Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)
|
|
- Ingelore Boer
- vor 2 Jahren
- Abrufe
Transkript
1 Vorlesungsübersicht Wintersemester 2015/16 Di Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier oder Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere V1 Geometrie in der Grundschule V2 Räumliches Vorstellungsvermögen V3 Entwicklung geometrischen Denkens V4 Ebene Figuren - Vierecke V5 Ebene Figuren - Dreiecke V6 Ebene Figuren Kreise und Vielecke V7 Körper - Überblick V8 Körper Flächen, Netze, Bauen V9 Symmetrie; Parkettieren V10 Zeichnen und Konstruieren V11 Zusammenfassung Klausur (08-10 Uhr Audimax, HS 1) 1
2 V 7 Körper - Überblick 1 Unterrichtsinhalte Rahmenplan Rheinland-Pfalz Kernlehrplan Saarland 2 Kleine Körperkunde 2.1 Begriffe; Start 2.2 Ordnungskriterien 2.3 Körper und ihre Einordnung 2.4 Modelle von Körpern 3 Praxiskurs: Schnelle Körper 2
3 1 Unterrichtsinhalte Rahmenplan Rheinland-Pfalz Kernlehrplan Saarland 3
4 Rahmenplan Rheinland-Pfalz
5 Kernlehrplan Saarland (ab 2009) Kl. 1/2 Körper erkennen, benennen und darstellen Würfel, Rolle, Kugel 5
6 Kl. 3 Körper und ebene Figuren erkennen, benennen und darstellen Kl. 4 Würfel, Quader, Zylinder, Kegel, Kugel, quadratische Pyramide, Ecke, Kante, Fläche, rund, rechteckig, spitz Kantenmodelle, Netze, Abwicklungen Geometrische Figuren erkennen, benennen und darstellen Modelle von Körpern bauen 6
7 2 Kleine Körperkunde Begriffe, Ordnungskriterien ausgewählte Körper und ihre Merkmale 7
8 2.1 Begriffe; Start Ein geometrischer Körper ist eine räumliche Figur, die vollständig durch ebene oder gekrümmte Flächen begrenzt wird. Sind Körper nur von ebenen Flächen begrenzt, so werden sie auch Polyeder genannt. (polys: griech. viel; edra: Boden, Fläche) 8
9 Die das Polyeder begrenzenden Vielecke heißen Seitenflächen. Die Strecken, in denen je zwei Seitenflächen zusammenstoßen, heißen Kanten, ihre Endpunkte Ecken des Körpers. 9
10 Friedrich Fröbel ( ) Spielgaben für den Kindergarten 10
11 Körper in der Grundschule Quader quadrum (lat.) - viereckig Skizziere die geometrischen Körper in dein Heft. (oder) Klebe die Abbildungen ein und skizziere auf den Abbildungen nach. 11
12 Körper - dargestellt in Kavalierperspektive Skizziere die geometrischen Körper in dein Heft. (oder) Klebe die Abbildungen ein und skizziere auf den Abbildungen nach. 12
13 Verpackungen 13
14 Von den Flächen zu den Körpern Körper aufschichten nach der Fröbel- Geometrie 14
15 Wie aus Flächen Körper werden 15
16 2.2 Ordnungskriterien für Körper a. Art der Begrenzungsflächen b. Grund- und Deckfläche bzw. Spitze c. Anzahl der Seitenflächen 16
17 a. Art der Begrenzungsflächen nur ebene Begrenzungsflächen ebene und gekrümmte Begrenzungsflächen nur gekrümmte Begrenzungsflächen 17
18 b. Grund- und Deckfläche bzw. Spitze mit Grund- und Deckfläche mit Grundfläche und Spitze ohne Grund- und Deckfläche 18
19 c. Anzahl der Seitenflächen z.b. dreiseitige Körper sechsseitige Körper... Prisma Pyramide 19
20 gerade und schiefe Körper 20
21 2.3 Körper und ihre Einordnung Säulen, Spitzkörper, Kugel, Platonische Körper 21
22 (1) Säulen Prismen (Quader, Würfel, ) und Zylinder 22
23 Prismen Bezeichnen Sie die Prismen genauer. Abb. aus Matheprofis 4 23
24 Prisma Grund- und Deckfläche sind kongruent und parallel zueinander Seitenflächen sind Rechteckflächen 24
25 Würfel und Quader Ein Würfel ist ein geometrischer Körper, der von sechs zueinander kongruenten Quadraten begrenzt wird. Umwelt: Spielwürfel, Brühwürfel (?), einzelne Verpackungen, Pflastersteine,.. Ein Quader ist ein geometrischer Körper, der von drei Paaren zueinander kongruenter Rechtecke, die jeweils in zueinander parallelen Ebenen liegen, begrenzt wird. Umwelt: Verpackungen, Ziegelstein, Dominostein, Zuckerwürfel, Gebäudeformen,... 25
26 Die Baukörper ohne Dach sind Säulen. Matheprofis 4 26
27 Zylinder wird begrenzt von zwei zueinander kongruenten, parallelen Kreisflächen und einer gekrümmten Fläche, die bei einer Abwicklung ein Rechteck ergibt. Umwelt: vielfältig zu entdecken, z. B. Stiele an Arbeitsgeräten, auch häufig als Hohlzylinder (Behälter, Rohre) 27
28 (2) Spitzkörper Kegel und Pyramiden 28
29 Kegel wird begrenzt von einer Kreisfläche und einer gekrümmten Fläche, die bei einer Abwicklung einen Kreisausschnitt ergibt. Umwelt: Straßenabsperrung (Pylon); Turmdächer; Teile von Geräten u. Werkstücken; Berge vulkanischen Ursprungs; Haufen, der aus langsam rinnendem Sand entsteht, Spielstein, 29
30 Pyramide Ein Körper heißt Pyramide, wenn er begrenzt wird von einer n-eckigen Grundfläche und n Dreiecksflächen, die einen Punkt S (Spitze) gemeinsam haben. Berühmte Grabstätten altägyptischer Könige sind gerade Pyramiden mit quadratischer Grundfläche. Am bekanntesten sind die Pyramiden, die am südlichen Rand Kairos liegen. Cheopspyramide: Höhe 146,5 m; Länge 232,5 m. 30
31 Die Ägypter hatten nur geringe theoretische Kenntnisse in der Geometrie. Sie waren aber fähig, die riesigen regelmäßigen Pyramiden mit quadratischer Grundfläche in Gizeh zu bauen. 31
32 Pyramiden werden nach der Anzahl der Seitenflächen unterschieden Eine dreiseitige Pyramide, deren Kanten alle gleichlang sind, heißt Tetraeder. eine Pyramide mit einem Quadrat bzw. Rechteck als Grundfläche Eine Pyramide heißt regelmäßig (regulär), wenn die Grundfläche ein regelmäßiges n-eck ist. 32
33 (3) Kugel 33
34 Kugel wird von einer gleichmäßig gekrümmten Fläche begrenzt und alle Punkte der Kugeloberfläche haben vom Kugelmittelpunkt den gleichen Abstand Umwelt: Ball, aber auch in Technik u. Natur: Kugellager, Kugelgelenk, Himmelskörper, Süßigkeiten, Schmuck, 34
35 (4) Platonische Körper Regelmäßige Polyeder Tetraeder, Hexaeder, Oktaeder, Dodekaeder, Isokaeder 35
36 Platonische Körper werden von ebenen kongruenten Vielecken begrenzt. Begrenzungsflächen gleichseitige Dreiecke Tetraeder, Oktaeder, Ikosaeder regelmäßige Vierecke Hexaeder (Würfel) regelmäßige Fünfecke Dodekaeder Die platonischen Körper werden alle auch als Spielwürfel verwendet. Euklid nannte diese Körper in seinem Buch Elemente platonische Körper. Diesen Namen erhielten sie zu Ehren des griechischen Philosophen Plato, der aber mit der Entdeckung dieser Körper nichts zu tun hatte. 36
37 Platonische Körper und ihre Netze 37
38 2.4 Herstellen von Körpermodellen Vollmodelle Kantenmodelle Flächenmodelle 38
39 Herstellen von Modellen Vollmodelle: Formen der Körper aus Knete; Schneiden aus Styropor, Kartoffeln Flächenmodelle: Polydronmatrial, quadratische Pappen (Bierdeckel)/Klebestreifen Kantenmodelle: Zahnstocher/Knetkügelchen (für die Ecken besser: Erbsen in Wasser einweichen, werden später wieder hart und sorgen für Haltbarkeit des Kantenmodells); Ecken u. Kanten aus Faltpapier 39
40 Ein Mobile aus platonischen Körpern Quelle: Zahlenbuch, Klasse 4 40
41 Herstellen eines Dodekaeders mit Hilfe der Zeichenuhr Stellt in Gruppenarbeit einen Dodekaeder her. Ihr braucht 12 Zeichenuhren und 12 Stück Fotokarton. 12 regelmäßige Fünfecke zeichnen, die Zeichenuhr auf Fotokarton kleben und ausschneiden.... Quelle: Zahlenbuch (ältere Ausgabe), S
42 Flächenmodell aus Polydronmaterial 42
43 Kantenmodelle Ecken: s. Folie 42 43
44 3 Praxiskurs: Schnelle Körper Aus einem A-4 Blatt kann man Mantelflächen ganz unterschiedlicher Körper formen. Betrachtet man die Mantelfläche kann man sich die dazugehörende Grund- und Deckfläche und den entsprechenden Körper vorstellen. 44
45 schnelle Pyramiden und schnelle Würfel und Quader Beispiel Pyramide 45
46 Fazit 46
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Grundlagen der Planimetrie und Stereometrie
Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,
Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen:
Kapitel 8 Platonische Körper Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Die Begrenzungsflächen sind regelmäßige Vielecke, die untereinander kongruent sind An
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:
Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht
Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag
Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen
Körper zum Selberbauen Polydron
Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Stationen Geometrische Körper.doc. Station 1
Station 1 KÖRPER HERSTELLEN Kantenmodelle An dieser Station sollst du aus Trinkhalmen oder Holzstäbchen und Kügelchen aus Knetmasse mindestens ein Kantenmodell eines Körpers herstellen. Wir kennen diese
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Geometrie-Dossier 4 Körper und ihr Aufbau (angepasst an das Lehrmittel Mathematik 1)
Name: Geometrie-Dossier 4 Körper und ihr Aufbau (angepasst an das Lehrmittel Mathematik 1) Inhalt: Geometrische Körper Ecken, Kanten, Flächen (inkl. Polyedersatz von Euler) Prisma und Pyramide, Tetraeder
Platonische Körper oder das Geheimnis der A5. Peter Maaß, Uttendorf 2005
Platonische Körper oder das Geheimnis der A5 Peter Maaß, Uttendorf 2005 Konstruktion platonischer Körper Symmetriegruppen der platonischen Körper Die Primzahlen der Gruppentheorie Das Geheimnis der A5
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck
Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3
Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein
Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien
Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck
Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +
Raumgeometrie - Würfel, Quader (Rechtecksäule)
Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des
Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax
Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte
Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.
38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich
Fußbälle, platonische und archimedische Körper
Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
Sphärische Vielecke. Hans Walser
Sphärische Vielecke Hans Walser Sphärische Vielecke ii Inhalt 1 Sphärische Vielecke...1 1.1 Sphärische Dreiecke...1 1.2 Sphärische Zweiecke...2 1.3 Der Flächeninhalt sphärischer Dreiecke...3 2 Regelmäßige
2.10. Prüfungsaufgaben zu Körperberechnungen
.0. Prüfungsaufgaben zu Körperberechnungen Pyramiden Berechne die Fläche und das Volumen der unten abgebildeten Dächer:: Zeltdach Walmdach Krüppelwalmdach Gekreuztes Giebeldach en Zeltdach: O = 87 m und
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Parkettierungen herstellen und erforschen
Parkettierungen herstellen und erforschen Mögliche Zugänge zum Thema Bezüge zum Lehrplan Eigene Erkundungen zum Thema Pause Austausch über die Erkundungen Einbettung der Vorschläge in den Unterricht Begriffsbestimmung
Teste dein Grundwissen
Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen
Die Definitionen des Rauminhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.
Kapitel 3: Räumliche Körper und Rauminhalt Der Rauminhalt eines Körpers soll etwas über dessen Größe aussagen, der Rauminhaltsbegriff ist intuitiv irgendwie klar, ab der Grundschule durch Bauen von Körpern
2 Eulersche Polyederformel und reguläre Polyeder
6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge
MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23
MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern
Geometrie-Dossier Pyramiden und Kegel
Geometrie-Dossier Pyramiden und Kegel Name: Inhalt: Die gerade Pyramide (Eigenschaften, Definition, Begriffe, Volumen, Oberfläche) Aufgaben zur Berechnung und Konstruktion von geraden Pyramiden. Der gerade
Formeln für Flächen und Körper
Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ...
Grundwissen Jahrgangsstufe 6
GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche
Download. Mathematik üben Klasse 8 Körper. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Körper Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Körper Differenzierte
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE 21. Auflage Mit 581 Bildern, 556 Aufgaben mit Lösungen 150 Wiederholungsaufgaben ohne Lösungen, einer Beilage mit 15 Raumbildern und einer Formelsammlung
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von
Buch: Mathematik heute [Realschule Niedersachsen], Schroedel
Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen
1 Platonische Körper 1
1 Platonische Körper 1 1 Platonische Körper Das Oktaeder gehört zu den fünf platonischen Körpern die alle aus kongruenten Seiten- ächen aufgebaut sind. Es sollen daher in einem kurzen Abschnitt alle fünf
Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel
Platonische Körper.nb 1 Beweis der xistenz von genau 5 platonischen Körpern anhand der ulerschen Polyederformel Daniel Bauernfeind, 0355507 Dietmar Kerbl, 0355750 Dodekaeder Tetraeder Ikosaeder Würfel
Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter
Kompetenzmodell Geometrisches Zeichnen Arbeitsblätter 4.10.2012 Inhaltsdimension Arbeitsblätter Risse Lesen und Skizzieren Bausteine Länge von Strecken Flächenmodelle Bedienung eines CAD-Programms 3D-CAD-Software:
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
Mathematik für Ahnungslose
Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1
Musteraufgaben Jahrgang 10 Hauptschule
Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des
Grundwissen 5 Lösungen
Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile
Kopfgeometrie. Von der Handlung in den Kopf. Monika Trill-Zimmermann Sinus Set
Kopfgeometrie Von der Handlung in den Kopf 13.08.14 Sinus Set 4 1 Wer die Geometrie begreift, vermag in dieser Welt alles zu verstehen. Galileo Galilei 2 Agenda 1 2 3 Geometrie in der Grundschule (allg.)
o statisch (Vorstellung und Verständnis von räumlicher Konstellationen)
Ziele Schulung der Raumvorstellung: o statisch (Vorstellung und Verständnis von räumlicher Konstellationen) o dynamisch (Durchführung von Handlungen an vorgestellten Objekten in der Vorstellung), vgl.
B Pyramiden. 1. Definition. 2. Arten. 3. Beschreibung
B Pyramiden 1. Definition Eine Pyramide hat ein beliebiges Vieleck als Grundfläche und eine darüber liegende Spitze. Die Seitenflächen sind jeweils Dreiecke. Eine Pyramide ist ein ebenflächig begrenzter
Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten
S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine
SRB- Schulinterner Lehrplan Mathematik Klasse 5
Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln Funktionen Beziehungen zwischen Zahlen und zwischen Größen in Tabellen und Diagrammen darstellen Interpretieren
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie
Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen
M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum
Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade
Bestimmung von Schwerpunkten
Bestimmung von Schwerpunkten Jeder Körper hat einen Punkt, in dem man sich sämtliche Massekräfte als seine gesamte Eigenlast vereinigt denken kann. Dieser Massemittelpunkt ist der Angriffspunkt der gesamten
Prozessbezogenen Kompetenzen
Klasse 5 Version 09/10 Inhaltsbezogene Arithmetik/Algebra - mit Zahlen und Symbolen umgehen Prozessbezogenen Methodische Vorgaben/ Erläuterungen/Ergänzungen Regelheft und schuleigene Software. Natürliche
Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn
Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,
Schullehrplan in der Geometrie der Vorlehre
Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für
Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen
Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm
RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen
RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
MATHEMATIK - LEHRPLAN UNTERSTUFE
INSTITUTO AUSTRIACO GUATEMALTECO MATHEMATIK - LEHRPLAN UNTERSTUFE Der Lehrplan für Mathematik wurde in Anlehnung an den österreichischen Lehrplan ( 11. Mai 2000 ) erstellt. Durch die Verwendung von österreichischen
Erforschen Polydron und Polydron Frameworks
Erforschen Polydron und Polydron Frameworks Geschrieben von Bob Ansell Kontaktinformationen Polydron Site E,Lakeside Business Park Broadway Lane South Cerney Cirencester Gloucestershire GL7 5XL Tel: +44
2 Formenkunde: Vom Würfel zum Parallelflach (Spat) dynamisch
Heinz Schumann 2 Formenkunde: Vom Würfel zum Parallelflach (Spat) dynamisch 2.1 Einleitung Feldspat, Quarz und Glimmer, die vergess ich nimmer. Zum Begriff Prisma gehören u.a. die Unterbegriffe Gerades
Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Körperformen. Carolin Donat. Downloadauszug aus dem Originaltitel: Geometrie
Download Carolin Donat Mathe an Stationen Spezial Geometrie 1+2 Körperformen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher Lern
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Einreichung Geometrieprojekt Gresten
Einreichung Geometrieprojekt Gresten Durchführende Studentin Volksschullehrerin Schule, Klasse Monika Brandstetter Elfriede Buchhofer 3A Klasse VS Gresten Datum, Zeit 21. September, 8.30 bis 10.30 28.
Archimedische und Platonische Körper
Archimedische und Platonische Körper Eine Bauanleitung für den Einsatz in der Lehre Mai 2016 Julia Bienert Inhalt 1 Einleitung... 1 2 Konstruktion... 1 2.1 Idee und Material... 1 2.2 Grundkörper (Archimedischer
Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6
Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen
Übungen zum Verbessern der Raumvorstellung. Josef Molnár
ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár
Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5
Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer
Computergrafik 2016 Oliver Vornberger. Kapitel 16: 3D-Repräsentation
Computergrafik 2016 Oliver Vornberger Kapitel 16: 3D-Repräsentation 1 Sequenz von Transformationen grün rot Kamera blau Modeling View Orientation View Mapping Device Mapping 2 Repräsentation + Darstellung
Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe
Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Nach Jahresplanung: 1.) Mein Wissen aus der 1. Klasse (Zahlen und Maße, Variable und funktionale Abhängigkeiten, Geometrische Figuren und
Starterkit Mathematik
Modulare Förderung Starterkit Mathematik GEOMETRISCHE FIGUREN UND BEZIEHUNGEN Jgst. 5 GEOMETRISCHE FIGUREN UND BEZIEHUNGEN Starterkit Mathematik 3 Erarbeitet im Auftrag des Bayerischen Staatsministeriums
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Natürliche Zahlen und. Zahlenstrahl
M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2
Kongruenz und Symmetrie
Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche
Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen
Naturwissenschaft Sabrina Spahr Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Unterrichtsentwurf Wie bastelt man einen Würfel? Struktur, Vorstellungen,
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5
Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:
praxis geometrische kompetenz schwerpunkt Erkennen und Sortieren als Grundlage der Begriffsbildung
praxis geometrische kompetenz schwerpunkt Erkennen und Sortieren als Grundlage der Begriffsbildung Jürgen Roth finden sich überall in der Umwelt der Kinder. Sie haben verschiedene Funktionen, Farben, Größen
Lernen an Stationen mit den geometrischen Körpern
Lernen an Stationen mit den geometrischen Körpern 1.Fühlstation 2.Baustation 3.Kubusstation 4.Rätselstation 5.Netzstation 6.Computerstation 7.Detektivstation 8.Knobelaufgabe Die Aufträge der einzelnen
Geometrische Flächen und Körper
Schulstufe Thema Fachliche Kompetenzen Grundstufe II Bildungsstandards Mathematik 4, Allgemeine Kompetenzen (AK) AK 2 Operieren AK 2.1 Mathematische Abläufe durchführen - Zahlen, Größen und geometrische
18 Darstellende Geometrie
307 8 Darstellende Geometrie Die Aufgabe der Darstellenden Geometrie ist es, räumliche Körper und Figuren in einer Zeichenebene so anschaulich darzustellen, dass alle wichtigen geometrischen Maße erkennbar
Daten erfassen und darstellen
MAT 05-01 Leitidee: Daten und Zufall Daten erfassen und darstellen Thema im Buch: Meine Klasse und ich - Zahlenangaben sammeln und vergleichen Daten in Ur-, Strichlisten und Häufigkeitstabellen zusammenfassen.
Geometrie 1. 1.)Geometrische Grundkonstruktionen. Halbierung einer Strecke, Mittelsenkrechte. Teilung einer Strecke. Winkelhalbierung.
Geometrie 1 1.)Geometrische Grundkonstruktionen Halbierung einer Strecke, Mittelsenkrechte Teilung einer Strecke Winkelhalbierung Thaleskreis Konstruktion von Dreiecken Kongruenzsätze: SSS-Satz, SWS-Satz,
Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94
Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen