Die Lorentz-Transformation

Größe: px
Ab Seite anzeigen:

Download "Die Lorentz-Transformation"

Transkript

1 Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme her, die sih gegeneinander mit einer Relatigeshwindigkeit om Betrag = konst. bewegen. Sie ersetzt in der speziellen Relatiitätstheorie die Galilei-Transformation der auf Galilei und Newton zurükgehenden klassishen Mehanik. Die Lorentz-Transformation ist die Grundlage für die relatiistishe Kinematik und die relatiistishe Dynamik. Sie führt (u. a.) zu den Formeln für die relatiistishe Addition on Geshwindigkeiten, für die Zeitdilatation, die Längenkontraktion, die relatiistishe Masse und die Äquialenz on Masse und Energie mit der berühmten Formel E = m. Gegeben seien zwei Inertialsysteme mit den kartesishen Koordinatensystemen S und S' (s. Abb.). Ein Ereignis wird in S durh die Koordinaten x, y, z, t festgelegt, in S' durh die Koordinaten x', y', z', t'. Die x'-ahse falle mit der x- Ahse zusammen, y'- und y-ahse sowie z'- und z-ahse seien parallel. Das System S' bewege sih gegenüber dem System S mit der Relatigeshwindigkeit om Betrag > 0 in Rihtung der positien x-ahse. Zur Zeit t = t' = 0 sollen die Ursprünge beider Koordinatensysteme zusammenfallen. In beiden Systemen sollen öllig gleihe Uhren zur Zeitmessung benutzt werden. Die Uhren in einem System seien jeweils untereinander synhronisiert.

2 - - In der klassishen Mehanik werden die Koordinaten eines Ereignisses on einem Inertialsystem in das andere mit Hilfe der Galilei-Transformation umgerehnet. Für den Zusammenhang on x- und x'-koordinate ergibt sih hier: x = x' + t' und x' = x t mit t = t'. Die Galilei-Transformation berüksihtigt das Relatiitätsprinzip der Mehanik wie auh dessen Erweiterung, das Relatiitätsprinzip der Physik, also die Gleihwertigkeit aller Inertialsysteme zur Beshreibung aller physikalishen Vorgänge, niht aber die Konstanz der Lihtgeshwindigkeit. Nah der klassishen Addition der Geshwindigkeiten müssten sih alle im System S gemessenen Geshwindigkeiten um on den jeweils in S' gemessenen untersheiden (u = u' + ). Dies widerspriht aber für u = der Konstanz der Lihtgeshwindigkeit (u = u' = ). Durh Einführung eines Korrekturfaktors γ in die Galilei-Transformation kann diese derart erweitert werden, dass neben dem Relatiitätsprinzip auh die Konstanz der Lihtgeshwindigkeit berüksihtigt wird. Für die Transformation der x- bzw. x'-koordinate, die in der Galilei-Transformation x = x' + t' und x' = x t lautet, wird der Ansatz x = γ (x' + t') und x' = γ (x t) gewählt. Infolge des Relatiitätsprinzips der Physik (die Systeme S und S' sind gleihwertig) muss in beiden Gleihungen der gleihe Korrekturfaktor γ stehen. Einige Vorüberlegungen zum Korrekturfaktor γ : Der Korrekturfaktor γ wird weder on der Orts-, noh on der Zeitkoordinate abhängig sein, da alle Raum- und Zeitpunkte gleihberehtigt sind. Dagegen wird er on der Relatigeshwindigkeit abhängen: γ = γ(). Für 0 muss γ() gehen: γ(0) = (Übergang zur Galilei-Transformation, für = 0 fallen S und S' ständig zusammen). Außerdem muss γ( ) = γ() sein, da wegen der Gleihwertigkeit der Systeme S und S' die Vertaushungsregeln wie bei der Galilei-Transformation gelten müssen. Die Gleihungen zur Umrehnung der Koordinaten on einem System in das andere gehen danah auseinander heror, indem man x durh x', y durh y', z durh z', t durh t', durh ' = ersetzt und umgekehrt. γ( ) = γ() könnte z. B durh γ( ) erfüllt werden. Eine Dimensionsbetrahtung des Korrekturansatzes zeigt zudem (wie shon die betrahteten Sonderfälle), dass γ eine dimensionslose Zahl sein muss, sih die Einheit on also rauskürzen muss. Das könnte z. B. durh γ( / ) erfüllt werden.

3 - 3 - Der Korrekturfaktor γ wird wie folgt bestimmt: Zur Zeit t = t' = 0 (wenn also nah Voraussetzung beide Koordinatensysteme gerade zusammenfallen) werde im Ursprung on S ein Lihtblitz ausgesendet. Das Liht legt im System S entlang der x-ahse bis zu einem Punkt P in der Zeit t den Weg x = t zurük, im System S' den Weg x' = t', denn die Lihtgeshwindigkeit hat in beiden Systemen den selben Wert. Da x x', ist auh t t'. Aus der Konstanz der Lihtgeshwindigkeit folgt also, dass in den Systemen S und S' untershiedlihe Zeitspannen für den gleihen Vorgang gemessen werden. Dies erfordert die Einführung einer jeweils eigenen Systemzeit für die Systeme S und S' und eine Transformationsgleihung zur Umrehnung der Systemzeiten t und t' ineinander. Setzt man t = x/ und t' = x'/ in den obigen Korrekturansatz ein, so folgt: x x x = γ x + und x = γ x x = γ x + und x = γ x. Durh Multiplikation der linken sowie der rehten Seiten beider Gleihungen ergibt sih: x x x x = γ. Daraus folgt γ =. Da γ > 0 sein muss wegen γ(0) =, folgt daraus der Korrekturfaktor γ zu γ = mit <. - Die in den Systemen S und S' untershiedlih ablaufende Zeit (t t') bedingt entsprehende Transformationsgleihungen für die Zeit. Mit t = x/ folgt t x = γ + t.

4 - 4 - Mit t' = x'/ folgt weiter t = γ t + x. Die entsprehende Gleihung für t' erhält man nah dem Relatiitätsprinzip, indem man t durh t', t' durh t, x' durh x und durh ersetzt: t = γ t x. Da die Relatibewegung längs der x-ahse erfolgt, transformieren sih die beiden anderen Ortskoordinaten ohne Änderung: y = y', z = z' und umgekehrt. Als Konsequenz aus dem Relatiitätsprinzip der Physik und der Konstanz der Lihtgeshwindigkeit muss die Galilei-Transformation durh die sogen. Lorentz-Transformation ersetzt werden. Die Gleihungen der Lorentz-Transformation lauten: ( ) γ ( ) x = γ x + t x = x t y = y y = y z = z z = z x x t = γ t + t t = γ mit γ = Die Lorentz-Transformation erfüllt die Vertaushungsregeln. Der relatiistishe (Korrektur-) Faktor γ, der auh als Lorentz-Faktor bezeihnet wird, hat, wie oben gefordert, wegen (-) = in beiden Systemen den gleihen Wert. Ein reeller (und endliher) Wert für γ ergibt sih nur für <. Hierin kommt die Lihtgeshwindigkeit als Grenzgeshwindigkeit zum Ausdruk.

5 - 5 - Der Wert des Lorentz-Faktors γ hängt om Betrag der Relatigeshwindigkeit beider Systeme ab. Stets gilt γ. Für 0 geht γ, die Lorentz- Transformation geht also in die Galilei-Transformation über, wenn die Relatigeshwindigkeit zweier Inertialsysteme klein gegenüber der Lihtgeshwindigkeit ist. Die auf Galilei und Newton zurükgehende klassishe Physik ist als Grenzfall für << (und damit γ ) in der umfassenderen on Albert Einstein begründeten relatiistishen Physik enthalten. Häufig wird / = β gesetzt. Damit ergibt sih der Lorentz-Faktor zu γ = β Merklihe Abweihungen der Lorentz-Transformation on der Galilei- Transformation ergeben sih erst für ergleihsweise hohe Relatigeshwindigkeiten, wie den nahfolgenden Werten für γ zu entnehmen ist: = 3600 km/h = 0 3 m/s γ, = 0,, m/s γ,005 = 0,5, m/s γ,55 = 0,9, m/s γ,94 = 0,99, m/s γ 7,089 = 0,999, m/s γ,37 Für ginge γ und die Lorentz-Transformation damit in die Galilei- Transformation über. Dies zeigt die Rolle der Endlihkeit der Signalgeshwindigkeit für die Beshreibung on Ereignissen bezüglih untershiedliher Inertialsysteme. Albert Einstein ( ) hat bei der Abfassung der speziellen Relatiitätstheorie (905) für obige Transformationsgleihungen die Bezeihnung Lorentz-Transformation benutzt. Der niederländishe Physiker Hendrik Antoon Lorentz (853 98) hatte diese Gleihungen bereits 899 in anderem Zusammenhang aufgestellt. Näheres zur speziellen Relatiitätstheorie in: Szallies, Physik, Auer-Verlag

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen? Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

Spezielle Relativitätstheorie. Die Suche nach dem Äther

Spezielle Relativitätstheorie. Die Suche nach dem Äther Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer

Mehr

Erweiterte spezielle Relativitätstheorie

Erweiterte spezielle Relativitätstheorie Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments

Mehr

Michelson-Versuche ohne Lorentz-Kontraktion

Michelson-Versuche ohne Lorentz-Kontraktion Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

2.3 Der Fluss eines Vektorfeldes

2.3 Der Fluss eines Vektorfeldes 32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Alexander Halles. Temperaturskalen

Alexander Halles. Temperaturskalen emperatursalen Stand: 15.0.004 - Inhalt - 1. Grundsätzlihes über emperatur 3. Kelvin-Sala 3 3. Fahrenheit-Sala und Ranine-Sala 4 4. Celsius-emperatursala 4 5. Die Réaumur-Sala 4 6. Umrehnung zwishen den

Mehr

Kosmische Gravitation

Kosmische Gravitation Kosmishe Gravitation oder Gravitation unter Zentral- und Allsymmetrie Peter Wolff www.wolff.h 4. Mai 2011 1 Einführung Ausgehend von der Gravitationstheorie Newtons soll der Kerngedanke der Weltpotentialtheorie

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

SPEZIFISCHE WÄRMEKAPAZITÄT VON METALLEN

SPEZIFISCHE WÄRMEKAPAZITÄT VON METALLEN INSTITUT FÜR ANGEWANDTE PHYSIK Physikalishes Praktikum für Studierende der Ingenieurswissenshaften Universität Hamburg, ungiusstraße 11 SPEZIFISCHE WÄRMEKAPAZITÄT VON METALLEN 1 Einleitung Wärme ist die

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Laser und Wellenoptik, Teil B

Laser und Wellenoptik, Teil B Physikalishes Anfängerpraktikum Gruppe Mo-16 Sommersemester 006 Jens Kühenmeister (153810) Julian Merkert (1999) Versuh: P-4 Laser und Wellenoptik, Teil B - Vorbereitung - Vorbemerkung Bereits 1917 erkannte

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Zur Simulation von Haftreibung und mechanischen Anschlägen

Zur Simulation von Haftreibung und mechanischen Anschlägen Kurzfassung Die besonderen Eigenshaften von Zwangskräften liefern einen Ansatz für die Modellierung von Haftreibung und mehanishen Anshlägen. Dabei werden Auslenkung, Geshwindigkeit und Beshleunigung ereignisgesteuert

Mehr

Etablierte Bodenmodelle im Ingenieurbau

Etablierte Bodenmodelle im Ingenieurbau Einleitung BODENMODELLE Einleitung Die realistishe Abbildung von Bauwerk - Boden Wehselwirkungen in Finite Elemente Programmen ist ungeahtet des gegenwärtig hohen Entwiklungsstandes der verfügbaren Software

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

TU Ilmenau Physikalisches Grundpraktikum Versuch O7 Institut für Physik. Lichtgeschwindigkeit Seite 1

TU Ilmenau Physikalisches Grundpraktikum Versuch O7 Institut für Physik. Lichtgeschwindigkeit Seite 1 Aufgabenstellung Lihtgeshwindigkeit eite. Die Lihtgeshwindigkeit in Luft ist aus der Phasendifferenz zwishen gesendeter und empfangener, amplitudenmodulierter Welle zu bestimmen..2 Die Brehzahlen von Wasser

Mehr

Datenbanken. Allg. Einführung in Datenbanken 1. Ich kenne Datenbanken. Wo werden Datenbanken eingesetzt. Welchen Zweck haben Datenbanken.

Datenbanken. Allg. Einführung in Datenbanken 1. Ich kenne Datenbanken. Wo werden Datenbanken eingesetzt. Welchen Zweck haben Datenbanken. Vorshau Einführung und Begriffe ER-Modell Relationales Datenodell Entities, Relations, Attribute Beispiele, Grafishe Darstellung Ipleentationsentwurf: Datenbanken konkret konzipieren Die Arbeit it Datenbanken

Mehr

Kapitel 5. Schwingungen

Kapitel 5. Schwingungen Kapitel 5 Shwingungen 5 5 Shwingungen 5.1 Grundbegriffe... 221 5.2 Freie Shwingungen... 224 5.2.1 Ungedämpfte freie Shwingungen... 224 5.2.2 Federzahlen elastisher Systeme... 230 5.2.3 Gedämpfte freie

Mehr

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotehnik und Informationstehnik Institut für Mikro- und Nanoelektronik Fahgebiet Elektronishe Shaltungen und Systeme EDA-Methoden Versuh 12 im Informationselektronishen Praktikum Studiengang

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 5 Approximative Textsuhe Weseite zur Vorlesung http://ls11-www.s.tu-dortmund.de/people/rahmann/teahing/ss2008/algorithmenaufsequenzen

Mehr

Versuchsprotokoll. Esterverseifung

Versuchsprotokoll. Esterverseifung Versuhsprotokoll Versuhsdatum:09.11.2004 Protokolldatum: Sttempell Durhgeführt von: Esterverseifung 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------

Mehr

3.1 Wechselwirkung elektromagnetischer Strahlung mit atomaren Systemen

3.1 Wechselwirkung elektromagnetischer Strahlung mit atomaren Systemen Laserprinzip 3 Laserprinzip 3.0 Lernziele des Kapitels In diesem Kapitel werden Sie lernen, unter welhen Bedingungen Verstärkung im optishen Spektralbereih erreiht werden kann und wie damit ein optisher

Mehr

Grundlagen der Kostenbestimmung

Grundlagen der Kostenbestimmung Amt für Wasser und Abfall des Kantons Bern Reiterstrasse 11 3011 Bern Tel. 031 633 38 11 Fax 031 633 38 50 Email info@awa.bve.be.h Internet http://www.be.h/awa Merkblatt Vorgehen zur Bestimmung der Kosten

Mehr

Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie

Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie Klenzestr. 87 80469 München Tel. 089/28808837 Symposium Was ist das für eine Welt, in der wir leben? Freiburg 3. Juli 2010 Inhalt

Mehr

Kinetik homogener Reaktionen - Formalkinetik

Kinetik homogener Reaktionen - Formalkinetik Prof. Dr. xel rehm Universität Oldenburg - Praktikum der Tehnishen Chemie 1 Einleitung Kinetik homogener Reaktionen - Formalkinetik Unter hemisher Kinetik versteht man die Lehre von der Geshwindigkeit

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Institut für Innovatives Rehnen und Programmstrukturen (IPD) Übersetzerbau WS 2007/08 http://www.info.uni-karlsruhe.de/ Dozent: Prof. Dr.rer.nat. G. Goos goos@ipd.info.uni-karlsruhe.de

Mehr

Zur Berechnung von ψ-werten für Baukonstruktionen im Bereich bodenberührter Bauteile

Zur Berechnung von ψ-werten für Baukonstruktionen im Bereich bodenberührter Bauteile Ao. Univ. Prof. ipl.-in. r. tehn. Klaus Kreč, Büro für Bauphysik, Shönber am Kamp, Österreih raft, 24. 8. 2009 Zur Berehnun von ψ-werten für Baukonstruktionen im Bereih bodenberührter Bauteile I. Vorbemerkun

Mehr

Technische Strömungslehre Formelsammlung

Technische Strömungslehre Formelsammlung Formelammlung Strömunglehre Seite von 4 Tehnihe Strömunglehre Formelammlung Komreibilität K von Flüigkeiten E FL V V K E Fl Komreibilität von Gaen V Bei Gaen entriht E V Ga vonϑ C ;, 35bar für den Normzutand

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Versuchsüberschrift nach dem Schema: Protonierung der Base mit der Säure

Versuchsüberschrift nach dem Schema: Protonierung der Base mit der Säure Arbeitsheft Säuren und Basen Inhalt Jakob 1 Inhaltsverzeihnis: Seite: 1 Definition für wässrige Lösungen (Arrhenius) 1.1 Wasser Chlorwasserstoff 2 1.2 Ammoniak Wasser 3 2 Allgemeine Definition (Brönsted)

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie Dualität in der Elementaren Geometrie Vortrag zum Tag der Mathematik 2012 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stohastik Inhaltsverzeihnis 1 Zusammenfassung (aus dem Programmheft)

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen

Mehr

VORANSICHT I/A. Mit Hörbeispielen! Der Dopplereffekt. Der Beitrag im Überblick. 4. Der Dopplereffekt 1 von 22. Doris Walkowiak, Görlitz

VORANSICHT I/A. Mit Hörbeispielen! Der Dopplereffekt. Der Beitrag im Überblick. 4. Der Dopplereffekt 1 von 22. Doris Walkowiak, Görlitz 1 von 22 Der Dopplereffekt Doris Walkowiak, Görlitz Wohl jedem von uns ist shon einmal aufgefallen, dass bei einem vorbeifahrenden Krankenwagen mit Martinshorn der Ton plötzlih abbriht und sih mit veränderter

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung Höhenmessung mittels Seeintererometer unter Ausnutzung der solaren Radiostrahlung Christian Monstein Eine ür Amateure neue Anwendung radioastronomisher Messmethoden besteht in der relativen Höhenmessung

Mehr

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik:

Vektorrechnung. 1. Vektoren im R 2, R 3 Größen in Physik und Technik: Vektorrechnung 1. Vektoren im R 2, R 3 Größen in Physik und Technik: - skalare Größen: Länge [m], Zeit [sec], Masse [kg], Energie [N m], elektr. Spannung [V ],... gekennzeichnet durch: Maßzahl ( R) [Maßeinheit]

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Kompetenzübersicht A Klasse 5

Kompetenzübersicht A Klasse 5 Kompetenzübersicht A Klasse 5 Natürliche Zahlen und Größen A1 Ich kann eine Umfrage durchführen und die Ergebnisse in einer Strichliste und einem Säulendiagramm darstellen. A2 Ich kann große Zahlen vorlesen

Mehr

Beitrag und Steuer - Aspekte der Finanzierung der gesetzlichen Rentenversicherung im Modell des DJB _

Beitrag und Steuer - Aspekte der Finanzierung der gesetzlichen Rentenversicherung im Modell des DJB _ Krupp, Eigenständige Siherung der Frau als Alternative zum Hinterbliebenenrentenreht dieser Fahtagung vorgestellten djb-modellliegt eine konkrete Ausgestaltung vor. Auh die bei den hristlihen Kirhen haben

Mehr

Heuristiken zur Losgrößenplanung in PPS-Systemen Christian Ortmann und Ingo Siebeking

Heuristiken zur Losgrößenplanung in PPS-Systemen Christian Ortmann und Ingo Siebeking Diskussionsbeitrag Nr. 2010 BWL/Produktion Prämierte Diplomarbeiten Heuristiken zur Losgrößenplanung in PPS-Systemen Christian Ortmann und Ingo Siebeking Fahbereih Wirtshaftswissenshaften Universität Osnabrük

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Inertialsysteme keine keine

Inertialsysteme keine keine Inertialsysteme Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Der Beobachter wird i.d.r. mit dem Bezugssystem identifiziert, so dass das Koordinatensystem am Beobachter

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Kapitel 12: Modulation

Kapitel 12: Modulation 12: Modulation 12.1 Grundlegende Begriffe 12.2 Aplitudenodulation eines Sinusträgers 12.3 Winkelodulation 12.4 Digitale Modulationsverfahren 12.1 Grundlegende Begriffe Kapitel 12: Modulation Motivation

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Im nun folgenden Kapitel werden wir Oszillatoren koppeln und uns ans Wellenreiten machen..

Im nun folgenden Kapitel werden wir Oszillatoren koppeln und uns ans Wellenreiten machen.. Im nun folgenden Kapitel werden wir Oszillatoren koppeln und uns ans Wellenreiten mahen.. Die grosse Welle von Kanagawa, von Katsushika Hokusai (~1830). Quelle: Wikipedia Inhaltsverzeihnis 9 Wellen...

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Der Joule-Thomson-Effekt

Der Joule-Thomson-Effekt Joule-homson-Effekt Der Joule-homson-Effekt In diesem ersuh werden die Joule-homson-Koeffizienten von vershiedenen Gasen (e, CO, N ) bestimmt, indem die emeraturänderung der Gase infolge einer Drukänderung

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Der Reflexionsfaktor bei der senkrechten Reflexion von Luftstoßwellen an starren und an nachgiebigen Materialien

Der Reflexionsfaktor bei der senkrechten Reflexion von Luftstoßwellen an starren und an nachgiebigen Materialien Bei diesem Beitrag handelt es sih um einen wissenshaftlih begutahteten und freigegebenen Fahaufsatz ( reviewed aer ). Der Reflexionsfaktor bei der senkrehten Reflexion von Luftstoßwellen an starren und

Mehr

In diesem Abschnitt wird vorgestellt wie die Wählsignale einer Telefonnummer übertragen werden. Unter anderem ist die DTMF Tabelle angegebnen.

In diesem Abschnitt wird vorgestellt wie die Wählsignale einer Telefonnummer übertragen werden. Unter anderem ist die DTMF Tabelle angegebnen. Fahhohshule Köln Toasz Kurowiki DSP First Laboratory Eerise #7 Everyday Sinusoidal Signals 1 Bakground In diese Lab werden zwei Anwendungsgebiete vorgestellt die Sinussignale zur Inforationsübertragen

Mehr

FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG

FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG 1 FORMELN EINGEBEN FORMELFELD ÖFFNEN UND SCHLIEßEN Um eine Formel eingeben zu können öffnen Sie den Formeleditor mit EINFÜGEN / FORMEL

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Distributivgesetz anwenden und üben

Distributivgesetz anwenden und üben LS 05 Terme, Variablen, Gleihungen 18 LS 05 Distributivgesetz anwen un üben Zeit Lernaktivitäten Material Kompetenzen 1 EA 15 Die S vereutlihen sih as Distributivgesetz geometrish un entwikeln ihre persönlihe

Mehr

z.b. bei Antiblockiersystemen in der Kfz- Technik oder bei Videorecordern als Verwakkelschutz

z.b. bei Antiblockiersystemen in der Kfz- Technik oder bei Videorecordern als Verwakkelschutz ... DREHRATENMESSGEBER INERTIALNAVIGATION Bei der Inertialnavigation werden die translatorishen und die rotatorishen Bewegungen des Fahrzeugs (Shiff, Flugzeug, Auto...) relativ zu einem inertialen Fixpunkt

Mehr

Seminar Kryptographie

Seminar Kryptographie Seminar Kryptographie Christian Wilkin Seminararbeit WS 24/25 Dezember 24 Betreuung: Prof. Dr. Alfred Sheerhorn Fahbereih Design und Informatik Fahhohshule Trier University of Applied Sienes FACHHOCHSCHULE

Mehr

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy Institut für Physikalishe Chemie Grundpraktikum 10. OBERFLÄCHENAKTIVITÄT Stand 06/11/006 OBERFLÄCHENAKTIVITÄT 1. Versuhsplatz Komponenten: - Messapparatur - Behergläser - Pipetten - Messkolben - Laborboy.

Mehr

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy Praktikum Teil A und B 10. OBERFLÄCHENAKTIVITÄT Stand 8/05/013 OBERFLÄCHENAKTIVITÄT 1. Versuhsplatz Komponenten: - Messapparatur - Behergläser - Pipetten - Messkolben - Laborboy. Allgemeines zum Versuh

Mehr

KAPITEL VI MECHANISCHE WELLEN

KAPITEL VI MECHANISCHE WELLEN KAPITEL VI MECHANICHE WELLEN . GRUNDEIGENCHAFTEN DER WELLEN. ENTTEHUNG EINER LINEAREN WELLE Wasserwellen sind ein anshaulihes eispiel ür eine Wellenbewegung in der Ebene. Der hall ist wohl das bekannteste

Mehr

DIPLOMARBEIT. Grundlagen der Strömungssimulation. -einfache Beispiele unter ANSYS- -experimentelle Validierung- Amre EL-Kaddousi Matrikel-Nr.

DIPLOMARBEIT. Grundlagen der Strömungssimulation. -einfache Beispiele unter ANSYS- -experimentelle Validierung- Amre EL-Kaddousi Matrikel-Nr. DIPLOMARBEIT -einfahe Beispiele unter ANSYS- -- Matrikel-Nr.:35074 Matrikel-Nr.:350804 FH Düsseldorf, Kameier, Josef-Gokeln-Str. 9, D-40474 Düsseldorf Thema einer Diplomarbeit für Herrn Amre El-Kaddousi

Mehr

3.2.7.5 Pulverbeschichtung in der Automobilindustrie

3.2.7.5 Pulverbeschichtung in der Automobilindustrie Magerlakierungen Das Lakierergebnis in shwer zugänglihen hintershnittenen Flähen der Karosse z.b. im Bereih A-Säulen/Türshaht ist aufgrund des guten Umgriffverhaltens des Pulvers besser als bei Naßapplikationen.

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676)

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Empfehlenswerte Notizen: David Mermin (Cornell University, USA): "Physics 209: Introductory Notes on Relativity" www.lassp.cornell.edu/~cew2/p209/p209_home.html

Mehr

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996

Versuchsprotokoll zum Versuch Nr. 5 Spezifische Wärme vom 18.11.1996 Gruppe: A vom 8..996 Laut der Versuhsaleitug sollte zuerst der Wasserwert bestimmt werde. Eimal durh Leermessug (jeweils zwei Messuge) ud eimal mit dem Mishugsverfahre (ebefalls 2 Messuge). Ashließed sollte

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

H c. Kompaktmischer ZRK. Die Informationsschrift M9 enthält die wichtigsten produktbezogenen Angaben der Kompaktmischer-Serie.

H c. Kompaktmischer ZRK. Die Informationsschrift M9 enthält die wichtigsten produktbezogenen Angaben der Kompaktmischer-Serie. Kompaktmisher ZRK vom Kessel Rüklauf zum Kessel zu den eizkörpern Rüklauf von den eizkörpern Die Informationsshrift M9 enthält die wihtigsten produktbezogenen Angaben der Kompaktmisher-Serie. Alles Wissenswerte

Mehr

4 Kraftsensoren. Technologien der Mikrosystemtechnik. Kraft. Kraft E Fläche. Fläche. Prof.Dr.W.Hansch, Dipl.Phys.S.Simon. Modul 1247 MST, 4-1

4 Kraftsensoren. Technologien der Mikrosystemtechnik. Kraft. Kraft E Fläche. Fläche. Prof.Dr.W.Hansch, Dipl.Phys.S.Simon. Modul 1247 MST, 4-1 MST, 4-4 Kraftsensoren 6 6 4 3 66 65 64 63 6 6 56 55 54 53 5 5 46 45 44 43 4 4 36 35 34 33 3 3 6 5 4 3 6 5 4 3 6 6 4 3 Flähe Kraft E Flähe Kraft 4 Kraftsensoren 4. Definition mehanisher Größen 4. Elastizitätstheorie

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

6. Die spezielle Relativitätstheorie

6. Die spezielle Relativitätstheorie . Die spezielle Relaiiäsheorie.. Inerialsysee und Galilei-Transforaionen Die spezielle Relaiiäsheorie erweier die Newonshe Mehanik für Inerialsysee auf Siuaionen i sehr hohen Geshwindigkeien, wie sie in

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Potentiometrische Bestimmung von Einzelionenaktivitätskoeffizienten wässriger Elektrolyte mit Hilfe ionenselektiver Elektroden

Potentiometrische Bestimmung von Einzelionenaktivitätskoeffizienten wässriger Elektrolyte mit Hilfe ionenselektiver Elektroden Potentiometrishe Bestimmung von Einzelionenaktivitätskoeffizienten wässriger Elektrolyte mit Hilfe ionenselektiver Elektroden Vom Fahbereih Ingenieurwissenshaften, Abteilung Mashinenbau der Universität

Mehr

Papierfalten und Algebra

Papierfalten und Algebra Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der

Mehr

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher,

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher, Materialien für den Kindergarten Liebe Erzieherin, lieber Erzieher, die Musik nimmt einen ganz besonderen Platz im Herzen der Kinder ein: Kinder lieben Musik! Und ganz nebenbei hat die Musik einen außerordentlih

Mehr

Harmonische Schwingungen

Harmonische Schwingungen HARMONISCHE SCHWINGUNGEN. Grundbegriffe Mathematishe Beshreibung harmonisher Shwingungen Mathematishes Pendel Gedämpfte Shwingungen Erzwungene Shwingung und Resonanz Ueberlagerung mehrerer Shwingungen

Mehr

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Die Physik Albert Einsteins im Schülerlabor Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Einsteinjahr 2005 KinderUni Wissenschaftsmarkt 2005, zweitägige Veranstaltung der Uni mit 20.000 Besuchern

Mehr

Relativitätstheorie. Ergänzendes Scriptum zur Vorlesung Physik II. U. Straumann Physik - Institut Universität Zürich, 19.

Relativitätstheorie. Ergänzendes Scriptum zur Vorlesung Physik II. U. Straumann Physik - Institut Universität Zürich, 19. Relativitätstheorie Ergänzendes Scriptum zur Vorlesung Physik II U. Straumann Physik - Institut Universität Zürich, 19. März 2013 1 Inhaltsverzeichnis 1 Die grundlegenden Ideen 3 1.1 Raum und Zeit.................................

Mehr

UV-VIS-Spektroskopische Bestimmung von Arzneistoffen

UV-VIS-Spektroskopische Bestimmung von Arzneistoffen 11.1 UV-VIS-Spektroskopishe Bestimmung von Arzneistoffen Vorausgesetzte Kenntnisse Aufbauprinzipien der Elektronenhüllen von Molekülen; bindende, nihtbindende und antibindende Molekülorbitale, σ- und π-rbitale;

Mehr

Schwach wechselwirkende Bose-Gase

Schwach wechselwirkende Bose-Gase Kapitel 4 Shwah wehselwirkende Bose-Gase In diesem Kapitel werden wir den Einfluss einer shwahen Wehselwirkung auf die Bose-Gase untersuhen. Unser Hauptaugenmerk rihtet sih dabei auf die dabei verursahte

Mehr

1. Elektrostatische Felder E

1. Elektrostatische Felder E 1. Elektrosttishe Felder E Zusmmenfssung wihtiger Formeln Die Elektrosttik beshäftigt sih mit den Feldern zeitlih konstnter Ldungsverteilungen. Grundlge dfür ist die Coulomb-Krft uf eine infinitesimle

Mehr