Lineare Algebra II 5. Übungsblatt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra II 5. Übungsblatt"

Transkript

1 Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen, wenn jedes nicht-konstante Polynom eine Nullstelle in hat Welche der folgenden Mengen sind algebraisch abgeschlossene Körper? (a) (b) (c) (d) (e) Zeigen Sie ihre Aussagen für die Mengen, die keine algebraisch abgeschlossenen Körper sind Lösung: Von den angegebenen Mengen ist nur ein algebraisch abgeschlossener Körper ist kein algebraisch abgeschlossener Körper, da die ganzen Zahlen keinen Körper bilden und sind keine algebraisch abgeschlossenen Körper, da das Polynom x + in ihnen keine Nullstellen hat ist kein algebraisch abgeschlossener Körper, da das Polynom x + x + keine Nullstelle in hat Aufgabe G (Charakteristisches Polynom) Es sei V ein endlichdimensionaler Vektorraum und U, U,, U n V Untervektorräume von V mit V = U U U n Außerdem sei f : V V eine lineare Abbildung und die Unterräume U i seien f -invariant, dh es gilt f (U i ) U i, i n Das charakteristische Polynom einer linearen Abbildung ist gleich dem charakteristischen Polynom der Matrix dieser Abbildung bezüglich einer beliebigen Basis Es sei f i := f Ui : U i V Zeigen Sie, dass das charakteristische Polynom von f gleich dem Produkt der charakteristischen Polynome aller f i ist Lösung: Man wählt für alle U i eine Basis B i B sei das Tupel von Vektoren, dass aus den Vektoren aller B i besteht (wobei die Reihenfolge so sein soll, dass zuerst die Vektoren aus B, dann die aus B usw kommen) Wegen V = U U U n ist B dann eine Basis von V Ich bezeichne das charakteristische Polynom von f mit p f und das von f i mit p fi Dann gilt p f (t) = det [ f t id] B Wegen der Gestalt von B und da U i f -invariant ist, hat die Matrix [ f t id] B Blockdiagonalgestalt, wobei die Blöcke gerade die Form [ f i t id] Bi haben Daraus ergibt sich p f (t) = det [ f t id] B = n det [ f i t id] Bi = i= n p fi i=

2 wzbw Aufgabe G3 (Fibonacci-Zahlen) Wir definieren rekursiv eine Folge (f n ) n natürlicher Zahlen durch Die so konstruierten Zahlen f n heißen Fibonacci-Zahlen (a) Berechnen Sie die ersten 8 Fibonacci-Zahlen f :=, f :=, f n+ := f n + f n+ n (b) Für jedes n setzen wir x n := (f n, f n+ ) T Finden Sie eine -Matrix A mit x n+ = A x n Mit vollständiger Induktion folgt dann x n = A n x Insbesondere ist die Fibonacci-Zahl f n der erste Eintrag des Vektors A n x (c) Bestimmen Sie eine explizite Formel für die n-te Fibonacci-Zahl, indem Sie die Potenzen A n bestimmen Lösung: (a) Es gilt f =, f =, f 3 =, f = 3, f =, f 6 = 8, f 7 = 3 und f 8 = (b) Es muss gelten A fn f n+ = Ax n = x n+ = fn+ f n+ = f n+ f n + f n+ Dies ist offensichtlich für die Matrix A = erfüllt (c) Die Matrix hat die Eigenwerte ( ± ) mit den Eigenvektoren x = (, ( + )) T und x = (, ( )) T Mit der Transformationsmatrix S := (x x ) gilt also S AS = ( + ) ( ) Es folgt A n = S(S AS) n S = S = det S ( + ) n ( + ) ( ) ( ) n ( + ) n S ( ) ( ) n ( + ) A n x = = = ( + ) ( ) ( + ) ( ) ( + ) ( ) ( + ) n ( + ) n = ( ) n ( + ) n ( ) n+ ( + ) n+ ( + ) n ( ) n ( ) ( ) n ( + ) ( ) ( ) n ( + ) Da die n-te Fibonacci-Zahl der erste Eintrag von A n x ist, folgt n n + f n =

3 Aufgabe G (Euklidischer Algorithmus) Es seien a und b zwei ganze Zahlen (a) Beschreiben Sie einen Algorithmus zur Bestimmung des größten gemeinsamen Teilers von a und b Machen Sie sich auch klar, warum er funktioniert (b) Berechnen Sie mit Hilfe des gerade beschriebenen Algorithmus g g T(9, ) und g g T(3, ) (c) Machen Sie sich klar, dass man mit Hilfe des Euklidischen Algorithmus immer Zahlen l, m mit g g T(a, b) = la + mb finden kann Tipp: Setzen Sie die Gleichungen im Algorithmus von unten nach oben ineinander ein (d) Bestimmen Sie mit Hilfe des Euklidischen Algorithmus Zahlen l, m mit g g T(, 3) = l + 3m (e) Es sei auch c eine ganze Zahl Welche Bedingung muss c erfüllen, damit es ganze Zahlen x und y gibt mit Beweisen Sie ihre Behauptung ax + b y = c (f) Das Verfahren funktioniert für Polynome genauso Bestimmen Sie den größten gemeinsamen Teiler der Polynome Lösung: Finden Sie außerdem Polynome r(t) und s(t) mit p(t) = t + t 3 + t + t und q(t) = t 3 + g gt(p(t), q(t)) = r(t)p(t) + s(t)q(t) (a) Der Algorithmus ist derselbe, wie der aus der letzten Hausübung bekannte für Polynome Dh man stellt zuerst fest, dass in den ganzen Zahlen immer eine Division mit Rest möglich ist, dh es gibt eindeutig bestimmte ganze Zahlen q, r mit a = q b + r und < r < b Im zweiten Schritt führt man dann eine Division mit Rest der Zahlen b und r durch Dh es gibt eindeutig bestimmte ganze Zahlen q, r mit b = q r + r und < r < r Im i-ten Schritt führt man eine Division mit Rest der Zahlen r i und r i durch Dh es gibt eindeutig bestimmte ganze Zahlen q i, r i mit r i = q i r i + r i und < r i < r i Der Algorithmus bricht ab, wenn der Rest Null ist Der letzte von Null verschiedene Rest ist dann der gesuchte g g T Beim Durchführen des Algorithmus ergibt sich die Folge von Gleichungen a = q b + r, < r < b b = q r + r, < r < r r = q 3 r + r 3, < r 3 < r r n = q n r n + r n, r n = q n+ r n + < r n < r n Da die Reste natürliche Zahlen sind, die in jedem Schritt kleiner werden, muss es irgendwann einen Rest Null geben, dh der Algorithmus bricht ab An der letzten Zeile erkennt man, dass r n = g g T(r n, r n ) gilt An der vorletzten Zeile sieht man, dass jeder gemeinsame Teiler von r n und r n auch ein Teiler von r n ist Andererseits ist auch jeder gemeinsame Teiler von r n und r n ein Teiler von r n Daraus schließt man, dass g g T(r n, r n ) = g gt(r n, r n ) gilt Mit derselben Argumentation für jede Zeile des Algorithmus erhält man r n = g gt(r n, r n ) = g gt(r n, r n ) = = g g T(r, r ) = g g T(r, b) = g g T(b, a) Dh der Algorithmus liefert tatsächlich den größten gemeinsamen Teiler 3

4 (b) Dh es gilt g gt(9, ) = 6 Dh es gilt g gt(3, ) = 9 = = = = + 3 = = + 8 = = = 3 + (c) Aus der vorletzten Zeile des euklidischen Algorithmus erhält man Die Zeile davor kann man Umformen zu g g T(a, b) = r n = r n q n r n r n = r n 3 q n r n Setzt man dies nun in die letzte Gleichung ein erhält man g gt(a, b) = r n q n (r n 3 q n r n ) = q n r n 3 + ( + q n q n )r n Dieses Verfahren kann man so fortsetzen Man erhält dadurch in jedem Schritt eine Darstellung von g g T(a, b) als ganzzahlige Linearkombination von r i und r i, wobei das i in jedem Schritt um eins kleiner wird (hier kann man b = r und a = r setzen) Im letzten Schritt hat man dann die gesuchte Darstellung g g T(a, b) = la + mb (d) Durch das eben beschriebene Verfahren erhält man aus dem im Aufgabenteil (b) durchgeführen Algorithmus g gt(, 3) = = 8 6 Die gesuchten Zahlen sind also l = und m = 7 = 8 ( 8) = = + 3 (3 ) = 3 3 = 3 3 ( 3) = (e) Diese Gleichung ist genau dann lösbar, wenn d := g g T(a, b) ein Teiler von c ist Wenn d c nicht teilt, dann ist d immer ein Teiler von ax + b y, aber keiner von c, die Gleichheit ax + b y = c kann also nie erfüllt sein Wenn d c teilt gibt es eine ganze Zahle z mit c = d z Außerdem gibt es nach Aufgabenteil (c) ganze Zahlen l und m mit al + bm = d Damit gilt auch a(lz) + b(mz) = d z = c Dh die gegebene Gleichung hat die ganzzahligen Lösungen x = lz und y = mz (f) Der Euklidische Algorithmus liefert Dh es gilt Aus den Gleichungen ergibt sich t + t 3 + t + t = (t + )(t 3 + ) + (t ) t 3 + = t(t ) + (t + ) (t ) = (t )(t + ) + g g T(p(t), q(t)) = t + g gt(p(t), q(t)) = t + = t 3 + t(t ) Dh die gesuchten Polynome sind r(t) = t und s(t) = t + t + = q(t) t(p(t) (t + )q(t)) = t p(t) + (t + t + )q(t)

5 Hausübung Aufgabe H (Charakteristisches Polynom) Es sei A = a a a 3 a a a 3 a 3 a 3 a 33 eine allgemeine reelle 3 3-Matrix Des Weiteren sei eine Abbildung F : M 3 (), A a a + a a 33 + a a 33 a a a 3 a 3 a 3 a 3 (a) Ist F eine lineare Abbildung? Zeigen Sie ihre Behauptung (b) Berechnen Sie das charakteristische Polynom p A von A in Abhängigkeit der Einträge a i j (c) Zeigen Sie, dass für alle invertierbaren, reellen 3 3 Matrizen S gilt Lösung: (a) F ist nicht linear, denn es gilt für λ {, } F(S AS) = F(A) F(λA) = λa λa + λa λa 33 + λa λa 33 λa λa λa 3 λa 3 λa 3 λa 3 = λ F(A) λf(a) (b) Aus der Vorlesung ist bekannt, dass das charakteristische Polynom die Gestalt p A (t) = t 3 + (tr A)t + bt + det A hat Es ist also nur noch der Koeffizient b zu bestimmen Es gilt p A (t) = det a t a a 3 a a t a 3 a 3 a 3 a 33 t = (a t)(a t)(a 33 t) + a a 3 a 3 + a 3 a a 3 a 3 (a t)a 3 a a (a 33 t) (a t)a 3 a 3 Dh der Koeffizient von p A vor t ist und das charakteristische Polynom hat die Gestalt a a a a 33 a a 33 + a a + a 3 a 3 + a 3 a 3 p A (t) = t 3 + (a + a + a 33 )t + ( a a a a 33 a a 33 + a a + a 3 a 3 + a 3 a 3 )t +a a a 33 + a a 3 a 3 + a 3 a a 3 a 3 a a 3 a a a 33 a a 3 a 3 (c) Da ähnliche Matrizen dasselbe charakteristische Polynom haben (siehe zum Beispiel Tutorium Aufgabe T), ist insbesondere der Koeffizient vor t im charakteristischen Polynom bei ähnlichen Matrizen gleich Da dieser Koeffizient gerade F(A) ist (siehe Aufgabenteil (b)) folgt sofort F(S AS) = F(A) Aufgabe H (Diagonalisierbarkeit) In dieser Aufgabe wird a als Element von, bzw aufgefasst Sei M = {,, 3, } Geben Sie jeweils eine Matrix a a C = mit a a 3 a i M an, die mindestens drei verschiedene Einträge hat und (a) über diagonalisierbar ist, über jedoch nicht

6 (b) über diagonalisierbar ist, aber über und nicht (c) über diagonalisierbar ist, über jedoch nicht Beweisen Sie ihre Behauptungen Geben Sie weiterhin eine Matrix mit Einträgen in an, die über diagonalisierbar ist, aber über nicht Lösung: Das charakteristische Polynom ist bekanntlich p C (t) = t (tr C)t + det C = Damit hat man in die Lösungsformel λ, = a + a ± (a + a ) a a + a a 3 Interessant ist offenbar der Ausdruck H = (a + a ) a a + a a 3 = (tr C) det C unter der Wurzel Die Lösungsformel gilt auch für, wenn H ist, ansonsten gibt es in keine Eigenwerte Die analoge Formel gilt auch in, wenn man beachtet, dass die Wurzel nur von, und gezogen werden kann Es gilt dann in ± =, =, =, =, = 3 Für H = oder H = 3 modulo hat die Matrix also keine Eigenwerte in (a) C ist in diagonalisierbar, wenn H eine Quadratzahl ungleich Null ist (denn dann gibt es verschiedene Eigenwerte in ) Wenn zusätzlich H Null modulo ist, könnte es über nicht diagonalisierbar sein (das muss dann aber noch überprüft werden) Dies ist der Fall für tr C = 7 und det C = 6, also zb für C = 3 3 Man erkennt sofort, dass die linear unabhängigen Eigenvektoren über v = 3 und v = sind Diese sind modulo gleich, dh die Matrix besitzt in keine Basis aus Eigenvektoren, ist also nicht diagonalisierbar (b) Dafür ist es hinreichend, daß H kein Quadrat ist, modulo kein Quadtrat ist und H gilt Dies ist zb für H =, tr C = 6 und det C = 6 der Fall Ein Beispiel wäre also C = (c) Dazu darf H kein Quadrat sein, H muss aber modulo ein Quadrat sein Dies ist zb für H =, tr C = und det C = der Fall Ein Beispiel dafür ist 3 C = Die Matrix C = Aufgabe H3 (Nilpotente Matrizen) Zeigen Sie, dass die Matrix 3 3 ist über bereits diagonalisiert, über ist dies jedoch nicht möglich A = nilpotent ist (dh eine Potenz von A ist Null) Bestimmen Sie außerdem eine invertierbare Matrix S für die S AS eine obere Dreiecksmatrix ist und geben Sie die Matrix S AS an 6

7 Lösung: Es gilt A = A 3 = = = 8 8 und Dh A ist nilpotent Um S zu bestimmen suchen wir zunächst eine Basis B des, bzgl der f A eine obere Dreiecksmatrix ist Dazu benutzen wir die Anleitung aus Aufgabe G vom letzten Übungsblatt Es sei also V := {} = im A 3, V := im A, V := im A, V 3 := = im A = im E Da das Bild einer Matrix immer von ihren Spaltenvektoren aufgespannt wird, gilt V = im 8 8 = span 8 = span Als ersten Basisvektor von B wählen wir also b = Des Weiteren gilt V = im = span , = span, 6 3 3, 8, Dh wir wählen als zweiten Basisvektor b = Nun ergänzen wir {b, b } zu einer Basis von Dies kann zb durch die Vektoren geschehen b 3 =, b = 7

8 Nun ist S die folgende Basiswechselmatrix S := [id] B E = Wegen A b = A b = A b 3 = A b = = b = b und = 3b = gilt dann S AS = [f A ] B = 3 8

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend:

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend: 1.1.2 Symbolisches Rechnen Taschenrechner und mathematische Software wie Matlab arbeiten in der Regel numerisch, das heißt das Ergebnis eines Rechenausdrucks zum Beispiel der Form (1 1 4 ) 4 9 wird etwa

Mehr

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus Betriebsanleitung für gewöhnliche lineare Differentialgleichungen Prof. Dr. Dirk Ferus Version vom 30.10.2005 Inhaltsverzeichnis 1 Homogene skalare Gleichungen. 1 1.1 Einfache reelle Nullstellen.............................

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

1 Wiederholung LA. 1.1 Vektorräume

1 Wiederholung LA. 1.1 Vektorräume 1 Wiederholung LA 1.1 Vektorräume Definition der Vektorräume über einem Körper K (siehe Fischer). Beispiele für Vektorräume sind: Der Vektorraum der Parallelverschiebungen des Anschauungsraumes. M(m n,

Mehr

Arithmetik und Algebra

Arithmetik und Algebra Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion. rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Zahlentheorie. Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002

Zahlentheorie. Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002 Zahlentheorie Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002 Zur Zahlentheorie rechnen wir Aufgaben, die über dem Bereich = {1, 2,... } der natürlichen

Mehr

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Gegeben seien die Ebene E : 4x + x + 8 =, der Punkt P = ( und die Gerade H : x(λ = (4,, + λ(,,, λ R. (a Bestimmen Sie eine Gerade durch den Punkt P, die senkrecht

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2 Ferienurs Analysis I für Physier WS 15/16 Aufgaben Tag 1 1 Komplee Zahlen I Aufgaben Tag 1 Berechnen Sie Real- und ImaginÃďrteil von a) (1 + i) (1 + i) 0 + i b) 1 + 1 1 i ( 1 + 1 i ) 1 ( 1 + i i ) 1 i

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Das Simplexverfahren

Das Simplexverfahren Byron Das Simplexverfahren. Worum es geht: Es ist eine lineare Gleichung f gegeben, sowie ein System von Ungleichungen, die nähere Aussagen über die Unbekannten von f geben. Durch das Simplexverfahren

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Diskrete Optimierungsverfahren zur Lösung von Sudokus

Diskrete Optimierungsverfahren zur Lösung von Sudokus Diskrete Optimierungsverfahren zur Lösung von Sudokus Seminarvortrag von Daniel Scholz am 6. Dezember 2006 Am Beispiel der Lösung von Sudokurätseln mit Hilfe der linearen Optimierung werden verschiedenen

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9 INHALTSVERZEICHNIS 1. Grundbegriffe:... 2 2. Das Lösen von Gleichungen... 5 3. Lineare Gleichungen... 8 4. Quadratische Gleichungen... 9 5. Bruchtermgleichungen... 13 6. Wurzelgleichungen... 13 7. Gleichungen

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr