Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten"

Transkript

1 Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten Georg Bol Markus Höchstötter

2 Agenda 1. Einleitung 2. Lorenzkurve 3. Gini-Koeffizient 4. Weitere Konzentrationsmaße Kapitel IV - Häufigkeitsverteilungen 1

3 Einleitung Bei vielen Verteilungen sind Lage- und Streuungsparameter für die Analyse einer Häufigkeitsverteilung nicht ausreichend. Beispiel 7.1 Bei einer Einkommensverteilung ist neben dem arithmetischen Mittel, also dem durchschnittlichen Einkommen, ein Streuungsparameter, z.b. die Standardabweichung, von Bedeutung, die etwas über die Abweichung vom mittleren Einkommen aussagt. Die Standardabweichung ist allerdings nicht genügend aussagekräftig, da die Verteilung sicherlich in der Regel nicht symmetrisch ist. Es kann z. B. viele mit geringeren Einkommen als dem Durchschnittseinkommen und einige wenige mit wesentlich höheren Einkommen geben. Das Ziel ist es diese Ungleichheit in der Verteilung der Einkommen mit Hilfe eines aussagekräftigen Maßes sichtbar und damit vergleichbar zu machen. Kapitel IV - Häufigkeitsverteilungen 2

4 Einleitung Ziel: Beschreibung, graphische Darstellung und Messung von Ungleichheiten z.b. bei der Verteilung von Besitz Gegeben: Besitz -Verteilung in Form einer nichtnegativen geordneten Urliste 0 x (1) x (2)... x (n) Gesamtbesitz: Positive Merkmalssumme x = x (i) > 0 n i=1 Kapitel IV - Häufigkeitsverteilungen 3

5 Einleitung Frage: Wie ist die Merkmalssumme auf die n Personen verteilt? Extremfälle: Alle besitzen gleich viel. Einer besitzt alles. Kapitel IV - Häufigkeitsverteilungen 4

6 Agenda 1. Einleitung 2. Lorenzkurve 3. Gini-Koeffizient 4. Weitere Konzentrationsmaße Kapitel IV - Häufigkeitsverteilungen 5

7 Lorenzkurve Wichtigstes graphisches Hilfsmittel zur Verdeutlichung von Konzentrationsphänomenen. Ausgegangen wird dabei von einer geordneten nichtnegativen statistischen Reihe mit positiver Summe der Beobachtungswerte (Merkmalssumme) 0 x (1) x (2)... x (n), x = n i=1 x (i) > 0 Prinzip: Gegenüberstellung des Anteils an der statistischen Masse und des Anteils an der Merkmalssumme der k statistischen Einheiten mit den kleinsten Merkmalswerten Kapitel IV - Häufigkeitsverteilungen 6

8 Lorenzkurve Anteil an der Merkmalssumme, der auf die k statistischen Einheiten mit den kleinsten Merkmalswerten (x (1),..., x (k) ) entfällt: v k = x (i) i=1 = x (i) i=1 nèkè Anteil an der gesamten statistischen Masse: x (1) x (k) x (1) x (n) u k = k n Damit steht also dem Anteil u k an der statistischen Masse ein Anteil v k an der Merkmalssumme gegenüber. Für k = 1,..., n trägt man die Punkte (u k, v k ) in ein Koordinatenkreuz ein und verbindet sie durch einen Streckenzug, beginnend mit dem Ursprung (0,0): Kapitel IV - Häufigkeitsverteilungen 7

9 Lorenzkurve Anteil an der Merkmalssumme 1 (un, vn) = (1, 1) (u 3, v 3 ) (u 2, v 2 ) (u 1, v 1 ) 0 1 Anteil an der statistischen Masse Abbildung Lorenzkurve. Kapitel IV - Häufigkeitsverteilungen 8

10 Lorenzkurve Beispiel 7.1 Die geordnete statistische Reihe der Monatslöhne in einem mittleren Handwerksbetrieb laute wie folgt in Euro: 500, 1900, 2050, 2200, 2250, 2400, 2600, 2950, 4000, Merkmalssumme ist: Damit erhält man folgende Tabelle: u k v k Und die folgende Lorenzkurve... Kapitel IV - Häufigkeitsverteilungen 9

11 Lorenzkurve Figure 1: Abbildung Lorenzkurve zu Beispiel 7.1 Kapitel IV - Häufigkeitsverteilungen 10

12 Lorenzkurve Eigenschaften der Lorenzkurve: Die Lorenzkurve beginnt in (0,0) und endet in (1,1). Die Lorenzkurve verläuft nirgendwo oberhalb der Diagonalen. Die Lorenzkurve steigt monoton. Die Lorenzkurve ist konvex. Kapitel IV - Häufigkeitsverteilungen 11

13 Lorenzkurve Anmerkung: Die Diagonale ist die Bezugskurve zur Lorenzkurve. Sind nämlich alle Beobachtungswerte gleich......so ist für k = 1,..., n v k = 0 < x 1 = x 2 =... = xn, x i i=1 kè = x i i=1 nè k x 1 n x 1 = k n = u k. Die Diagonale gibt also den Zustand wieder, in dem die Merkmalssumme völlig gleichmäßig über die Masse verteilt ist ( Gleichverteilung der Merkmalssumme ). Aus der Sicht der Konzentration der Idealzustand ohne jegliche Konzentration. Dem Idealzustand der Gleichverteilung entgegengesetzt ist der Extremfall, dass die gesamte Merkmalssumme in einer statistischen Einheit vereint ist: 0 = x (1) =... = x (n 1) < x (n). Kapitel IV - Häufigkeitsverteilungen 12

14 Lorenzkurve Kapitel IV - Häufigkeitsverteilungen 13

15 Lorenzkurve Weitere Anmerkung: Für großes n, also viele statistische Einheiten, erhält man bei vollständiger Konzentration nahezu die Katheden des rechtwinkligen Dreiecks mit den Eckpunkten (0,0), (1,0), (1,1). Interpretation der Lorenzkurve: Je weiter die Lorenzkurve von der Diagonalen entfernt ist, je mehr die Lorenzkurve also durchhängt, desto größer ist die Konzentration. Kapitel IV - Häufigkeitsverteilungen 14

16 Lorenzkurve Beispiel 7.2 Gegeben ist die Häufigkeitsverteilung a h(a) p(a) Geordnete Urliste ist dann: 1, 1, 2, 2, 2, 3; Merkmalssumme ist 11. Damit erhält man die Koordinaten der Lorenzkurve: u k v k Kapitel IV - Häufigkeitsverteilungen 15

17 Lorenzkurve Figure 2: Abbildung Lorenzkurve zu Beispiel 7.2 Anmerkung: Man sieht, dass übereinstimmende Merkmalswerte zu Geradenstücken gleicher Steigung führen. Es genügt also, die Werte für k = 2 und k = 5 zu berechnen. Kapitel IV - Häufigkeitsverteilungen 16

18 Lorenzkurve Ermittlung der Lorenzkurve aus der absoluten Häufigkeitsverteilung Merkmalssumme: x a h(a) a M = Zur Berechnung der Koordinaten sind die Merkmalsausprägungen zu ordnen: 0 a 1 < a 2 <... < am. Kapitel IV - Häufigkeitsverteilungen 17

19 Lorenzkurve Ermittlung der Lorenzkurve aus der absoluten Häufigkeitsverteilung Anteil der k niedrigsten Merkmalsausprägungen an der Merkmalssumme: v k = Èa i h(a i ) i=1 a h(a) a M kè Anteil dieser Merkmalsausprägungen an der statistischen Masse: u k = Èh(a i ) i=1 h(a) a M kè Kapitel IV - Häufigkeitsverteilungen 18

20 Lorenzkurve Beispiel 7.3 Im Beispiel 7.2 erhält man die notwendigen Koordinaten der Lorenzkurve u k v k Anmerkung: Der Unterschied besteht darin, dass hierbei lediglich die Knickstellen der Lorenzkurve berechnet werden. Kapitel IV - Häufigkeitsverteilungen 19

21 Lorenzkurve Ermittlung der Lorenzkurve aus der relativen Häufigkeitsverteilung Anteil der k niedrigsten Merkmalsausprägungen an der Merkmalssumme: v k = Èa i p(a i ) i=1 a p(a) a M kè Anteil dieser Merkmalsausprägungen an der statistischen Masse: u k = p(a i ) k i=1 Kapitel IV - Häufigkeitsverteilungen 20

22 Lorenzkurve Beispiel 7.4 In Beispiel 7.2 erhält man 3 i=1 a i p(a i ) = = 11 6 und damit v 1 = = 2 11, v 2 = ( ) 11 6 = 8 11, v 3 = 1 wie in Beispiel 7.3. Kapitel IV - Häufigkeitsverteilungen 21

23 Lorenzkurve Ermittlung der Lorenzkurve bei klassierten Merkmalen Weder u k noch v k können gebildet werden. Seien I j die Klassen und h(i j ) bzw. p(i j ) die absoluten bzw. relativen Häufigkeiten. Die Klasse I hat damit den relativen Anteil p(i) = h(i) n an der statistischen Masse. Seien also die Klassen I 1,..., I m nach ihren Klassengrenzen geordnet, dann kann man statt u 1,..., u n die folgenden Werte verwenden: p(i 1 ), p(i 1 ) + p(i 2 ),..., m j=1 p(i j ) Kapitel IV - Häufigkeitsverteilungen 22

24 Lorenzkurve Ermittlung der Lorenzkurve bei klassierten Merkmalen Der Anteil an der Merkmalssumme einer Klasse I lässt sich nur anhand der Urliste oder der Häufigkeitsverteilung der unklassierten Daten feststellen. Geht man davon aus, dass die Klassenmitte z I das arithmetische Mittel der Merkmalswerte der Klasse ist, so ist z I h(i) Merkmalssumme der Klasse I und m j=1 z j h(i j ) Merkmalssumme der Gesamtmasse. Kapitel IV - Häufigkeitsverteilungen 23

25 Lorenzkurve Ermittlung der Lorenzkurve bei klassierten Merkmalen Punkte der Lorenzkurve für absolute Häufigkeiten: (u k, v k ) =¼ k j=1 p(i j ), Punkte der Lorenzkurve für relative Häufigkeiten: z j h(i j ) j=1 kè k = 0,..., m z j h(i j )½ für j=1 mè (u k, v k ) =¼ k j=1 p(i j ), z j p(i j ) j=1 kè k = 0,..., m z j p(i j )½ für j=1 mè Kapitel IV - Häufigkeitsverteilungen 24

26 Lorenzkurve Beispiel 7.5 Für eine Verbrauchsstudie wurden die Nettojahreseinkommen von 100 Männern festgestellt: Männer Einkommen in TEuro abs. H. rel. H. u k z j h(i j )Èz j h(i j ) v k unter bis unter bis unter bis unter bis unter bis unter bis unter Kapitel IV - Häufigkeitsverteilungen 25 È 100

27 Lorenzkurve Figure 3: Abbildung Lorenzkurve u Beispiel 7.5 Kapitel IV - Häufigkeitsverteilungen 26

28 Agenda 1. Einleitung 2. Lorenzkurve 3. Gini-Koeffizient 4. Weitere Konzentrationsmaße Kapitel IV - Häufigkeitsverteilungen 27

29 Gini-Koeffizient Anteil der Fläche zwischen der Diagonalen und der Lorenzkurve an Gesamtfläche unterhalb der Diagonalen. Er ist ein Maß für die Konzentration, die eben gerade der Abweichung der Lorenzkurve von der Diagonalen entspricht. G = Fläche zwischen Diagonale D und Lorenzkurve L Fläche zwischen Diagonale D und u-achse Kapitel IV - Häufigkeitsverteilungen 28

30 Gini-Koeffizient F i (u i+1,v i+1 ) (u i,v i ) u i u i+1 Abbildung Zur Berechnung des Gini-Koeffizienten Kapitel IV - Häufigkeitsverteilungen 29

31 Gini-Koeffizient Berechnung des Gini-Koeffizienten Für F i gilt F i = (u i+1 u i ) ( u i v i 2 + u i+1 v i+1 ), 2 da F i (um 90 o gedreht) ein Trapez ist, mit der Höhe u i+1 u i und der Mittellinie 0.5((u i v i ) + (u i+1 v i+1 )). Kapitel IV - Häufigkeitsverteilungen 30

32 Gini-Koeffizient Damit ist G = 1 2 n 1 (u i+1 u i )(u i v i +u i+1 v i+1 ) i=0 È 1 2 = n 1 (u i+1 u i )(u i v i + u i+1 v i+1 ) Èi=0 Setzt man die Daten aus der geordneten Urliste ein, so erhält man nach einigem Rechenaufwand G = 2 nèi=1 i x (i) (n + 1) nèi=1 x (i) n nèi=1. x (i) Kapitel IV - Häufigkeitsverteilungen 31

33 Gini-Koeffizient Beispiel 7.6 (1) In Beispiel 7.1 erhält man: G = 1 10 ( ) = 2 Nach der zweiten Formel erhält man: = G = = Der Unterschied ist durch die Rundung der beiden Koordinaten (u k, v k ) begründet. Kapitel IV - Häufigkeitsverteilungen 32

34 Gini-Koeffizient Beispiel 7.6 (2) Aus den Daten von Beispiel 7.2 bzw. 7.3 erhält man: G = = = = = (3) Für die Einkommensverteilung der Männer lautet der Gini-Koeffizient: G = = Kapitel IV - Häufigkeitsverteilungen 33

35 Gini-Koeffizient Betrachte: Der Maximalwert des Gini-Koeffizienten ist für 0 = x (1) =... = x (n 1), x (n) = x (i) n i=1 nach der zweiten Formel Gmax = 2 n x (n) (n + 1) x (n) = n 1 n x (n) n Bei einer Maßzahl geht man üblicherweise von einem Maximalwert 1 aus. Aus diesem Grund normiert man den Ginikoeffizienten. Kapitel IV - Häufigkeitsverteilungen 34

36 Gini-Koeffizient Normierter Gini-Koeffizient Es gilt Gnorm = n n 1 G. 0 Gnorm 1 und G norm G norm = 1 bei vollständiger Konzentration, = 0 bei gleichmäßiger Verteilung der Merkmalssumme. Kapitel IV - Häufigkeitsverteilungen 35

37 Gini-Koeffizient Kritikpunkte Unterschiedliche Lorenzkurven können zu dem selben Gini-Koeffizienten führen. Es besteht ein starke Abhängigkeit des Gini-Koeffizienten von der Zahl der einbezogenen statistischen Einheinten. Weglassen von kleinen Merkmalswerten verringert G. Der Gini-Koeffizient ist nur ein Maß für die relative Konzentration, nicht für die absolute Konzentration. Kapitel IV - Häufigkeitsverteilungen 36

38 Gini-Koeffizient Beispiel 7.7 Die Messung der Wettbewerbskonzentration mit Hilfe des Gini-Koeffizienten auf zwei verschiedenen Märkten ergibt den selben Wert, obwohl die Märkte nicht identisch sind: G = 0 für zwei Firmen mit je 50% Marktanteil G = 0 für 20 Firmen mit je 5% Marktanteil Kapitel IV - Häufigkeitsverteilungen 37

39 Gini-Koeffizient Figure 4: Abbildung Beispiel zweier Lorenzkurven mit übereinstimmendem Gini-Koeffizienten Kapitel IV - Häufigkeitsverteilungen 38

40 Agenda 1. Einleitung 2. Lorenzkurve 3. Gini-Koeffizient 4. Weitere Konzentrationsmaße Kapitel IV - Häufigkeitsverteilungen 39

41 Weitere Konzentrationsmaße Konzentrationskoeffizient CRg = x (i) i=n g+1 nè für g = (1, 2, )3,... x (i) i=1 nè CR g gibt an, welchen Anteil der Merkmalssumme die g letzten Merkmalswerte der geordneten statistischen Reihe in sich vereinen. Die Vorgehensweise entspricht der Konstruktion der Lorenzkurve, wobei die geordnete Urliste von rechts nach links, also in umgekehrter Reihenfolge abgearbeitet wird. Die zugehörige Kurve wird üblicherweise als Paretokurve bezeichnet. Kapitel IV - Häufigkeitsverteilungen 40

42 Weitere Konzentrationsmaße Figure 5: Abbildung Paretokurve Kapitel IV - Häufigkeitsverteilungen 41

43 Weitere Konzentrationsmaße Herfindahl-Index n i=1¼ x i H := x i½ 2 H ist die Summe der quadrierten individuellen Anteile an der Merkmalssumme. Je größer H ist, desto größer ist die Konzentration. i=1 nè Kapitel IV - Häufigkeitsverteilungen 42

Kapitel VII - Konzentration von Merkmalswerten

Kapitel VII - Konzentration von Merkmalswerten Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

7. Konzentrations- und Disparitätsmessung

7. Konzentrations- und Disparitätsmessung 7. Konzentrations- und Disparitätsmessung Betrachte: Merkmal X, bei dem alle Daten x i 0 sind und die Merkmalssumme n i=1 x i eine sinnvolle Interpretation besitzt (extensives Merkmal) 314 Beispiel: X:

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 28.05.2013 Konzentrationsmaße 1. Konzentrationsbegriff

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Beispiel 9 (Einige Aufgaben und Illustrationen zur Lorenzkurve, Teil 2)

Beispiel 9 (Einige Aufgaben und Illustrationen zur Lorenzkurve, Teil 2) Beispiel 9 (Einige Aufgaben und Illustrationen zur Lorenzkurve, Teil ) Aufgabe (Lorenzkurve und Einkommen) Stellen Sie folgende Einkommensverteilung als Lorenzkurve dar. Wochenlohn Häufigkeit 500-599.99

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

4 Konzentrationsmessung

4 Konzentrationsmessung 4 Konzentrationsmessung 4.0 Vorbemerkungen 4.0 Vorbemerkungen Konzentration: Ausmaß der Ballung von großen Anteilen an der gesamten Merkmalssumme auf wenige Einheiten. welchen Anteil am Gesamtvermögen

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

4 Spezifizierende Beschreibung empirischer Verteilungen

4 Spezifizierende Beschreibung empirischer Verteilungen 4 Spezifizierende Beschreibung empirischer Verteilungen 55 4 Spezifizierende Beschreibung empirischer Verteilungen 4.1 Spezifika empirischer Verteilungen 59 4.2 Lagekennwerte 63 4.2.1 Arithmetisches Mittel

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Statistik I für Betriebswirte Vorlesung 10

Statistik I für Betriebswirte Vorlesung 10 Statistik I für Betriebswirte Vorlesung 10 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 13. Juni 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Kapitel VIII - Mehrdimensionale Merkmale

Kapitel VIII - Mehrdimensionale Merkmale Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Mehrdimensionale Merkmale Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 1 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den insendeaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007 Wirtschaftsstatistik Konzentrations- und Disparitätsmessung 16.10.2007 Begriffe Konzentration und Disparität Laut Oxford Advanced Learner s Dictionary by OUP, bzw. WordNet by Princeton University concentration:

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg Streuungsparameter Etschberger SS Voraussetzung: kardinale Werte x,..., x n Beispiel:

Mehr

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Übungsblatt 3. Größe in cm Anzahl der (Klassenmitten) Studenten ges:100

Übungsblatt 3. Größe in cm Anzahl der (Klassenmitten) Studenten ges:100 Aufgabe 1: Übungsblatt 3 Die Körpergröße von 100 Studenten sei wie folgt verteilt: Größe in cm Anzahl der (Klassenmitten) Studenten 158 1 162 6 166 10 170 22 174 21 178 17 182 14 186 5 190 3 194 1 ges:100

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

Bedeutungen des Begris der Konzentration: statische Konzentration: zur Charakterisierung einer bestehenden Ungleichverteilung

Bedeutungen des Begris der Konzentration: statische Konzentration: zur Charakterisierung einer bestehenden Ungleichverteilung Konzentration Bedeutungen des Begris der Konzentration: statische Konzentration: zur Charakterisierung einer bestehenden Ungleichverteilung dynamische Konzentration: zur Charakterisierung der Zunahme einer

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Übungsaufgaben: Beschreibende Statistik Seite: 1

Übungsaufgaben: Beschreibende Statistik Seite: 1 Übungsaufgaben: Beschreibende Statistik Seite: 1 Aufgabe 1 Sie haben als Zeitungsleser, im Job oder in anderen privaten, sozialen und politischen Zusammenhängen sehr häufig mit Statistiken zu tun oder

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 BRP Mathematik VHS Floridsdorf 15.6.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 Notenschlüssel:

Mehr

SMALL & CR4 40 (N = 63) F E/F F E/F F E/ F 25% %

SMALL & CR4 40 (N = 63) F E/F F E/F F E/ F 25% % 1 Beispiel 4 (Die Lorenzkurve in der Betriebswirtschaft) Example 4.1 (The distribution of firms in Germany) Source: Vivek Ghosal, Prakash Loungani, The differential impact of incertainty on investment

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Formelsammlung zur Statistik I

Formelsammlung zur Statistik I Formelsammlung zur Statistik I Prof. Dr. Rolf Hüpen Prof. Dr. Manfred Lösch Fakultät für Wirtschaftswissenschaft Inhaltsverzeichnis 1 Deskriptive Statistik 3 1.1 Datenlagen................................

Mehr

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit.

Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Die gegebene Menge heißt auch Grundgesamtheit. Kapitel 1 Beschreibende Statistik Gegeben: Eine Menge von Objekten mit Merkmalen (beobachtet oder gemessen) Gesucht: Übersichtliche Beschreibung Die gegebene Menge heißt auch Grundgesamtheit. Beispiele

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2.

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2. Prototypische Schularbeit 2 Klasse 8 Autor: Mag. Paul Schranz Begleittext Die vorliegende Schularbeit behandelt größtenteils Grundkompetenzen der Inhaltsbereiche Analysis und Wahrscheinlichkeitsrechnung

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

IK Ökonomische Entscheidungen und Märkte

IK Ökonomische Entscheidungen und Märkte IK Ökonomische Entscheidungen und Märkte LVA-Leiterin: Ana-Maria Vasilache Einheit 6/I: Märkte und Wohlfahrt (Kapitel 9) Märkte und Wohlfahrt Fragestellung: Ist die zum Gleichgewichtspreis produzierte

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

3. Quintil. 2. Quintil

3. Quintil. 2. Quintil Beispiel 9 (Einige Aufgaben und Illustrationen zur Lorenzkurve) Aufgabe Stellen Sie die Einkommensungleichheit in Argentinien, Brasilien, Costa Rica, Chile, Mexico, Panama, Peru und Venezuela mit Hilfe

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Taschengeld Der Term stellt die Höhe des durchschnittlichen wöchentlichen

Mehr

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße Klausur: Statistik Jürgen Meisel Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung Bearbeitungszeit: 60 Minuten 1.) Mittelwerte und Streumaße In einer Vorlesung auf der Universität sitzen 30 Studenten

Mehr

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge

registrierte Fußballvereine Männer im besten Fußballalter (20 34 Jahre) Bruttoinlandsprodukt je Einwohner Farben der Nationalflagge Aufgabe 1: Anlässlich der Fußball-Europameisterschaft veröffentlichte das Statistische Bundesamt unter der Überschrift "EM 2012: Die Teilnehmer in Zahlen" statistische Merkmale der Teilnehmerstaaten. Die

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste

Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste Berechnung des arithmetischen Mittels aus Häufigkeitstabellen Weitere Lagemaße Worum geht es

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Armutsgefährdungsquoten von Familien (Teil 1)

Armutsgefährdungsquoten von Familien (Teil 1) (Teil 1) Armutsgefährdungsquoten von Familien (Teil 1) Nach Haushaltstypen und und Zahl Zahl der Kinder Kinder unter unter 18 Jahren*, 18 Jahren*, gemessen gemessen am Bundesmedian am Bundesmedian sowie

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Indikatorendokumentation

Indikatorendokumentation Indikatorendokumentation Einkommen und seine Verteilung I001 Nettonationaleinkommen (Nettosozialprodukt) pro Einwohner in konstanten Preisen (in Euro) Niveau und Wachstum Statistisches Bundesamt, Statistisches

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Umfang und Fläche von Rechtecken

Umfang und Fläche von Rechtecken Umfang und Fläche von Rechtecken Herbert Paukert 1 Umfang und Fläche von Rechtecken Version 2.0 Herbert Paukert (1) Der Umfang von Rechtecken [02] Elemente der Geometrie [02] Fünf Übungsaufgaben [08] Das

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Segregation. Sozialstruktur SoSe2013

Segregation. Sozialstruktur SoSe2013 Räumliche und Soziale Segregation g Vorlesung 10 Sozialstruktur SoSe2013 1 Segregation Räumliche Segregation ist die Abbildung von Ungleichheit im Raum Soziale Segregation ist das Entstehen unterschiedlichen

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Statistik. Übungsserie FS Dauer: 45 Minuten. Name: Vorname: Maximale Punktzahl: 37. Erreichte Punktzahl: Prozente: Note:

Statistik. Übungsserie FS Dauer: 45 Minuten. Name: Vorname: Maximale Punktzahl: 37. Erreichte Punktzahl: Prozente: Note: Statistik Übungsserie FS 2014 Dauer: 45 Minuten Name: Vorname: Maximale Punktzahl: 37 Erreichte Punktzahl: Prozente: Note: Punkte Note 34 6 31 5.5 27 5 24 4.5 20 4 17 3.5 13 3 10 2.5 7 2 3 1.5 0 1 Aufgabe

Mehr

Übungen Teil 1: Weltbevölkerung, Armut, ICT, Lorenzkurve & Gini, Equity. Die Besprechung dieses Übungsblattes findet am Mittwoch, den

Übungen Teil 1: Weltbevölkerung, Armut, ICT, Lorenzkurve & Gini, Equity. Die Besprechung dieses Übungsblattes findet am Mittwoch, den Übungen Teil 1: Weltbevölkerung, Armut, ICT, Lorenzkurve & Gini, Equity Allgemeine Informationen Die Übungen finden in 14-tägigem Rhythmus statt abweichende Termine werden in der Vorlesung und auf der

Mehr

4 Konzentrationsmessung

4 Konzentrationsmessung 4 Konzentrationsmessung 4.0 Vorbemerkungen 4.0 Vorbemerkungen Konzentration: Ausmaß der Ballung von großen Anteilen an der gesamten Merkmalssumme auf wenige Einheiten (Frage zum Beispiel: Welchen Anteil

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr