Übungsblatt Nr. 1. Lösungsvorschlag

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt Nr. 1. Lösungsvorschlag"

Transkript

1 Istitut für Kryptogrphie ud Sicherheit Prof. Dr. Jör Müller-Qude Dirk Achebch Tobis Nilges Vorlesug Theoretische Grudlge der Iformtik Übugsbltt Nr. 1 svorschlg

2 Aufgbe 1 (K) (4 Pukte): Edliche Automte ud Semi-Thue-Systeme Der ebeso geile wie ufmerksme Wisseschftler ud Superbösewicht Doktor Met ist bestürzt. Er vermutet, dss ei itertiol tätiger Nchrichtediest seie Twitter-Nchrichte (@DoktorMet) verfolgt. Um seie Verdcht zu bestätige, ht er seie Hdlger ei Progrmm uf dem zetrle Dtebkserver des Nchrichtediestes istlliere lsse, welches ls edlicher Automt relisiert ist. Sobld ds Suchprogrmm bestimmte Zeichefolge erket, schlägt es Alrm. Im Folgede betrchte wir Worte über dem Alphbet Σ = {, b, c, d, e, f, g, h, i, j, k, l, m,, o, p, q, r, s, t, u, v, w, x, y, z, ä, ö, ü, }. i.) Kostruiere Sie eie edliche Automte, der geu d kzeptiert, we eies der Worte w 1 = chos, w 2 = ukokret oder w 3 = pl i seier Eigbe ethlte ist. Ihr Automt drf ichtdetermiistisch sei. (2P) Nchdem Doktor Met festgestellt ht, dss seie Twitter-Nchrichte icht ur vo seie Ahäger gelese werde, möchte er seie Nchrichte codiere. Diese Codierug modelliert er mit eiem Semi-Thue-System: ii.) Gegebe sei ei Semi-Thue-System (Σ, P ) mit de Produktioe P = {beteuerliches ud ukokretes schöes, Wede Sie P so lge uf gef ährliches ud uwägbres beteuerliches, umögliches ukokretes, uterfge rezept, weltherrschft kuche}. w 4 = beteuerliches ud ukokretes uterfge f ür weltherrschft, bis keie Regel mehr wedbr ist. (1P) iii.) Wrum sollte Doktor Met die Methode us dem vorige Aufgbeteil icht verwede? (1P) ii

3 svorschlg i.) Der Automt liest die Zeiche sequetiell ei, bis ds Wort vollstädig gelese ist. Σ q 0 c q 1 h q 2 q 3 o q 4 s u q 5 q 6 k q 7 o q 8 q 9 k q 10 r q 11 e q 12 t p Σ q 16 ii.) q l 13 q 14 q 15 D der Automt ichtdetermiistisch sei drf, müsse wir us keie Gedke um die Eideutigkeit eies Pfdes mche. w 4 = beteuerliches ud ukokretes uterfge f ür weltherrschft schöes uterfge f ür weltherrschft schöes rezept f ür weltherrschft schöes rezept f ür kuche iii.) Die Codierug ist icht ijektiv, es k lso icht immer ei eideutiges Urbild gefude werde. Dies köte zu Missverstädisse uter Doktor Mets Ahäger führe. Aufgbe 2: Kostruktio vo Grmmtike (K) (4 Pukte) Ei Plidrom ist ei Wort, ds rückwärts wie vorwärts gelese gleich ist. Beispielsweise sid, reter ud tcoct Plidrome. Bezeiche w die Rückwärtsschreibug vo eies Wortes w Σ, d ist die Sprche ller Plidrome über eiem Alphbet Σ gegebe durch L P = {wxw w Σ, x Σ {ε}}. Betrchte Sie der Eifchheit hlber ds eigeschräkte Alphbet Σ = {, b}. i.) Gebe Sie eie Grmmtik G P, die L P erzeugt. (1P) ii.) Zeige Sie: G P erzeugt usschließlich Plidrome. (1P) iii.) Zeige Sie: G P erzeugt lle Plidrome. (1P) iv.) Ist G P regulär? Wrum, wrum icht? (1P) iii

4 svorschlg i.) G P = (Σ, V, S, P ) mit V = {S} ud P = {S S bsb b ε}. ii.) Wir zeige die Behuptug per Iduktio ch der Azhl der Regelweduge. Alle durch eie Regelwedug durch G P (us dem Strtsymbol) erzeugbre Worte sid Plidrome:, b, ε. Seie im Folgede lle Worte, die durch Regelweduge us S erzeugbr sid, Plidrome im Sie der Defiitio. Betrchte u + 1 Regelweduge. Nch der erste Regelwedug S S bsb etsteht ei Zwischeusdruck, der ds Nichttermil S ethält. Wird S uf ei Plidrom bgeleitet, so sid uch S, bsb Plidrome gemäß der Defiitio. Nch Iduktiosvorussetzug wird S ch Regelweduge uf ei Plidrom bgeleitet. (I der erste Regelwedug k S b ε icht bgeleitet werde, d d keie Regel mehr wedbr ist, wir ber im Iduktiosschritt usschließlich Ableituge mit + 1 Ableitugsschritte betrchte.) Dmit ist die Behuptug gezeigt. iii.) Sei v = wxw ei Plidrom, ds icht durch die Produktioe i G P us dem Strtsymbol S bgeleitet werde k. Sei o. B. d. A. v > 1. Schreibe v ls v = rsr mit r Σ ud s Σ. (Ds ist möglich, d v ei Plidrom ist.) rsr k durch Regelwedug us S bgeleitet werde. Folglich k s icht durch Regelwedug us S bgeleitet werde. Betrchte im Folgede lso s. Per Iduktio folgt: I der Mitte vo v steht ei Symbol x Σ {ε}, ds icht us S bgeleitet werde k. Ds ist ei Widerspruch zu de Produktiosregel. iv.) G P ist icht regulär, d die erste beide Produktioe weder liks- oder rechtslier, och termiiered sid. Aufgbe 3: Semi-Thue-Systeme (K) (4 Pukte) Gegebe sei ei Semi-Thue-System (Σ, P ) mit Σ = {, b, c} ud P = {b b, c c, cb bc}. i.) Simuliere Sie ds System uf de folgede Worte Σ, bis keie Regel mehr wedbr ist: (2P) bcbb ccbcbc cbb bbbc ii.) Ws bewirkt ds System? (2P) iv

5 svorschlg i.) bcbb bcbb bbcb bbbc ccbcbc cbccbc bcccbc bccbcc bcbccc bbcccc cbb cbb bcb bbc bbc bbc bbc bbbc ii.) Ds Semi-Thue-System sortiert die Buchstbe lexikogrphisch (ch dem Prizip hiter Bubblesort). Aufgbe 4: Reguläre Ausdrücke ud edliche Automte (K) (4 Pukte) Sei Σ = {, b}. i.) Gebe Sie reguläre Ausdrücke für die folgede Sprche : ) L 1 = {w Σ w ethält b ls Teilwort}. (1P) b) L 2 = {w Σ w ethält eie ugerde Azhl }. (1P) ii.) Gebe Sie eie determiistische edliche Automte, der geu L 1 = Σ \ L 1 kzeptiert. (2P) svorschlg i.) ii.) ) L 1 = ( + b) b( + b) b) L 2 = b (b b ) b b q 0 b q b 1 q 2 v

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff Abzähle Im Rhme des Semirs Extreml Combitorics A Le Dyckhoff 23. April 2004 Abzähle Fortgeschrittees Abzähle Die Kombitorik beschäftigt sich mit dem Abzähle vo Elemete. Dbei versucht m Strtegie, Methode

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse

mathphys-online WURZELFUNKTIONEN Graphen der n-ten Wurzelfunktion y-achse mthphys-olie WURZELFUNKTIONEN Grphe der -te Wurzelfuktio.5.5.5 0.5 0 0.5.5.5.5.5 5 5.5 6 6.5 7 7.5 8 = = = mthphys-olie Wurzelfuktioe Ihltsverzeichis Kpitel Ihlt Seite Die Wurzel ud Wurzelgesetze Die eifche

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Glossar zum Brückenkurs Mathematik für Wirtschaftswissenschaftler 1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Filtern von Stoppwörtern mit endlichen Automaten

Filtern von Stoppwörtern mit endlichen Automaten Filter vo Stoppwörter mit edliche Automte HS Edliche Automte für die Sprchverrbeitug Ruprecht-Krls-Uiversität Heidelberg Semir für Computerliguistik 30.06.2008 Kthri Wäschle, Bistr Agelov Ihlt Eiführug

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Definition einer Gruppe

Definition einer Gruppe Defiitio eier Gruppe Uter eier Gruppe versteht i der Mthetik eie Ahl vo Eleete, die durch Regel i Beiehug stehe. Bediguge für eie thetische Gruppe: I. Verküpfug weier beliebiger Eleete (ud dit uch ds Qudrt

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2

In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2 0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr

ASW Lösungen zu Übung 6, MB,

ASW Lösungen zu Übung 6, MB, ASW Lösue u Übu MB Mthemtik I Geometrie vo Gerde ud bee rof DrBGrbowski Zu Aufbe Geebe sei eie Gerde im R : { } R Gebe Sie die Gerde i Normlform b R! b Gebe Sie die Gerde - R i ukt-richtusform! cliet der

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Kurzfassung zur Wiederholung mit Wissenstest zum Potenzrechnen DEMO. für alle, die es brauchen. Datei Nr Stand 7.

Kurzfassung zur Wiederholung mit Wissenstest zum Potenzrechnen DEMO. für alle, die es brauchen. Datei Nr Stand 7. ALGEBRA Poteze ud Wurzel Kurzfssug zur Wiederholug mit Wissestest zum Potezreche für lle, die es bruche Dtei Nr. Std 7. Jur 08 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Entstehen soll eine unendliche trigonometrische Reihe der Form n

Entstehen soll eine unendliche trigonometrische Reihe der Form n utoriu Mthe M Fourier Reihe & Fourier rsfortio. Fourier Reihe Die Fourier Reihe ist für die Medietechi ud speziell die Nchrichtetechi eie der wichtigste Eleete. Ds hägt dit zuse, dss sie es eröglicht,

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Inhaltsverzeichnis. Ein dummer Roboter Pascal Schmidt 3. Teilbarkeit spezieller Zahlen durch 6 Niko Kinas 21

Inhaltsverzeichnis. Ein dummer Roboter Pascal Schmidt 3. Teilbarkeit spezieller Zahlen durch 6 Niko Kinas 21 zeitug für mthemtik m mpg trier / heft 4 / jur 08 Ihltsverzeichis Seite Ei dummer Roboter Pscl Schmidt Fkultäte ud Nulle Teil Stmmbrüche ls Summe vo Stmmbrüche Teil Summe vo Primzhle Teil Meikel Diely,

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten.

Also definieren wir: Die Definition ist damit unabhängig vom Kürzen oder Erweitern des Exponenten. 7. Poteze mit rtiole Expoete Eiführedes Beispiel: Wir versuche ls Potez vo zu schreie. Bei dieser Erweiterug solle die isherige Potezgesetze gültig leie. x mit poteziert x x ( ) ( ) log 8 Also defiiere

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier 4. Üungsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

MATTHIAS HEINLEIN. 1. Einleitung

MATTHIAS HEINLEIN. 1. Einleitung SEMINRRBEIT: HUPTSTZ DER DIFFERENTIL- UND INTEGRLRECHNUNG MTTHIS HEINLEIN. Eileitug Oftmls wird ds Itegrl i de fägervorlesuge uf zweierlei Weise eigeführt. D ist zum eie ds formle Itegriere, lso ds uffide

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 14 Potenzieren und Radizieren 1 1 Mthemtik Grudlge Poteziere ud Rdiziere Mthemtik Grudlge für Idustriemeister Semirstude S-Std. (45 mi) Nr. Modul Theorie Üuge 4 Poteziere ud Rdiziere Ihlt 4 Poteziere ud Rdiziere... 4. Poteziere... 4..

Mehr