GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard"

Transkript

1 GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P O M U K - G Y M N A S I U M

2 1 Symmetrische Figuren Achsensymmetrie Abbildungsvorschrift der Achsenspiegelung: Bei gegebener Achse a wird jedem Punkt P der Ebene ein Bildpunkt P auf folgende Weise zugeordnet: Falls P a, liegt P so, dass [PP ] von der Achse a senkrecht halbiert wird. Falls P a ist, gilt P = P (Fixpunkt) Die Spiegelachse und alle senkrecht zu ihr verlaufenden Geraden sind Fixgeraden. Eine Figur, die bei einer Achsenspiegelung wieder auf sich abgebildet wird, heißt achsensymmetrisch. Punktsymmetrie Abbildungsvorschrift der Punktspiegelung: Bei gegebenem Zentrum Z wird jedem Punkt P der Ebene ein Bildpunkt P so zugeordnet: Für P Z liegt P so, dass P PZ und PZ = P'Z ( so auch Konstruktion) Für P = Z ist P = Z (Fixpunkt). A B Alle Geraden durch Z sind Fixgeraden. Eine Figur, die bei einer Punktspiegelung (180 -Drehung um ein Symmetriezentrum) wieder auf sich abgebildet wird, heißt punktsymmetrisch. A B=B C Z C C a A B A C Seite 2 von 14

3 2 Besondere Vierecke Parallelogramm Ein Viereck, bei dem je zwei Gegenseiten parallel sind, heißt Parallelogramm. Jede der folgenden Aussagen ist gleichwertig: Das Parallelogramm ist punktsymmetrisch. Im Parallelogramm halbieren sich die Diagonalen gegenseitig. Sonderfälle: Die Raute ist ein Parallelogramm mit 4 gleich langen Seiten (zweifach diagonalsymmetrisch). Das Rechteck ist ein Parallelogramm mit 4 gleich großen Winkeln (zweifach mittensymmetrisch). Das Quadrat ist ein Parallelogramm mit 4 gleich langen Seiten und 4 gleich großen Winkeln (jeweils zweifach diagonal- und mittensymmetrisch). Trapez Ein Viereck, bei dem zwei Seiten parallel sind, heißt Trapez. Ein einfach mittensymmetrisches Trapez heißt auch gleichschenkliges Trapez. Drachenviereck Ein Viereck heißt Drachenviereck, wenn es eine Symmetrieachse durch zwei Gegenecken hat (einfach diagonalsymmetrisch). Seite 3 von 14

4 3 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. Nebeneinander liegende Winkel heißen Nebenwinkel, sie ergeben zusammen stets Gegenüberliegende Winkel heißen Scheitelwinkel. Sie sind gleich groß. Doppelkreuzung: Die Winkelpaare 1 und 2, 1 und 2, 1 und 2 sowie 1 und 2 heißen Stufenwinkel (F-Winkel). 1 und 2, 1 und 2, 1 und 2 sowie 1 und 2 heißen Wechselwinkel (Z- Winkel). 1 und 2, sowie 1 und 2 heißen Nachbarwinkel g h Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind; dann ergänzen sich auch Nachbarwinkel zu Innenwinkel bei Dreiecken und Vierecken: Die Summe der Innenwinkel ergibt im Dreieck 180, in jedem Viereck 360. Die Winkelsumme im n-eck beträgt (n - 2) 180 Seite 4 von 14

5 4 Besondere Dreiecke Das gleichschenklige Dreieck Ein Dreieck mit zwei gleich langen Seiten (Schenkel) heißt gleichschenklig. Die dritte Seite heißt Basis. Jede der folgenden Aussagen ist gleichwertig: Das Dreieck ist gleichschenklig. Das Dreieck ist achsensymmetrisch. Das Dreieck besitzt zwei gleich große Winkel. Basis Das gleichseitige Dreieck Ein Dreieck mit drei gleich langen Seiten heißt gleichseitig. Seine Innenwinkel betragen jeweils Das rechtwinklige Dreieck Ein Dreieck ABC hat genau dann bei C einen rechten Winkel, wenn C auf dem Halbkreis über [AB] liegt. (Thaleskreis) Die Schenkel des rechten Winkels sind die Katheten, die Gegenseite des rechten Winkels ist die Hypotenuse (längste Seite). Seite 5 von 14

6 5 Besondere Linien im Dreieck Jedes Dreieck besitzt einen Umkreis. Sein Mittelpunkt ist der Schnittpunkt der Mittelsenkrechten zu den Dreiecksseiten (kann innerhalb, außerhalb des Dreiecks oder auf einer Seite liegen). A C In jedem Dreieck schneiden sich die Winkelhalbierenden in genau einem Punkt, dem Inkreismittelpunkt. B C Im Dreieck schneiden sich die Höhen in genau einem Punkt. A B Im Dreieck schneiden sich die Seitenhalbierenden im sogenannten Schwerpunkt. Seite 6 von 14

7 6 Kongruenz Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. Sind zwei Figuren F und G kongruent, so schreibt man kurz: F G. In kongruenten Figuren sind einander entsprechende Winkel gleich groß und einander entsprechende Seiten gleich lang. Kongruenzsätze für Dreiecke SSS: Dreiecke sind kongruent, wenn sie in allen Seiten übereinstimmen. SWS: Dreiecke sind kongruent, wenn sie in zwei Seiten und dem Zwischenwinkel übereinstimmen. WSW Dreiecke sind kongruent, wenn sie in einer Seite und SWW: zwei gleichliegenden Winkeln übereinstimmen. SsW: Dreiecke sind kongruent, wenn sie in zwei Seiten und dem Gegenwinkel der größeren Seite übereinstimmen. Seite 7 von 14

8 Beziehungen zwischen Seiten und Winkeln: In jedem Dreieck liegt der längsten Seite der größte Winkel gegenüber. Jede Seite ist kleiner als die Summe der anderen Dreiecksseiten. 7 Konstruktionen Symmetriepunkt 1. Kreise um A und B (beliebig auf a) mit Radien AP und BP 2. P ist zweiter Schnittpunkt der beiden Kreise Mittelsenkrechte (Symmetrieachse bzw. damit Symmetriezentrum zu A,B) 1. Kreis um A und B mit gleichem Radius r 2. Gerade durch die Schnittpunkte ist die Mittelsenkrechte von [AB] A B Winkelhalbierende 1. Kreis um S mit beliebigem Radius r schneidet die beiden Schenkel des Winkels in G und H 2. Mittelsenkrechte zu [GH] ist die Winkelhalbierende S H G w Seite 8 von 14

9 Lot errichten (Pg) 1. Kreis um P schneidet die Gerade g in A und B. 2. Mittelsenkrechte der Strecke [AB] ist das gesuchte Lot A P g B Lot fällen (Pg) 1. Spiegle P an der Achse g. 2. Gerade PP ist das gesuchte Lot. 8 Terme Terme mit Variablen Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen oder mit gleichen Zahlen belegt werden. Tritt aber dieselbe Variable mehrmals in einem Term auf, so muss sie jeweils mit derselben Zahl belegt werden. Erst wenn man die Variablen in einem Term mit Zahlen belegt, erhält man den Wert des Terms. Seite 9 von 14

10 Beispiele: T(x) = x 2-3x T(-4) = (-4) 2-3 (-4) = = 28 T(a;b) = 2b a² T(3;2) = 2 2 3² = 4 9 = 5 Beachte: 3 x = 3x x³ = x x x Termumformungen Umformungen sind nach den gültigen Rechengesetzen (Kommutativ- und Assoziativgesetze, Klammerregeln) möglich. Äquivalente Terme liefern beim Einsetzen gleicher Zahlen für die Variable gleiche Termwerte. Distributivgesetz: a(b±c) = ab ± ac Klammern auflösen: Steht ein Plus vor der Klammer, kann man die Klammer ohne weiteres weglassen. Steht ein Minus vor der Klammer, lässt man die Klammer weg und kehrt gleichzeitig alle Rechenzeichen in der Klammer um. Seite 10 von 14 Rohr JNG

11 Beispiele: y + [3x + (5x 2y)] = y + [3x + 5x 2y] = y + 3x + 5x 2y x - (y 2-2x) + y 2 = x - y 2 + 2x + y 2 Termglieder zusammenfassen: Summen werden vereinfacht, indem man gleichartige Summanden zusammenfasst. Beispiel: x - y 2 + 2x + y 2 = x + 2x - y 2 + y 2 = 3x Bei einer Summe ungleichartiger Terme, etwa 3a + 4a 2, ist kein Zusammenfassen möglich. Bei einer Summe von Produkten werden zunächst die einzelnen Produkte vereinfacht. Dann werden die Summanden, in denen die gleichen Variablen mit jeweils derselben Potenz vorkommen, zusammengefasst. Beispiele: 3x² + (5x)² + 3x = 3x² + 25x² + 3x = 28x² + 3x 3x 4x + 2 x 5x = 12x² + 10x² = 22x² Multiplizieren von Summen: Zwei Summen werden multipliziert, indem man jeden Summanden der ersten Klammer mit allen Summanden der zweiten Klammer multipliziert (unter Berücksichtigung der Vorzeichen) und die Produkte addiert: Seite 11 von 14 Rohr JNG

12 (a+b) (c+d) = ac + ad + bc + bd Beispiele: (2x + 3y)(3-4x) = 6x - 8x 2 + 9y - 12xy (3x 2y)(4x 10)=12x² - 30x 8xy + 20y Faktorisieren: Durch Ausklammern gemeinsamer Faktoren oder mit Hilfe der binomischen Formeln kann man bestimmte Summen faktorisieren. Beispiele: -4a + 4b = -4(a b) ac + bc ad bd = c(a + b) d (a + b) = (a + b) (c d) 9 Lineare Gleichungen Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man auf beiden Seiten dieselbe Zahl oder denselben Term addiert (subtrahiert) oder auf beiden Seiten mit derselben von Null verschiedenen Zahl multipliziert (dividiert). Solche Umformungen sind Äquivalenzumformungen. Seite 12 von 14 Rohr JNG

13 Eine lineare Gleichung hat entweder genau eine Zahl oder keine Zahl (unerfüllbare Gleichung) 5 0,5x = 3 + 0,75x + 0,5x 5 = 3 +1,25x = 1,25x : 1,25 1,6 = x L = {1,6} falls G = L = { } falls G = 5 0,5x = 3 0,5x + 0,5x 5 = 3 L = {} oder alle Zahlen der Grundmenge (allgemeingültige Gleichung) als Lösung. 3 0,5x = 3 0,5x + 0,5x 3 = 3 L = G Seite 13 von 14 Rohr JNG

14 Anzahl Anzahl Note Grundwissen Mathematik 10 Daten und Diagramme Das arithmetische Mittel (=Mittelwert) einer Datenreihe erhält man, wenn man alle Werte addiert und den Summenwert dann durch die Anzahl der Werte dividiert. Beispiel: Notenverteilung bei einer Mathematikschulaufgabe Note Anzahl ( ) : 30 = 3,3 Verschiedene Diagrammtypen zu obigem Beispiel: Säulendiagramm Note Liniendiagramm Balkendiagramm Anzahl Kreisdiagramm Note 1 7% Note 6 3% Note 5 17% Note 2 23% Note 4 23% Note 3 27% Note Seite 14 von 14 Rohr JNG

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen Mathematik 7. Klasse /6 Grundwissen 7. Klasse lgebra.terme mit Variablen a) llgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h.

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,

Mehr

7.1 Algebra Rechnen mit rationalen Zahlen und Termen

7.1 Algebra Rechnen mit rationalen Zahlen und Termen Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 7. Klasse 7.1 Algebra 7.1.1 Rechnen mit rationalen Zahlen und Termen WH: Siehe dazu..3 Vorrangregeln und.. K-, A-, D-Gesetze sowie 6. Rechengesetze

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen 7. Klasse I. Symmetrie 1. Achsensymmetrie Die Punkte P und P sind achsensymmetrisch bzgl. der Symmetrieachse a. Sind Figuren zueinander achsensymmetrisch, so kannst du folgende Eigenschaften

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse 170 10 Grundwissen Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. aue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandeltwurde,nimmstdudiezugehörigenkartenindeinekarteiauf.

Mehr

Basiswissen 7. Klasse

Basiswissen 7. Klasse Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie Zueinander symmetrische Punkte können durch Kongruenzabbildungen (= Abbildungen, bei denen Form und Größe von Figuren gleich bleiben) aufeinander abgebildet

Mehr

Geometrie. Grundwissenskatalog G8-Lehrplanstandard

Geometrie. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Geometrie Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM Dieses Heft gehört: I. ALGEBRA 1. Terme 1.1 Begriff Terme sind sinnvolle Zusammenstellungen aus Zahlen, Platzhaltern (= Variablen), Rechenzeichen

Mehr

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme...

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme... Mathe 7 I. Symmetrie... 2 A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3 II. Winkelbetrachtungen... 13 III. Terme... 14 IV. Termumformungen... 16 V. Gleichungen... 18 VI.

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen M 7. chsensymmetrie Eigenschaften: - [`] steht senkrecht auf der Symmetrieachse - [`] wird von der Symmetrieachse halbiert - Liegt ein unkt auf der Symmetrieachse, dann stimmt ` mit überein - Zueinander

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe Wirsber-Gymnasium Grundwissen Mathematik 7. Jahransstufe Lerninhalte Fakten-Reeln-eispiele Symmetrie Eienschaften der chsensymmetrie: - Zueinander symmetrische Strecken sind leich lan. - Zueinander symmetrische

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Grundwissen 8II/11. Terme

Grundwissen 8II/11. Terme Grundwissen 8II/11 Termumformungen 1. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann

Mehr

Grundwissen 8I/11. Terme

Grundwissen 8I/11. Terme Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Westermann Seite 52 Aufgabe 2 b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Nach dem Einzeichnen des Urdreiecks und des Punktes A erkennt man: Der Vektor verschiebt den Punkt A um 3

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

7. Klasse TOP 10 Mathematik 07 Gesamtes Grundwissen mit Übungen G

7. Klasse TOP 10 Mathematik 07 Gesamtes Grundwissen mit Übungen G www.strobl-f.de/grund7g.pdf 7. Klasse TOP 0 Mathematik 07 Gesamtes Grundwissen mit Übungen G Grundwissen Mathematik 7. Klasse: Die 0 wichtigsten Themen auf jeweils einer Seite! Zum Wiederholen kann man

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Stoffverteilungsplan Klasse 7

Stoffverteilungsplan Klasse 7 Stoffverteilungsplan Klasse 7 Rahmenlehrplan Im Blickpunkt: Mathematische Kompetenzen 6 Viel Erfolg im neuen Schuljahr 1 Zahlen und Operationen 30 Basiswissen: Brüche und Dezimalzahlen Kapitel 1: Rationale

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Grundwissen 6 / Formveränderung von Brüchen Bruchrechnung Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Bruchrechnung 1. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe Zahl dividieren.

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Aufgaben zum Grundwissen der Jahrgangsstufen 5 bis 7 Lösungen

Aufgaben zum Grundwissen der Jahrgangsstufen 5 bis 7 Lösungen Aufgaben zum Grundwissen der Jahrgangsstufen 5 bis 7 Lösungen Auf den folgenden Seiten finden sich Lösungen zu den Aufgaben zum Grundwissen der Jahrgangsstufen 5 bis 7. Dabei handelt es sich nicht um Musterlösungen.

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen

MB1 LU 20, 21,23,24 Kongruenzabbildungen MB1 LU 20, 21,23,24 Kongruenzabbildungen Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung, die

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22. Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr