Gruppen sind Fragen des Testens er Unterschiede (unterscheiden sich irgendwelche Mittelwerte) vs. spezifischer Unterschiede zu lösen. Mit der V. können auch Einflüsse mehrerer Gruppierungsvariablen analysiert werden (z.b. zwei Therapien bei zwei verschiedenen Krankheitsformen). Es gibt auch für abhängige Stichproben (hier nicht besprochen).

3 FB 1 W. Ludwig-Mayerhofer Statistik II 3 Die visuell y Studierende unterscheiden sich in ihrem Zigarettenkonsum. Können wir diese Unterschiede möglicherweise durch die Zugehörigkeit zu Gruppen erklären?

4 FB 1 W. Ludwig-Mayerhofer Statistik II 4 Kein Unterschied zwischen Gruppen... y

5 FB 1 W. Ludwig-Mayerhofer Statistik II 5... oder Unterschiede? y

6 FB 1 W. Ludwig-Mayerhofer Statistik II 6 verbal Die Unterschiedlichkeit (Varianz) der Datenwerte kann in zwei Teile zerlegt werden: Die Unterschiedlichkeit, die auf die Gruppenzugehörigkeit zurückgeht, ausgedrückt in den Abweichungen der Gruppenmittelwerte y i vom Gesamtmittelwert y. Die Unterschiedlichkeit, die nicht auf die Gruppenzugehörigkeit zurückgeht, ausgedrückt in den Abweichungen der individuellen Messwerte vom Gruppenmittelwert.

7 FB 1 W. Ludwig-Mayerhofer Statistik II 7 r m formal i, i=1...r Gruppen In jeder Gruppe werden Daten von j, j=1...m Personen erhoben (d.h. pro Gruppe gleich viele Personen wichtige Vereinfachung, die bei experimentellen Studien oft befolgt wird). Die Summe aller quadrierten Abweichungen vom Mittelwert ( Quadratsumme, QS) lässt sich zerlegen in ( ) 2 ( ) 2 y = + ( ) ij y m yi y yij yi i= 1 j= 1 i= 1 i= 1 j= 1 r QS total = QS zwischen + QS innerhalb r m 2

8 FB 1 W. Ludwig-Mayerhofer Statistik II 8 Zusammenhangsmaß Eta² Das Verhältnis der durch die Gruppenzugehörigkeit bedingten Abweichungen vom Mittelwert (QS zwischen ) zur Gesamtheit der Abweichungen ist ein Maß für die Stärke des Einflusses der Gruppenzugehörigkeit. 2 η (Eta Quadrat) = QS QS zwischen total Es handelt sich mithin um ein PRE-Maß.

9 FB 1 W. Ludwig-Mayerhofer Statistik II 9 : Global Zur Prüfung, ob sich die Gruppen überzufällig unterscheiden, werden nicht die Quadratsummen, sondern die Varianzen zu einander in Beziehung gesetzt. Diese heißen hier auch mittlere Quadratsummen (MQS). MQS MQS zwischen innerhalb innerhalb = = r r m ( ) m yi y QSzwischen i= 1 = = r 1 r 1 2 ( yij yi ) QS i= 1 j= 1 n r n r 2

10 FB 1 W. Ludwig-Mayerhofer Statistik II 10 Die Größe MQS F = MQS zwischen innerhalb : Global folgt einer F-Verteilung mit r-1 und n-r Freiheits-graden. Sie prüft, ob sich irgendwelche Gruppenmittelwerte voneinander unterscheiden, also H H o 1 : 2 : μ1 = μ = = μr = μ μ μ für mindestens ein i i

11 FB 1 W. Ludwig-Mayerhofer Statistik II 11 : Einzelvergleiche Der e F-Test sagt nur aus, dass sich irgendwelche Gruppen in irgendeiner Art unterscheiden. Für speziellere Hypothesen können herangezogen werden: A priori-vergleiche durch Bildung von Kontrasten A -Vergleiche durch spezielle Teststatistiken, die für multiple Vergleiche geeignet sind.

12 FB 1 W. Ludwig-Mayerhofer Statistik II 12 : Einzelvergleiche a priori Vergleich einzelner Gruppen aufgrund theoretischer Annahmen. Vorgehen: Bilden von Kontrasten durch Linearkombinationen. r = r r mit i = i= 1 g c y c y c y c z.b. g = 1y1+ 1y2 + 0 y3 für H 1 : μ1 < μμ ; 2 > μμ ; 3 = μ g = 0,5y1 0,5y2 + 1 y3 für H 1 : μ1, μ2 < μ; μ3 > μ 0

13 FB 1 W. Ludwig-Mayerhofer Statistik II 13 : Einzelvergleiche a priori Der Standardfehler von g beträgt c1 c2 cr SE( g) = MQSinnerhalb + + m m m g SE( g) Die Statistik folgt einer t-verteilung mit n-r Freiheitsgraden.

14 FB 1 W. Ludwig-Mayerhofer Statistik II 14 Einzelvergleiche a priori: Beispiel (Ramsey/Schafer, S. 150) Geprüft werden soll folgende Annahme: Gruppe 1 unterscheidet sich nicht vom Gesamtmittelwert, Gruppe 2 und 4 liegen unter diesem, Gruppe 3 und 5 darüber. g = 0 y + ( 0,5 y ) + 0,5 y + ( 0,5 y ) + 0,5y = ,900 0,5 4, ,5 5,921 0,5 4, ,5 5,343 = 1, ( 0,5) + 0,5 + ( 0,5) + 0,5 SE( g) = 2, 666 = 0, , 393 t = = 3,192 > 1,67 0, 436 (t-verteilung, 65d.f.)

15 FB 1 W. Ludwig-Mayerhofer Statistik II 15 Multiple Vergleiche (a ) Problem: Korrektur für multiples Testen. Vorgehen: Es wird eine kritische Differenz (oder Grenzdifferenz) berechnet, die einen Korrekturfaktor für das mehrfache Testen enthält. Überschreitet die Stichprobendifferenz zwischen zwei Messwertpaaren diese kritische Differenz, so wird angenommen, dass auch die Differenz in der Grundgesamtheit von 0 verschieden ist. Es gibt eine erhebliche Menge von Vorschlägen zur Berechnung dieser kritischen Differenz. Der im Folgenden besprochene Scheffé-Test gilt als konservativ, d.h. er stellt hohe Anforderungen an die Anerkennung einer Differenz als signifikant.

16 FB 1 W. Ludwig-Mayerhofer Statistik II 16 Multiple Vergleiche: Der Scheffé-Test Die kritische Differenz wird berechnet nach 1 1 DScheffe = MQSinnerhalb + r n r m m Im Beispiel: D Scheffe ( r 1) F 1, ;1 1 1 = 2, ,513 = 1, α Der größte Abstand zwischen zwei Gruppen beträgt 1,871. Kein Abstand überschreitet also die kritische Differenz kein signifikanter Einzelunterschied!

17 FB 1 W. Ludwig-Mayerhofer Statistik II 17 Abschließender Hinweis Die meisten Berechnungsmethoden dieser Vorlesung funktionieren auch bei unterschiedlichen Gruppengrößen (statt einheitlicher Größe m werden dann n 1, n 2... n r verwendet). Das gilt aber nicht grundsätzlich. Auch werden Probleme fehlender Normalverteilung bzw. Varianzhomogenität der Daten durch ungleiche Gruppengrößen verstärkt.

18 FB 1 W. Ludwig-Mayerhofer Statistik II 18 Zweifaktorielle : Keine Interaktion

19 FB 1 W. Ludwig-Mayerhofer Statistik II 19 Zweifaktorielle : Ordinale Interaktion

20 FB 1 W. Ludwig-Mayerhofer Statistik II 20 Zweifaktorielle : Disordinale Interaktion

21 FB 1 W. Ludwig-Mayerhofer Statistik II 21 Zweifaktorielle : Hybride Interaktion

22 FB 1 W. Ludwig-Mayerhofer Statistik II 22 Zusätzliche Literatur Ramsey, Fred L. & Schafer, Daniel W.: The Statistical Sleuth. A Course in Methods of Data Analysis. Pacific Grove, CA: Duxbury, 2. Aufl

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Prüfungsliteratur: Rudolf & Müller S

Prüfungsliteratur: Rudolf & Müller S 1 Beispiele zur univariaten Varianzanalyse Einfaktorielle Varianzanalyse (Wiederholung!) 3 Allgemeines lineares Modell 4 Zweifaktorielle Varianzanalyse 5 Multivariate Varianzanalyse 6 Varianzanalyse mit

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

Modul G.1 WS 07/08: Statistik 31.01.2008 1

Modul G.1 WS 07/08: Statistik 31.01.2008 1 Modul G.1 WS 07/08: Statistik 31.01.2008 1 Varianzanalyse Als Varianzanalyse bezeichnet man eine große Gruppe datenanalytischer und mustererkennender statistischer Verfahren, die zahlreiche unterschiedliche

Mehr

Mehrfaktorielle Varianzanalyse

Mehrfaktorielle Varianzanalyse Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Messwiederholungen und abhängige Messungen

Messwiederholungen und abhängige Messungen Messwiederholungen und abhängige Messungen t Tests und Varianzanalysen für Messwiederholungen Kovarianzanalyse Thomas Schäfer SS 009 1 Messwiederholungen und abhängige Messungen Bei einer Messwiederholung

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Pflichtmodul E2: Theorie und Methoden psychologischen Messens und Beobachtens. Ausgewählte Methoden. Mag. Dr. Ulrich Tran Sommersemester 2011

Pflichtmodul E2: Theorie und Methoden psychologischen Messens und Beobachtens. Ausgewählte Methoden. Mag. Dr. Ulrich Tran Sommersemester 2011 Pflichtmodul E2: Theorie und Methoden psychologischen Messens und Beobachtens Ausgewählte Methoden Mag. Dr. Ulrich Tran Sommersemester 2011 Überblick LV gibt Einführung in Grundlagen, Anwendung(SPSS) und

Mehr

Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)

Übungsklausur zur Vorlesung Statistik I (WiSe 2003/2004) Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Biostatistik 7. Zweistichproben-t-Test, F-Test

Biostatistik 7. Zweistichproben-t-Test, F-Test Biostatistik 7. Zweistichproben-t-Test, F-Test Zweistichproben-t-Test Vergleich von zwei unabhängigen Stichproben Versuchssituation: dieselbe Variable wird bei zwei unabhängigen Stichproben geprüft Kontrollgruppe,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

methodenlehre ll ALM und Mehrfaktorielle ANOVA Mehrfaktorielle ANOVA methodenlehre ll ALM und Mehrfaktorielle ANOVA

methodenlehre ll ALM und Mehrfaktorielle ANOVA Mehrfaktorielle ANOVA methodenlehre ll ALM und Mehrfaktorielle ANOVA 15.04.009 Das Allgemeine lineare Modell Post hoc Tests bei der ANOVA Mehrfatorielle ANOVA Thomas Schäfer SS 009 1 Das Allgemeine lineare Modell (ALM) Varianz als Schlüsselonzept "The main technical function

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Hypothese: Typische Eigenschaften von Terroristen (Prototypikalität) und die nationale Herkunft (Ausländer vs. Deutsche) haben

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen SPSSinteraktiv von Signifikanztests - 1 - Übersicht über verschiedene Signifikanztests und ihre Verfahren zur Überprüfung von Unterschieden in der zentralen Tendenz Unterschieden werden können Testsituationen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

1 Varianzanalyse (ANOVA)

1 Varianzanalyse (ANOVA) 1 Varianzanalyse (ANOVA) Ziele: Erklärung einer Meßgröße durch ein additves Modell. Abschätzung der Wirkungsweise von Einflußfaktoren, ihres Zusammenwirkens und ihres anteiligen Beitrages an der Variation

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Deskriptive Statistik

Deskriptive Statistik Modul G.1 WS 07/08: Statistik 8.11.2006 1 Deskriptive Statistik Unter deskriptiver Statistik versteht man eine Gruppe statistischer Methoden zur Beschreibung von Daten anhand statistischer Kennwerte, Graphiken,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 04: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Skript zur Vorlesung Statistik 2

Skript zur Vorlesung Statistik 2 Weder die Autorin noch der Fachschaftsrat Psychologie übernimmt Irgendwelche Verantwortung für dieses Skript. Das Skript soll nicht die Lektüre der Prüfungsliteratur ersetzen. Verbesserungen und Korrekturen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %.

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %. Anhang A: Lösungen der Aufgaben 39 beiden Kombinationen sehr hoch ist. (Dieses Ergebnis wäre aber in diesem Beispiel nicht plausibel.) 5. Der Faktor A und die Wechselwirkung werden signifikant: Lärm hat

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr