Formeln für Flächen und Körper

Größe: px
Ab Seite anzeigen:

Download "Formeln für Flächen und Körper"

Transkript

1 Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ... 7 KREIS... 8 KREISAUSSCHNITT... 9 KREISRING VOLUMENBERECHNUNG WÜRFEL QUADER... 1 PRISMA PYRAMIDE MIT QUADRATISCHER GRUNDFLÄCHE PYRAMIDE MIT RECHTECKIGER GRUNDFLÄCHE PYRAMIDENSTUMPF REGELMÄßIGER TETRAEDER... 0 KEGEL... 1 KEGELSTUMPF... KUGEL... 3 HINWEISE ZU DEN EINHEITEN... 4 LÄGENEINHEITEN... 4 FLÄCHENEINHEITEN... 4 VOLUMENEINHEITEN... 5

2 Seite - Formeln Flächenberechnung Quadrat Für die Fläche: A = a = aÿa Für den Umfang: U = 4a Für die Länge der Diagonalen: d = aÿ (Pythagoras: a + a = d ) Bemerkung: Der Umfang einer Figur ergibt sich immer über die Summe der Längen aller Linien, die die Figur umgeben. Beim Quadrat gilt deshalb: U = a + a + a + a = 4a Übungen zur Flächenberechnung findet man unter: Beispiel: Ein Quadrat hat eine Seitenlänge von a = 10cm. Wie groß ist die Fläche A und wie groß der Umfang U? A = (10cm) = 100cm U = 4a = 4ÿ10cm = 40cm

3 Seite 3 - Formeln Rechteck A = aÿb U = a + b = ÿ(a + b) d = a b (Pythagoras) Parallelogramm Formel: A = gÿh Die Höhe (h) steht immer senkrecht auf der Grundseite (g), wie bei den Dreiecken. Der Umfang ist wieder die Summe über die Längen aller 4 Seiten. Da hier a = c und b = d gilt, ergibt sich der Umfang durch U = a + b.

4 Seite 4 - Formeln Dreieck Formel: A = 1/ÿcÿh c = cÿh c / U = a + b + c Bemerkung: Bei der Flächenformel oben wurde als Grundseite AB ("Seite c") verwendet. Diese Formel könnte man auch analog für andere Grundseiten und deren Höhen formulieren, z.b. A = 1/ÿbÿh b. Ist ein Dreieck rechtwinklig, beispielsweise mit 90, dann gilt auch A = 1/ÿaÿb, da hier eine Kathete die Höhe auf der anderen ist. Online kann man Dreiecksflächen unter der folgenden Adresse berechnen: Beispiel: Gegeben ist c = 4cm und h c = 5cm, gesucht wird A. A = 4cmÿ5cm/ = 0cm / = 10cm

5 Seite 5 - Formeln Gleichschenkliges Dreieck h = s (a / ) (Pythagoras: (a/) + h = s bzw. a /4 + h = s ) A = aÿh/ U = a + s Dabei ist die Länge der Basis gleich a und die der Schenkel gleich s. Beispiel: a = 10cm und s = 13cm. Gesucht wird A und U. h = s (a / ) = (13cm) (10cm / ) (13cm) (5cm) 144cm 1cm A = aÿh/ = 10cmÿ1cm/ = 60cm U = a + s = 10cm + ÿ13cm = 36cm

6 Seite 6 - Formeln Gleichseitiges Dreieck h = 3 ÿa/ A = aÿh/ U = 3a Beispiel: a = 8m. Gesucht wird A und U. h = 3 ÿa/ = 3 ÿ8m/ = 3 ÿ4m º 6,93m A = aÿh/ º 8mÿ6,93m/ = 7,7m Wenn man das Ergebnis von h im Taschenrechner lässt und mit diesem A berechnet, dann ergibt sich A = aÿh/ = 8mÿ 6, m/ º 7,71m. Hieran sieht man, welchen Einfluss Rundungen haben. U = 3a = 3ÿ8m = 4m

7 Seite 7 - Formeln Trapez Formelen: A = 1/ÿ(a + c) ÿh = (a + c)ÿh/ U = a + b + c + d Bemerkung: Die beiden gegenüberliegenden Seiten a und c sind parallel. Beispiel: a = 8cm; c = 1cm und h = 6cm, gesucht wird A. A = 6cmÿ(8cm + 1cm)/ = 6cmÿ0cm/ = 60cm Gleichschenkliges Trapez (hier gilt b = d) A = (a + c) ÿh/ b = h (a c) / 4 (Pythagoras: b = h + (a c) /4) U = a + c + b

8 Seite 8 - Formeln Kreis r = d/ bzw. d = ÿr U = ÿpÿr = pÿd A = pÿr oder A = pÿd /4 Beispiel: d = 10cm, gesucht wird r, A und U: r = d/ = 10cm/ = 5cm U = pÿd = pÿ10cm º 31,4cm A = pÿr = pÿ(5cm) º 78,54cm

9 Seite 9 - Formeln Kreisausschnitt r = d/ bzw. d = ÿr b = r ÿ p ÿ a /180 (b wird auch oft mit b a bezeichnet.) A = r ÿ p ÿ a/360 Außerdem gilt A = bÿr/ (falls b und r gegeben ist und A berechnet werden soll). Bemerkung: Der komplette Umfang U wäre hier U = r + b, da b nur die Länge des Kreisbogens ist. Beispiel: r = 1cm und a = 90. Gesucht wird b und A. b = r ÿ p ÿ a /180 = 1cm ÿ p ÿ 90 /180 º 18,85cm A = r ÿ p ÿ a/360 = (1cm) ÿ p ÿ 90 /360 º 113,10cm Da es sich für a = 90 um einen Viertelkreis handelt, hätte man auch den Umfang und die Fläche des ganzen Kreises mit Radius r = 1cm (Formeln siehe vorherige Seite) durch vier teilen können.

10 Seite Formeln Kreisring r = d/ bzw. d = ÿr R = D/ bzw. D = ÿr A = (R - r )ÿ p Bemerkung: Möchte man den Umfang des Kreisringes berechnen, so muss man nur den Umfang des inneren Kreises mit dem des äußeren Kreises addieren: U = ÿpÿr + ÿpÿr oder U = pÿd + pÿd. Beispiel: r = 4cm und R = 5cm. Gesucht wird A. A = (R - r )ÿ p = ((5cm) - (4cm) )ÿ p = 9cm ÿ p º 8,7cm

11 Seite Formeln Volumenberechnung Würfel Volumen V: V = a 3 (= aÿaÿa) Oberfläche O: O = 6a Diagonale: d = 3a Die Formel für d ergibt sich über Pythagoras: d = e + a und e = a + a, wobei e die Diagonale einer Seite ist. Übungen zur Volumenberechnung: Beispiele: 1) a = 5cm, gesucht wird V und O. V = (5cm) 3 = 15cm 3. O = 6ÿ(5cm) = 150cm. ) Ein Würfel aus Silber wiegt 84g (Dichte von Silber: r = 10,5g/cm 3 ). Wie lang ist seine Kantenlänge? Es gilt m = Vÿr, wobei m die Masse ist, V das Volumen und r die Dichte. Also gilt: 84g = Vÿ10,5g/cm 3 : (10,5g/cm 3 ) V = 8cm 3 Somit ist 8cm 3 = a 3. Zieht man die dritte Wurzel, dann ergibt sich a = cm.

12 Seite 1 - Formeln Quader V = aÿbÿc O = ÿ (aÿb + aÿc + bÿc) d = a b c (Ergibt sich über Pythagoras.) Beispiel: a = cm, b = 3cm und c = 5cm, gesucht wird V und O. V = cmÿ3cmÿ5cm = 30cm 3 O = ÿ (aÿb + aÿc + bÿc) = ÿ (cmÿ3cm + cmÿ5cm + 3cmÿ5cm) = 6cm

13 Seite Formeln Prisma Formel für das Volumen: V = Gÿh h ist hierbei die Körperhöhe und G die Grundfläche. Die Grundfläche kann ein Dreieck, ein Viereck oder allgemein ein Vieleck sein. Als Körperhöhe wurde oben die Bezeichnung h gewählt, oft wir aber auch (zum unterscheiden der Körperhöhe von der Höhe der Grundseite) h k oder auch l (ein kleines "L") verwendet (V = Gÿh k oder V = Gÿl). Wenn man ein Prisma parallel zur Grundfläche durchschneidet, ist die Schnittfläche mit der Grundfläche identisch. Damit ist ein Würfel oder ein Quader auch ein Prisma. Beispiel: Die Grundfläche ist im Beispiel ein rechtwinkliges Dreieck. Hier gilt: G = 4cmÿ3cm/ = 6cm Die Körperhöhe ist, wie man an der Zeichnung sieht, gleich 10cm. Also h = 10cm. Damit ergibt sich das Volumen: V = Gÿh = 6cm ÿ10cm = 60cm 3 Die Oberfläche bei Prismen berechnet sich wie folgt: O = ÿg + M M ist dabei die Mantelfläche. Im Beispiel besteht der Mantel aus 3 Rechtecken (siehe die nächste Grafik).

14 Seite Formeln Die Mantelfläche M ergibt sich bei Prismen aus dem Umfang der Grundfläche U mal der Körperhöhe h: M = Uÿh. Für den Umfang im Beispiel benötigen wir noch die Länge der Hypotenuse des Dreiecks der Grundfläche. Diese kann man über Pythagoras berechnen: Wir bezeichnen die Hypotenuse mit c: c = (3cm) + (4cm) = 5cm. Wurzelziehen ergibt: c = 5cm. Damit ergibt sich der Umfang der Grundfläche U = 3cm + 4cm + 5cm = 1cm. Die Mantelfläche ist dann M = 1cmÿ10cm = 10cm. Für die Oberfläche ergibt sich O = ÿg + M = ÿ6cm + 10cm = 13cm.

15 Seite Formeln Pyramide mit quadratischer Grundfläche V = 1/3ÿGÿh = 1/3ÿa ÿh G = a M = ÿaÿh s O = M + G Die folgenden beiden Formeln ergeben sich wieder über Pythagoras: h s = h (a / ) (Statt (a/) kann man auch a /4 verwenden.) s = s (a / ) h Es gibt folgende gleichschenklige Dreiecke, mit denen man fehlende Größen in einer Pyramide über Pythagoras berechnen kann:

16 Seite Formeln Eine Seite der Pyramide: Pythagoras: (a/) + h s = s Pyramide durch die Mitte parallel zur Grundkante a durchgeschnitten (durch die Spitze): Pythagoras: (a/) + h = h s Pyramide diagonal über Ecken der Grundfläche durchgeschnitten (durch die Spitze):

17 Seite Formeln Pythagoras: (d/) + h = s Dabei ist d die Diagonale auf der Grundfläche, die über d = a + a = d gilt). a berechnet werden kann (da Beispiel: a = 6m und h = 4m, gesucht werden V, O und s. V = 1/3ÿGÿh = 1/3ÿ(6m) ÿ4m = 48m 3 (G = a = (6m) ) h s = h (a / ) = (4m) (6m / ) 5m 5m s = s (a / ) h = (5m) (6m / ) 34m 5,83m M = ÿaÿh s = ÿ6mÿ5m = 60m O = M + G = 60m + 36m = 96m

18 Seite Formeln Pyramide mit rechteckiger Grundfläche V = 1/3ÿGÿh = 1/3ÿaÿbÿh h a = h (b / ) (Pythagoras: h a = h + (b/) ) h b = h (a / ) G = a ÿ b M = aÿh a + bÿh b O = M + G

19 Seite Formeln Pyramidenstumpf D = a 1 ÿb 1 G = a ÿb V = 1/3ÿhÿ(G + D G + D) h a = h (b b ) / 4 (Pythagoras) 1 h b = h (a a ) / 4 (Pythagoras) 1 M=(b 1 + b ) ÿh b + (a 1 + a ) ÿh a O = M + G + D

20 Seite 0 - Formeln Regelmäßiger Tetraeder h a = 3/ÿa (Dies ist die Höhe auf einer Seite, siehe Formel für gleichseitiges Dreieck.) h = / 3 a = 6/3ÿa V = 1/3ÿ1/ÿaÿh a ÿh = /1ÿa 3 O = 4ÿ1/ÿaÿh a = 3 ÿa Bemerkung zur Berechnung von h: h ist die Höhe des Tetraeders. Für diese gilt (Pythagoras): h + (/3ÿh a ) = a h + (/3ÿ 3/ÿa) = a h + ( 3/3ÿa) = a h + 1/3ÿa = a -1/3ÿa h = /3ÿa h = / 3 a

21 Seite 1 - Formeln Kegel V = 1/3 ÿ G ÿ h = 1/3ÿr ÿpÿh G = r ÿp s = h r (Pythagoras: s = h + r ) M = pÿrÿs O = M + G Beispiel: r = 6m und h = 8m. Gesucht wird V und O. V = 1/3ÿ(6m) ÿpÿ8m º 301,59m 3 s = (8m) (6m) 100m 10m O = M + G = pÿrÿs + r ÿp = pÿ6mÿ10m + (6m) ÿp º 301,59m (Hier ist zufällig O = V.)

22 Seite - Formeln Kegelstumpf V = 1/3ÿhÿpÿ (r + rÿr + R ) m = h (R r) (Pythagoras: m = h + (R - r) ) M = pÿmÿ (r + R) D = r ÿp G = R ÿp O = M + G + D

23 Seite 3 - Formeln Kugel d = r V = 4/3ÿr 3 ÿp O = 4ÿr ÿp Beispiele: 1) d = 10cm. Gesucht wird V. r = d/ = 5cm. V = 4/3ÿr 3 ÿp = 4/3ÿ(5cm) 3 ÿp º 53,60 cm 3. ) In eine Kugel passt 1 Liter Wasser. Wir groß ist ihr Innenradius? V = 4/3ÿr 3 ÿp 1 Liter entspricht 1dm 3 oder 1000cm 3 : 1000cm 3 = 4/3ÿr 3 ÿp :4/3 oder ÿ3/4 750cm 3 = r 3 ÿp : p 750cm 3 /p = r 3 3 r = cm / 6,0cm

24 Seite 4 - Formeln Hinweise zu den Einheiten Lägeneinheiten Zu den üblichen Längeneinheiten zählen (die Grundeinheit ist m): mm, cm, dm, m, km. Bei der Umrechnung von einer Einheit in die andere ist folgendes zu beachten: 1mm = 0,1cm oder 1cm = 10mm. Damit wären 58cm gleich 580mm. Dagegen sind 800mm gleich 80cm. Für mm, cm, dm und m gilt: Bei der Umrechnung in die "nächstgrößere" Einheit muss man durch 10 teilen und bei der Umrechung in eine "nächstkleinere" Einheit mit 10 multiplizieren. Dagegen muss man bei der Umrechung von m in km durch 1000 teilen und bei der Umrechnung von km in m mit 1000 multiplizieren. 1cm = 0,1dm oder 1dm = 10cm. 1dm = 0,1m oder 1m = 10dm. 1m = 0,001km oder 1km = 1000m. Damit sind 5800m gleich 5,8km oder,5km gleich 500m. Beispielsweise sind 5m = 50dm = 500cm. auch Weitere Einheiten wären mm (Mikrometer) und nm (Nanometer). Dabei ist 1mm gleich 1000mm und 1mm gleich 1000nm oder 1m = 1.000mm = mm = nm. Zu den üblichen Flächeneinheiten zählen: mm, cm, dm, m, a, ha, km Flächeneinheiten Diese Einheiten sind oben wieder der "Größe" nach geordnet. Hier ist der Umrechnungsfaktor 100, denn beispielsweise ist 1cm die Fläche eines Quadrates mit 1cm = 10mm Seitenlänge, womit 1cm = 1cmÿ1cm = 10mmÿ10mm = 100mm ist. D.h.: Bei der Umrechnung in eine "nächstgrößere" Einheit muss man damit durch 100 teilen und bei der Umrechung in eine "nächstkleinere" Einheit mit 100 multiplizieren. 1mm = 0,01cm oder 1cm = 100mm. 1cm = 0,01dm oder 1dm = 100cm. 1dm = 0,01m oder 1m = 100dm. 1m = 0,01a oder 1a = 100m. 1a = 0,01ha oder 1ha = 100a. 1ha = 0,01km oder 1km = 100ha. Damit ist 1km = 100ha = a = m (denn 1km wäre z.b. die Fläche eines Quadrates mit 1000m Seitenlänge).

25 Seite 5 - Formeln Volumeneinheiten Beim Volumen muss man sogar bei den Einheiten mm 3, cm 3, dm 3, m 3 den Faktor 1000 zur Umrechnung in die "nächstgrößere" Einheit verwenden. Da 1km 3 beispielsweise das Volumen eines Würfels mit 1000m Katenlänge wäre, ist damit 1km 3 = 1000mÿ1000mÿ1000m = m 3. 1mm 3 = 0,001cm 3 oder 1cm 3 = 1000mm 3. 1cm 3 = 0,001dm 3 oder 1dm 3 = 1000cm 3. 1dm 3 = 0,001m 3 oder 1m 3 = 1000dm 3. 1m 3 = 0, km 3 oder 1km 3 = m 3. Als Volumeneinheiten werden auch Liter (L oder l) verwendet. Dabei ist 1L gleich 1dm 3. Somit wären 0,5L gleich 0,5dm 3 = 500cm 3 oder 1000L = 1000dm 3 = 1m 3. 1cm 3 ist damit 1mL (1 Milliliter).

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Raumgeometrie - Würfel, Quader (Rechtecksäule)

Raumgeometrie - Würfel, Quader (Rechtecksäule) Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind?

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Pythagoras, Kathetensatz, Höhensatz

Mehr

Geometrie-Dossier Pyramiden und Kegel

Geometrie-Dossier Pyramiden und Kegel Geometrie-Dossier Pyramiden und Kegel Name: Inhalt: Die gerade Pyramide (Eigenschaften, Definition, Begriffe, Volumen, Oberfläche) Aufgaben zur Berechnung und Konstruktion von geraden Pyramiden. Der gerade

Mehr

2.10. Prüfungsaufgaben zu Körperberechnungen

2.10. Prüfungsaufgaben zu Körperberechnungen .0. Prüfungsaufgaben zu Körperberechnungen Pyramiden Berechne die Fläche und das Volumen der unten abgebildeten Dächer:: Zeltdach Walmdach Krüppelwalmdach Gekreuztes Giebeldach en Zeltdach: O = 87 m und

Mehr

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Algebra II. 1 Löse die Gleichung und mache die Probe.

Algebra II. 1 Löse die Gleichung und mache die Probe. D Algebra II 5. Gleichungen Lösungen Löse die Gleichung und mache die Probe. a) (3 5) = (5 + 5) jede reelle Zahl ist Lösung b) 8(a 3) + 3 a = (3a + 8)a keine Lösung c) ( )(3 4) = 3( ) = ; Probe: 0 d) (

Mehr

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann.

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann. X. Flächenmessung ================================================================= 10.1 Einführung Welches Rechteck ist am größten? I II III Den Inhalt einer Fläche messen, heißt feststellen, mit wie

Mehr

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

MATHEMATIK 8. Schulstufe Schularbeiten

MATHEMATIK 8. Schulstufe Schularbeiten MATHEMATIK 8. Schulstufe Schularbeiten 1. S c h u l a r b e i t Terme Lineare Gleichungen mit einer Variablen Bruchterme Gleichungen mit Bruchtermen Der Preis einer Ware beträgt x Euro. Dieser Preis wird

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Skript Teil 10: Massenberechnung

Skript Teil 10: Massenberechnung Prof. Dr. techn. Alfred Mischke Vorlesung zur Veranstaltung Vermessungskunde Skript Teil 0: Massenberechnung Ein wesentlicher Kostenfaktor bei nahezu allen Baumaßnahmen ist der Transport der Erdmassen.

Mehr

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln 1. a) Welche algebraischen "Vorfahrtsregeln" müssen Sie bei der Berechnung des folgenden Terms T beachten? T = 12x + 3 7x - 2 (x + 3) +

Mehr

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +

Mehr

Musterlösung zur 3. Übung

Musterlösung zur 3. Übung Musterlösung zur 3. Übung a) Didaktische Aufbereitung des Themas: Flächenberechnung eines Dreiecks Einführung Flächeninhalt eines Dreiecks: 2 Grundideen: (vgl. S. 5-7) (1) Rechteck rechtwinkliges Dreieck

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen.

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen. Kapitel B: Masseinheiten 1) Längenmasse Die Länge von Strecken und Distanzen werden mit den Längenmassen angegeben. Die für das Längenmass ist das Meter (m). Weitere gängige en für Längen sind Kilometer

Mehr

Aufgaben zu quadratischen Gleichungen. a) x² = 169. b) x² = 0,074529. c) x² = 5. d) 19x² = 5 491. a) ax² = b. b) ax² c ----- = --- b d.

Aufgaben zu quadratischen Gleichungen. a) x² = 169. b) x² = 0,074529. c) x² = 5. d) 19x² = 5 491. a) ax² = b. b) ax² c ----- = --- b d. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu quadratischen Gleichungen 1. a) x²

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Flächeninhalt und Umfang von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus

Mehr

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor:

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor: Erkläre bitte Extremwertaufgaben... Extremwertaufgaben Sobald man verstanden hat, was ein Extremwert einer Funktion ist (ein lokales Maximum oder Minimum) stellt sich die Frage Und was mach ich damit??.

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen:

Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Kapitel 8 Platonische Körper Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Die Begrenzungsflächen sind regelmäßige Vielecke, die untereinander kongruent sind An

Mehr

AUFGABENSAMMLUNG 9. KLASSE

AUFGABENSAMMLUNG 9. KLASSE AUFGABENSAMMLUNG 9. KLASSE 1. Reelle Zahlen (1) Vereinfache soweit wie möglich. Alle Variablen sind aus R +. (a) 4a 4 a + ab a b (b) b : 7a (c) b + b + b ( 5 c 6 (d) c + ) () Schreibe ohne Wurzelzeichen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

Längenmaße: 1 cm = 10 mm 1 dm = 10 cm = 100 mm 1 m = 10 dm = 100 cm = 1.000 mm 1 km = 1.000 m = 10.000 dm = 100.000 cm = 1.000.

Längenmaße: 1 cm = 10 mm 1 dm = 10 cm = 100 mm 1 m = 10 dm = 100 cm = 1.000 mm 1 km = 1.000 m = 10.000 dm = 100.000 cm = 1.000. Flächen und Räume 4 Flächen und Räume Bei der Berechnung von Flächen und Räumen gibt es verschiedene Maßeinheiten. Längenmaße, Flächenmaße und Raummaße können nur verarbeitet werden, wenn diese eingeordnet

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Bestimmung von Schwerpunkten

Bestimmung von Schwerpunkten Bestimmung von Schwerpunkten Jeder Körper hat einen Punkt, in dem man sich sämtliche Massekräfte als seine gesamte Eigenlast vereinigt denken kann. Dieser Massemittelpunkt ist der Angriffspunkt der gesamten

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Streichholzgeschichten von Dieter Ortner.

Streichholzgeschichten von Dieter Ortner. Streichholzgeschichten von Dieter Ortner. 1. Streichholzgeschichte Nr. 1 Aus vier n kann man ein Quadrat bilden. Mit diesem Verfahren sollst du nun selber herausfinden, wie viele es braucht, wenn das grosse

Mehr

Proportionale und antiproportionale Zuordnungen

Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen findet man in vielen Bereichen des täglichen Lebens. Zum Beispiel beim Tanken oder beim Einkaufen. Bei proportionalen

Mehr

Lösungen zu delta 5 neu

Lösungen zu delta 5 neu Lösungen zu delta neu Kann ich das? Lösungen zu Seite 32. Zahl Vorgänger Nachfolger a) 99999 9999 einhundertneunundneunzigtausendneunhundertachtundneunzig 200000 zweihunderttausend b) 2949 294 neunundzwanzigtausendvierhundertachtundachtzig

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Umfang und Fläche von Rechtecken

Umfang und Fläche von Rechtecken Umfang und Fläche von Rechtecken Herbert Paukert 1 Umfang und Fläche von Rechtecken Version 2.0 Herbert Paukert (1) Der Umfang von Rechtecken [02] Elemente der Geometrie [02] Fünf Übungsaufgaben [08] Das

Mehr

Satz des Pythagoras Realschule / Gymnasium Klasse 9

Satz des Pythagoras Realschule / Gymnasium Klasse 9 Satz de Pythagora Realchule / Gymnaium Klae 9 Alexander Schwarz www.mathe-aufgaben.com Dezember 014 1 Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat ich eine Leiter gekauft, die

Mehr

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse Statistiken und Präsentationen Projekt: Meine neue Klasse 6 Lernbereich 1: Natürliche Zahlen Beherrschen des Veranschaulichens am Zahlenstrahl Beherrschen des Überschlagens, Abschätzens und Rundens sowie

Mehr

Lernzielkontrolle Dezimalzahlen A

Lernzielkontrolle Dezimalzahlen A Lernzielkontrolle Dezimalzahlen A Finde die kleinste Ziffer in jeder Zahl! Runde auf diese Stelle und trage den Stellenwert, auf den gerundet wird, in der Klammer ein! a), ( ) b), ( ) c), ( ) d), ( ) Trage

Mehr

Kreis und Kreisteile. - Aufgaben Teil 1 -

Kreis und Kreisteile. - Aufgaben Teil 1 - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Die Winkelsumme in Vierecken beträgt immer 360.

Die Winkelsumme in Vierecken beträgt immer 360. 98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m2. Wozu brauche ich das

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Eckleinjarten 13a. 7580 Bremerhaven 0471 3416 rath-u@t-online.de Fertigungstechnik Technische Kommunikation - Technisches Zeichnen 11 Projektionszeichnen 11. Körperschnitte und Abwicklungen 11..4 Kegelige

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013 SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein

Mehr

Name:... Vorname:...

Name:... Vorname:... Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik, 2./3. Sekundarschule Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten

Mehr

Anwendungen 1 - Lösungen

Anwendungen 1 - Lösungen Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr. Erstellen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. Stelle die folgenden Schreibweisen in jeweils einer Skizze dar. a) g= AB d) AB = 4cm b) h= [ AB e) A g c) s = [ AB] f) [ AB] g 2. Gegeben sind M ( 5 / 4 ) und r = 3 cm. Zeichne den Kreis kmr ( ) sauber

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Prisma, Zylinder, Kegel, Kugel. Auf Seite 5 7 finden Sie eine Formelsammlung. Für eine Maschine werden Kugeln beidseitig 5mm abgefräst und mit zwei Bohrungen versehen (vgl. Skizze). Die

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Gesamte Bearbeitungszeit: 60 Minuten Diese Aufgaben sind ohne Taschenrechner zu bearbeiten! Aufgabe 1: Berechne 5

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Pisafit Mathematik Körperberechnung. Inhaltsverzeichnis

Pisafit Mathematik Körperberechnung. Inhaltsverzeichnis Körperberechnung Inhaltsverzeichnis Inhaltsverzeichnis... 1 Impressum... 2 Vorbemerkungen... 3 Körperberechnung... 5 Prismen... 6 Würfel... 7 Quader... 9 Aufgaben zu Würfeln und Quadern... 10 Zylinder...

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

IV. Geometrie ================================================================== 4.1 Konstruktionen

IV. Geometrie ================================================================== 4.1 Konstruktionen IV. Geometrie ================================================================== 4.1 Konstruktionen Achsenspiegelung Punktspiegelung Mittelsenkrechte Winkelhalbierende Lot errichten Lot fällen 4.2 Winkelsätze

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge Ausbildungsberuf KonstruktionsmechanikerIn Einsatzgebiet/e: Metallbau Schiffbau Schweißen Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge Lernfeld/er: Inhalt/e Technische Kommunikation

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

5 Anwendungen des Lehrsatzes des Herrn Pythagoras

5 Anwendungen des Lehrsatzes des Herrn Pythagoras Ma th ef it 5 Anwendungen des Lehrsatzes des Herrn Pythagoras Tom und seine Freunde wollen eine zweitägige Radtour machen. Da Tom die Detailplanung übernommen hat, zeichnet er die Route in eine Karte ein.

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

1. Welchen Flächeninhalt A hat das Rechteck mit den Seiten a = 36 mm und b = 47 mm in cm²?

1. Welchen Flächeninhalt A hat das Rechteck mit den Seiten a = 36 mm und b = 47 mm in cm²? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Flächenberechnungen 1. Welchen Flächeninhalt

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Lektion 4: Prozeduren mit Parametern

Lektion 4: Prozeduren mit Parametern Lektion 4: Prozeduren mit Parametern Bearbeitet von Daniel Labas und Kristel Jenkel In der Prozedur QUADRAT (vgl. Kap. 3) ist eine feste Seitenlänge vorgesehen. Wünschenswert wäre eine Prozedur, bei der

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links

Mehr

8 Umfang und Flächeninhalt ebener Figuren

8 Umfang und Flächeninhalt ebener Figuren Ma th ef it 8 Umfang und Flächeninhalt ebener Figuren 8.1 Flächen Die Firma Breit übersiedelt in ein neues Büro. Leider sind die Fußböden in einigen Büroräumen so schlecht, dass dort ein neuer Parkettboden

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. 38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Flächen- berechnungs- kartei

Flächen- berechnungs- kartei Flächen- berechnungs- kartei Zeichne das Rechteck. Schreibe die Formel an, dann rechne aus! l = 7 cm b = 3 cm A =? 1 erstellt von Eva Truschnigg für den Wiener Bildungsserver www.lehrerweb.at - www.kidsweb.at

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Inhalt/Lernziele Teil A Bruchteile erkennen Bruchteile von Grössen bestimmen Brüche und Bruchteile ergänzen A1, A2, A3 A4, A5 A6, A7, A8, A9 Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Anzahl Kanten

Mehr

Aufgabenvariation als produktive Schülertätigkeit Beispiele und Erfahrungen

Aufgabenvariation als produktive Schülertätigkeit Beispiele und Erfahrungen Dr. Brigitte Leneke Otto-von-Guericke-Universität Magdeburg Postfach 4120 39016 Magdeburg email: brigitte.leneke@mathematik.uni-magdeburg.de Aufgabenvariation als produktive Schülertätigkeit Beispiele

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Realschulprüfung 1997 Arbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden Arbeiten

Mehr

Aufgaben variieren produktiv Mathematik erfinden und erleben

Aufgaben variieren produktiv Mathematik erfinden und erleben Dr. Brigitte Leneke Otto-von-Guericke-Universität Magdeburg Postfach 4120 39016 Magdeburg email: leneke@ovgu.de Aufgaben variieren produktiv Mathematik erfinden und erleben B. Leneke Wien Istron 2009 1

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr