Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Größe: px
Ab Seite anzeigen:

Download "Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der"

Transkript

1 Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man enen Vekto de senkecht auf de Fläche steht und dessen Betag glech st Das Voechen wd pe Konventon festgelegt; n unseem Falle st es günstg, das Voechen so festulegen, daß n de Rchtung egt, n welche de Stom aus de Fläche austtt Bespele: Fage: Wkt sch ene Negung des Spaltes auf de hnduchtetende Lchtmenge aus? e e e Flächenvekto steht senkecht auf de Fläche! hnduchtetende Lchtmenge: J v V (V -Komponente von J) Duch de belebg n den Lchtstom gelegte Fläche ttt genausovel Lcht, we duch de Pojekton j Defnton: Gegeben se ene ebene Fläche und en homogenes Vektofeld v Das skalae Podukt von v mt dem vektoellen Flächenelement wd dann beechnet als Fluß des Vektofeldes v duch de Fläche Obeflächenntegal Bshe galten be Betachtung des Flusses Enschänkungen: das Vektofeld sollte homogen sen, de Fläche sollte eben sen Dese Enschänkungen lassen w fallen D Hempel / Mathematsch Gundlagen - Obeflächenntegale - Sete 1

2 Fage: We beechnet sch be enem belebgen Vektofeld F und ene gekümmten Fläche de Fluß von F duch? Näheung: Zelegung von n Telflächen Snd de Flächenelemente klen genug, kann man se als eben auffassen und jedem en vektoelles Flächenelement uodnen mt Im Beech de Telflächen nehmen w F als homogen an De Fluß F duch st dann Näheungswese gegeben duch F (,, ) En Näheungsausduck fü den gesamten Fluß F duch de Fläche ehält man duch ddton de Telflüsse duch de Flächen : Fluß F duch n 1 F (,, ) Vefeneung de Telflächen Genwet n egbt den genauen Wet Desen Genwet nennt man Obeflächenntegal Fluß F duch F( d Defnton: Obeflächenntegal von F ( übe de Fläche ode Fluß von F duch : n F( d lm n 1 F(,, ) häufge nwendung: Obeflächenntegal übe ene geschlossene Fläche Defnton: Ene geschlossene Fläche elegt den Raum deat n we Teläume, daß man de Fläche duchstoßen muß, um von enem Telaum n den andeen u gelangen Obeflächenntegal übe geschlossene Flächen wd smbolsch mt enem Kes duch das Integalechen dagestellt Das Voechen des vektoellen Flächenelements wd so festgelegt, daß d nach außen egt D Hempel / Mathematsch Gundlagen - Obeflächenntegale - Sete

3 Beechnung des Obeflächenntegals fü Spealfälle Fluß enes homogenes Feldes duch enen Quade homogenes Vektofeld F F, F, F ) u Beechnung Zelegung n Telntegale (entspechend de Quadeflächen) 1 ab (,,1) 3 ac (,1,) bc (1,,) 5 ( Das Obeflächenntegal enes homogenen Vektofeldes F duch ene ebne Fläche st gegeben duch das Skalapodukt F Daaus egeben sch de Telflüsse: F 1 ab F F ab F F 3 ac F F ac F F bc F F bc F 4 ab (,, 1) 4 ac (, 1,) bc ( 1,,) 5 Damt egbt sch de Gesamtfluß duch de Fläche: F 1 De Fluß enes homogenen Feldes F duch ene belebge geschlossene Fläche veschwndet Fluß enes adalsmmetschen Feldes duch ene Kugelobefläche adalsmmetsches Feld: F e f () mt e de Kugelmttelpunkt se glechetg Koodnatenuspung Das Flächenelement d steht senkecht auf de Kugelobefläche, st also paallel u F d f ( ) e d f ( ) d Integaton efolgt fü R mt f ( ) d f ( R) d f ( R) d d 4π R folgt: ( duch ene Kugelobefläche mt dem Ra- De Fluß enes adalsmmetschen Feldes dus R st: F d 4π R F f ) e f ( R) D Hempel / Mathematsch Gundlagen - Obeflächenntegale - Sete 3

4 Bespel: Feld ene punktfömgen Ladung Q m Koodnatenuspung Q e E( 4πε ( Q 3 πε 4 E d 4π f ( R) R Q ε mt + + Gaußsches Geset Fluß des el Feldes unabhängg von R! (Glt fü alle geschlossenen Flächen) Beechnung des Obeflächenntegals m allgemenen Fall Gegeben se Obeflächenntegal F( d [ Fd + Fd + Fd ] Fagen : 1 We sehen de Komponenten d, d, d des dffeentellen Flächenvektos d aus? We beückschtgt man den duch de Fläche vogegebenen Integatonsbeech? Komponenten d, d, d des dffeentellen Flächenvektos d - Enhetsvektoen n Rchtung de Flächenelemente: De Komponenten,, enes Flächenvektos snd de entspechenden Pojektonen de Fläche Fü de Komponenten d, d, d des dffeentellen Flächenelements d ehält man: d d d, d d d, d d d D Hempel / Mathematsch Gundlagen - Obeflächenntegale - Sete 4

5 De Flächen, auf denen de Vektoen senkecht stehen snd kene Quadate (mt Flächennhalt 1) meh, sonden dffeentelle Flächen dd, dd, dd d ( dd, dd, dd) Integatonsbeech, de duch de Fläche vogegeben wd: Das betachtete Obeflächenntegal wa: F( d + [ Fd + Fd + Fd ] Fd + Fd F d betachten w den 3 Summanden: Fd F dd Welche Wete haben und u duchlaufen? Es st genau de Fläche, de sch aus de Pojekton von auf de -- Ebene egbt naloges egbt sch fü de beden andeen Pojektonen: daaus egbt sch lettendlch: F ( d Fd + Fd + F d Bespel: Gegeben st das nchthomogene Vektofeld F (,, ) Gesucht st de Fluß des Vektos F duch en Rechteck, welches duch de Vektoen (a,,) und (,b,) aufgespannt wd F d a b a b dd Be Vegößeung de Fläche n -Rchtung stegt de Fluß quadatsch; be Vegößeung de Fläche n Rchtung stegt e lnea D Hempel / Mathematsch Gundlagen - Obeflächenntegale - Sete 5

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Vektoranalysis Teil III

Vektoranalysis Teil III Vektoanalyss Tel III Segfed Pety Fassung vom 5 Janua 13 I n h a l t De Dvegen enes Feldvektos 1 Vobeetende Betachtungen: Fluss, Schüttung, Quelldchte De Dvegen enes Feldvektos 4 3 echengesete fü Dvegenen

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

r mit der sogenannten Einheitsmatrix:

r mit der sogenannten Einheitsmatrix: D. Hempel Mathematsche Gundlagen Tensoen -7- Maten / Tensoen - Tel als Tenso Bem Vesuch den Dehmpuls unte Zuhlfenahme des Täghetstensos daustellen egab sch fü das Täghetsmoment de folgende Zusammenhang:

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Statisches Gleichgewicht des starren Körpers (Statik)

Statisches Gleichgewicht des starren Körpers (Statik) Us Wyde CH- 4057 Basel Us.Wyde@edubs.ch Statsches Glechgewcht des staen Köpes (Statk) Glechgewchtsbedngungen En Köpe befndet sch n Ruhe (ode bewegt sch mt konstante Geschwndgket), wenn de Summe de Käfte

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale Mefacntegale Mae ene Quade: M wenn de Quade nomogen t: (,, ) M (,, ) M N M N N (,, ) M lm (,, ) (,, ) dd d N Integal de Funkton (,, ) üe da olumen. Mefacntegale mt kontanten Integatongenen Integaton mefac

Mehr

Einführung in die Physik I. Mechanik der starren Körper

Einführung in die Physik I. Mechanik der starren Körper Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Signaltransport in Koaxialkabeln

Signaltransport in Koaxialkabeln Sgnaltanspot n Koaxalkabeln Inhaltsvezechns SIGNALTRANSPORT IN KOAXIALKABELN... 1 SKRIPT... 1 1. VERWENDUNGSZWECK UND AUFBAU DES KOAXIALKABELS...1. ERSATZSCHALTBILD DES KOAXIALKABELS....1 Beechnung des

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder Physk II T Dotmund SS8 Götz hg Shaukat Khan Kaptel Maxwellsche Glechungen Bshe: Elektostatk m Vakuum (kene Felde n Matee), kene Magnetfelde dffeenzelle Fom ntegale Fom ( ) Gauß E E da dv V E Stokes E d

Mehr

Physikalische Grundlagen der Biomechanik

Physikalische Grundlagen der Biomechanik Physkalsche Gundlagen de Bomechank Dplomabet zu Elangung des Magstegades an de Natuwssenschaftlchen Fakultät de Leopold-Fanzens-Unvestät Innsbuck engeecht be Hen A. Unv.-Pof. D. Chstoph LEUBNER Insttut

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen Bvaable/bvaate Vetelungen Tabellen Gafken Maßzahlen 153 Ulste: Wetepaae x/y ode x 1 /x x = Flügellänge [mm], y = Gewcht [g] 3,8; 0,8 3,6; 0,7 4,3; 1,3 3,5; 0,7 4,1; 1,1 4,4; 1,3 4,5; 1,6 3,6; 0,75 3,8;

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.)

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.) Wesbaden Unverst of Appled Scences LV Robotk 5 Credts Angew. Mathematk (B.Sc. + M.Sc.) Wntersemester 25 Prof. Dr. D. Rchter Department [Desgn>Computer Scence>Meda] Wesbaden Unverst of Appled Scences Hochschule

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Günstige Voraussetzung für eine erfolgreiche Berechnung des Oberflächenintegrals ist eine Parameterdarstellung der Fläche.

Günstige Voraussetzung für eine erfolgreiche Berechnung des Oberflächenintegrals ist eine Parameterdarstellung der Fläche. Obeflächetegal Güstge Voassetzg fü ee efolgeche Beechg des Obeflächetegals st ee Paametedastellg de Fläche Paametedastellg ee Fläche Vostellg: E ebees Flächestück wd stetg z eem Flächestück m Ram efomt

Mehr

Lösungen: 1. Übung zur Vorlesung Optoelektronik I

Lösungen: 1. Übung zur Vorlesung Optoelektronik I Geke/Lemme SS 4 Lösuge:. Übug u Volesug Optoelektok Augabe : Releo ud Bechug a Geläche (a De Ausbetug o elektomagetsche Welle wd duch de Mawell Glechuge ( bs (4 beschebe. t B& ( t J D& H ( t ρ D ( 3 B

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

C Elektrizität. Allerdings muss der Leiterabstand bei der experimentellen Durchführung viel kleiner als 1 m sein.

C Elektrizität. Allerdings muss der Leiterabstand bei der experimentellen Durchführung viel kleiner als 1 m sein. C lektztät 7 lektostatsche Felde De lektostatk befasst sch mt uhenden (statschen) Ladungen. De Kaftwkung zwschen Ladungen wd duch elektsche Felde bescheben. 7. lektsche Ladung In de Mechank gbt es de de

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ Pof. D. Mac Gütle SS 05 Klausu zu Vetefung Fnanzwtschaft Telbeech Empsche Fnanzwtschaft Alle folgenden zwe Aufgaben snd zu beabeten. Behauptungen snd zu begünden, Rechnungen snd zu eläuten! Runden Se btte

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2012

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2012 üfung Gundnzen de Vescheungs- und Fnanzmathematk ufgae : ( Mnuten Gegeen se en eneodge vollständge State Sace-Makt mt s Zuständen und n+ Fnanztteln De Fnanzttel entseche dae de skolosen nlage zum scheen

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Magnetostatik. Magnetfeld eines Leiters

Magnetostatik. Magnetfeld eines Leiters Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss mpeesches Gesetz iii. Feldbeechnungen mit mpeschen Gesetz i. Das Vektopotenzial.

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Lückentext (Mathematik I) zum Sommersemester 2013

Lückentext (Mathematik I) zum Sommersemester 2013 osten Schee.. Lückentet Mthemtk I um Sommesemeste Nme: Mtkel-N.: Mt desem Lückentet können Se s u mml möglche Zustpunkte elngen. Fü jedes chtg engetgene Wot egt sch somt en Bonuspunkt. Um mehee Mengen

Mehr

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment 7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle:

Greifen an einer Masse mehrere Kräfte an, so gibt es zwei mögliche Fälle: 4.3 Ado vo Käfte Gefe a ee Masse ehee Käfte a, so gbt es zwe öglche älle: We de vektoelle Sue de Käfte ull st, da vehat de Masse Ruhe ode gadlg glechföge Bewegug. 4 0 3 4 Wchtges Pzp de Statk 3 Veblebt

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Baudynamik und Erdbebeningenieurwesen

Baudynamik und Erdbebeningenieurwesen Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen

Mehr

Tutorium Makroökonomik I:

Tutorium Makroökonomik I: UNIVERITÄTKOLLEG Unverstätskolleg: #tdm+ Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen Dr. Krstn aetz Tobas Fscher Kostenlose satzangebote nd Lehrmateralen für alle tderenden Ttorm Makroökonomk

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik Das Nethe-Theem Ausabetung zum Vtag vn Mchael agemann am 202202 m Rahmen des Psemnas Guppenthee n de Quantenmechan vn Pf D Jan Lus und D Rbet Rchte an de nvestät ambug m Wntesemeste 202/203 Inhaltsvezechns

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A Fomelsammlung EM. Allgemenes De Enhet de Stomstäke st das Ampee [A]. De Enhet de adung Q st das oulomb [][As]. Q bzw. t dq dt De Enhet de Spannung st das Volt [V]. W st das Enegegefälle zwschen zwe Punkten

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr