Datenbanken und Informationssysteme

Größe: px
Ab Seite anzeigen:

Download "Datenbanken und Informationssysteme"

Transkript

1 Datenbanken und Informationssysteme Serialisierbarkeit Burkhardt Renz Fachbereich MNI TH Mittelhessen Wintersemester 2015/16

2 Übersicht Serialisierbarkeit 2-Phasen-Sperrprotokoll (2PL) Verklemmungen

3 Modell einer Datenbank Datenobjekte x, y, z... Aktionen rpxq lese Datenobjekt x (read) wpxq schreibe Datenobjekt x (write) c bestätige Transaktion (commit) a breche Transaktion ab (abort) Transaktion ist Folge solcher Aktionen: rpxq; wpxq; rpyq; wpzq; c

4 Aktionen mehrerer Transaktionen T 1 fl r 1 pxq; w 1 pxq; r 1 pyq; w 1 pyq T 2 fl r 2 pxq; w 2 pxq Der Index gibt an, welche Transaktion die Aktion durchführt.

5 Verschränkung von Transaktionen Drei Abläufe S 1, S 2 und S 3 mit den beiden Transaktionen: S 1 fl r 1 pxq; w 1 pxq; r 1 pyq; w 1 pyq; r 2 pxq; w 2 pxq S 2 fl r 1 pxq; r 2 pxq; w 1 pxq; r 1 pyq; w 2 pxq; w 1 pyq S 3 fl r 1 pxq; w 1 pxq; r 2 pxq; w 2 pxq; r 1 pyq; w 1 pyq

6 Serielle Abläufe Definition Ein Ablauf heißt seriell, wenn alle Schritte einer Transaktion vollständig ausgeführt werden, ehe die der nächsten Transaktion beginnen. Beispiel Der Ablauf S 1 ist seriell, die beiden Transaktionen folgen zeitlich aufeinander.

7 Konflikt zwischen Aktionen Definition Zwei Aktionen in einem Ablauf stehen in Konflikt, wenn gilt (1) sie gehören zu unterschiedlichen Transaktionen (2) sie greifen auf dasselbe Datenobjekt zu (3) mindestens einer der Aktionen ist write Beispiel r 1 pxq und w 2 pxq stehen in Konflikt r 1 pxq und r 2 pxq stehen nicht in Konflikt (beide lesend) w 1 pyq und w 2 pxq stehen nicht in Konflikt (unterschiedliche Datenobjekte)

8 Konfliktäquivalenz Definition Zwei Abläufe heißen konfliktäquivalent, wenn die Reihenfolge von allen Paaren von in Konflikt stehenden Aktionen in beiden Abläufen gleich ist. Beispiel S 1 und S 2 sind nicht konfliktäquivalent S 1 und S 3 sind konfliktäquivalent

9 Konfliktserialisierbarkeit Definition Ein Ablauf heißt konfliktserialisierbar, wenn er zu einem seriellen Ablauf konfliktäquivalent ist. Beispiel S 1 ist seriell, also konfliktserialisierbar S 2 ist nicht serialisierbar S 3 ist serialisierbar, weil konfliktäquivalent zu S 1

10 Präzedenzgraph Fragestellung Kriterium für Serialisierbarkeit Definition Der Präzedenzgraph zu einem Ablauf S ist ein gerichteter Graph G S mit (1) den Knoten T 1, T 2,... für jede Transaktion T i in S (2) den Kanten T i Ñ T j falls T i und T j konfligierende Aktionen haben, bei denen die Aktion in T i vor der in T j in S vorkommt.

11 Beispiele für den Präzedenzgraphen Beispiel Präzedenzgraphen zu unseren Beispielabläufen: S 1 fl r 1 pxq; w 1 pxq; r 1 pyq; w 1 pyq; r 2 pxq; w 2 pxq T 1 T 2 S 2 fl r 1 pxq; r 2 pxq; w 1 pxq; r 1 pyq; w 2 pxq; w 1 pyq T 1 T 2 S 3 fl r 1 pxq; w 1 pxq; r 2 pxq; w 2 pxq; r 1 pyq; w 1 pyq T 1 T 2

12 Kriterium für Serialisierbarkeit Satz (Kriterium für Serialisierbarkeit) Ein Ablauf S ist genau dann (konflikt-)serialisierbar, wenn sein Präzedenzgraph G S keinen Zyklus hat. Beweis. ñ) Widerspruchsbeweis ð) Induktion über die Zahl der Transaktionen

13 Übersicht Serialisierbarkeit 2-Phasen-Sperrprotokoll (2PL) Verklemmungen

14 Modell binärer Sperren Wir verwenden folgendes Modell für Sperren auf Datenobjekten: Binäre Sperren l i pxq Transaktion T i erwirkt eine Sperre auf Datenobjekt x (lock) u i pxq Transaktion T i gibt seine Sperre auf dem Datenobjekt x frei (unlock)

15 Protokoll binärer Sperren Verhalten der Transaktionen 1 Eine Transaktion muss vor Lese- oder Schreibaktion auf ein Datenobjekt x eine Sperre auf x anfordern. 2 Eine Transaktion muss eine Sperre auf x freigeben, wenn sie keine Aktionen mit x mehr durchführen will. Verhalten des Systems 1 Die Anforderung l i pxq von T i wird nur ausgeführt, wenn keine andere Transaktion eine Sperre auf x hält, andernfalls muss T i warten. 2 Wird eine Freigabe eines Datenobjekts ausgeführt, werden alle darauf wartenden Transaktionen wieder angestoßen.

16 Sperren und Serialisierbarkeit Bemerkung Das Befolgen dieses Protokolls garantiert Serialisierbarkeit nicht. Beispiel l 1 pxq; w 1 pxq; u 1 pxq; l 2 pyq; w 2 pyq; u 2 pyq; l 1 pyq; w 1 pyq; u 1 pyq; l 2 pxq; w 2 pxq; u 2 pxq;

17 2-Phasen-Lock-Protokoll Definition Eine Transaktion folgt dem 2-Phasen-Sperrprotokoll (2PL), wenn alle Sperraktionen in der Transaktion vor der ersten Freigabeaktion ausgeführt werden. Die erste Phase, in der Sperren angefordert werden, nennt man die Wachstumsphase. Die zweite Phase, in der nur noch Freigabe von Sperren erfolgen, nennt man die Schrumpfungsphase.

18 Striktes 2PL Definition Eine Transaktion folgt dem strikten 2PL, wenn sie dem 2PL folgt und alle Sperren en bloc am Ende der Transaktion freigibt. Bemerkung Ein Ablauf nach dem 2PL ist äquivalent zu einem Ablauf nach dem strikten 2PL. Begründung

19 2PL und Serialisierbarkeit Satz Ein Ablauf, in dem alle Transaktionen dem 2PL folgen, ist serialisierbar. Beweis. Induktion über die Zahl der Transaktionen Korollar Ein Ablauf nach dem 2PL ist äquivalent zu einem seriellen Ablauf in der Reihenfolge der Transaktionen wie sie beginnen, ihre Sperren freizugeben.

20 Übersicht Serialisierbarkeit 2-Phasen-Sperrprotokoll (2PL) Verklemmungen

21 2PL und Verklemmungen Bemerkung 2PL verhindert Verklemmungen nicht Beispiel T 1 fl l 1 pxq; r 1 pxq; w 1 pxq; l 1 pyq; u 1 pxq; r 1 pyq; w 1 pyq; u 1 pyq; T 2 fl l 2 pyq; r 2 pyq; w 2 pyq; l 2 pxq; u 2 pyq; r 2 pxq; w 2 pxq; u 2 pxq; Zeitlicher Ablauf: T 1 l 1 pxq; r 1 pxq w 1 pxq l 1 pyq... T 2 l 2 pyq; r 2 pyq w 2 pyq l 2 pxq...

22 Wartegraph Thema und Modell Thema: Erkennen und Auflösen von Verklemmungen (Deadlocks) Rahmen: Unser einfaches Modell mit binären Sperren Definition Der Wartegraph ist ein gerichteter Graph mit (1) die Knoten sind die Transaktionen (2) Zwei Knoten T und U sind durch eine gerichtete Kante verbunden, wenn T darauf wartet, dass U ein Datenobjekt freigibt. T U fl T wartet auf U

23 Beispiel Wartegraph Beispiel T 1, T 2, T 3 möchten folgende Abläufe machen: T 1 : l 1 pxq; r 1 pxq; l 1 pyq; w 1 pyq; u 1 pxq; u 1 pyq; T 2 : l 2 pzq; r 2 pzq; l 2 pxq; w 2 pxq; u 2 pzq; u 2 pxq; T 3 : l 3 pyq; r 3 pyq; l 3 pzq; w 3 pzq; u 3 pyq; u 3 pzq; Es entsteht z.b. folgender Ablauf in zeitlicher Reihenfolge: l 1 pxq; r 1 pxq; l 2 pzq; r 2 pzq; l 3 pyq; r 3 pyq; l 2 pxq; l 3 pzq; l 1 pyq; Ergebnis: T 2 wartet auf T 1 T 3 wartet auf T 2 T 1 wartet auf T 3

24 Wartegraph zum Beispiel T 1 T 3 T 2

25 Wartegraph und Verklemmungen Satz Es liegt genau dann eine Verklemmung vor, wenn der Wartegraph einen Zyklus hat. Bemerkung Der Wartegraph kann auf zwei Arten verwendet werden: 1 Deadlock-Erkennung 2 Deadlock-Vermeidung

26 Adjazenzmatrix des Wartegraphen Man repräsentiert den Wartegraphen gerne durch seine Adjazenzmatrix: Die Zeilen und Spalten der Matrix repräsentieren die Transaktionen T 1, T 2, T 3,..., T n und für ein Element w ij der Matrix gilt: # 1 falls T i Ñ T j w ij 0 sonst

27 Beispiel für die Adjazenzmatrix T 1 T 3 T 2» 0 0 fi fl 0 1 0

28 Algorithmus 1 Entferne alle Transaktionen, die an keinem Zyklus beteiligt sind, d.h. diejenigen, bei denen (a) die Zeile nur 0 enthält, oder (b) die Spalte nur 0 enthält. 2 Sind jetzt noch Transaktionen übrig, müssen sie an einem Zyklus beteiligt sind. Wähle ein Opfer und breche die Transaktion ab. Weiter mit Schritt 1.

Übungen zur Vorlesung. Mobile und Verteilte Datenbanken. WS 2008/2009 Blatt 4. Lösung

Übungen zur Vorlesung. Mobile und Verteilte Datenbanken. WS 2008/2009 Blatt 4. Lösung Dr. rer. nat. Sven Groppe Übungen zur Vorlesung Mobile und Verteilte Datenbanken WS 2008/2009 Blatt 4 Lösung Aufgabe 1: Bestimmen Sie zu den folgenden Transaktions-Schedules, ob diese (konflikt-) serialisierbar

Mehr

Datenbanken: Ablaufpläne und Serialisierbarkeit

Datenbanken: Ablaufpläne und Serialisierbarkeit Theoretische Konzepte zur Abarbeitung parallel arbeitender Transaktionen Definition: (Ablaufplan, Schedule) Ein Ablaufplan S ist die verschränkte Anordnung bzw. Ausführung der Einzeloperationen einer Menge

Mehr

Konfliktgraph. Satz und Definition

Konfliktgraph. Satz und Definition 9. Transaktionsverwaltung 9.2. Mehrbenutzerkontrolle Seite 1 Konfliktgraph Der Konfliktgraph von S ist ein gerichteter Graph KG(S) = (V, E), wobei V die Menge aller Transaktionen in S und E die Menge der

Mehr

Datenbanksysteme 2009

Datenbanksysteme 2009 Datenbanksysteme 2009 Vorlesung vom 30.06.09 Kapitel 14: Mehrbenutzersynchronisation Oliver Vornberger Institut für Informatik Universität Osnabrück Multiprogramming Zeitachse Einbenutzer betrieb T1 T2

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 2 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Übungen zur Vorlesung. Datenbanken I. WS 2002/2003 Blatt 4 MUSTERLÖSUNG

Übungen zur Vorlesung. Datenbanken I. WS 2002/2003 Blatt 4 MUSTERLÖSUNG Prof. Dr. S. Böttcher Adelhard Türling Übungen zur Vorlesung Datenbanken I WS 2002/2003 Blatt 4 MUSTERLÖSUNG Aufgabe 4.1: Bestimmen Sie zu den folgenden Transaktions-Schedules, ob diese (konflikt-) serialisierbar

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 13 Übung zur Vorlesung Grundlagen: Datenbanken im WS14/15 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws1415/grundlagen/

Mehr

Transaktionen und Synchronisation konkurrierender Zugriffe

Transaktionen und Synchronisation konkurrierender Zugriffe Transaktionen und Synchronisation konkurrierender Zugriffe Fragestellungen Aufgaben des Transaktionsmanagers Aktivieren von Transaktionen entsprechend den Anforderungen von Anwendungsprogrammen. Dabei

Mehr

Datenbanksysteme Technische Grundlagen Transaktions-Konzept, Mehrbenutzer-Synchronisation, Fehlerbehandlung

Datenbanksysteme Technische Grundlagen Transaktions-Konzept, Mehrbenutzer-Synchronisation, Fehlerbehandlung Datenbanksysteme Technische Grundlagen Transaktions-Konzept, Mehrbenutzer-Synchronisation, Fehlerbehandlung Prof. Dr. Manfred Gruber FH München Transaktions-Konzept (1) Beispiel: op 1 BOT op 2 read(k 1

Mehr

Prioritäten/Zeitstempel-Verfahren

Prioritäten/Zeitstempel-Verfahren Prioritäten/Zeitstempel-Verfahren Grundlegende Idee: Falls einer Transaktion T k eine Sperre nicht gewährt wird, weil eine andere Transaktion T i sie hält, besteht Deadlockgefahr. Also bekommt jede Transaktion

Mehr

Prioritäten/Zeitstempel-Verfahren. WAIT-DIE und WOUND-WAIT-Strategien

Prioritäten/Zeitstempel-Verfahren. WAIT-DIE und WOUND-WAIT-Strategien Prioritäten/Zeitstempel-Verfahren Grundlegende Idee: Falls einer Transaktion T k eine Sperre nicht gewährt wird, weil eine andere Transaktion T i sie hält, besteht Deadlockgefahr. Also bekommt jede Transaktion

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 2 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe14 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Transaktionskonzept Eine Transaktion ist eine Folge von Operationen mit folgenden ACID Eigenschaften: Atomicity: Es werden alle Operationen oder gar k

Transaktionskonzept Eine Transaktion ist eine Folge von Operationen mit folgenden ACID Eigenschaften: Atomicity: Es werden alle Operationen oder gar k Transaktionsverwaltung 1. Schnellkurs: Serialisierbarkeit, Isolationslevel, Synchronisationsverfahren, Savepoints, Logging, Implementierungsaspekte! Harder, Rahm Buch 2. Erweiterte Transaktionskonzepte!

Mehr

Serialisierbarkeit von Historien: Minimalanforderung bzgl. "akzeptabler" Synchronisation

Serialisierbarkeit von Historien: Minimalanforderung bzgl. akzeptabler Synchronisation Rücksetzbarkeit Serialisierbarkeit von Historien: Minimalanforderung bzgl. "akzeptabler" Synchronisation von Transaktionen zusätzliche Forderung: lokale Rücksetzbarkeit von Historien, d.h. Jede Transaktion

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Transaktionskonzepte 1 Der Transaktionsbegriff Eine Transaktion ist eine Folge von Operationen, die die Datenbank von einem konsistenten Zustand in einen neuen überführen.

Mehr

... T n T 1 T 2 T 3. Transaktions-Manager. Daten-Manager. Recovery-Manager Puffer-Manager. Datenbank

... T n T 1 T 2 T 3. Transaktions-Manager. Daten-Manager. Recovery-Manager Puffer-Manager. Datenbank Techniken der Schedule-Realisierung T 1 T 2 T 3.... T n Isolations-Eigenschaft wird durch den Scheduler sichergestellt. Aufgabe: : Koordination des Ablaufs konkurrierender Transaktionen so, dass deren

Mehr

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Kapitel 13 Mehrbenutzersynchronisation 13.1 Multiprogramming Unter M ultiprogramming versteht man die nebenläufige, verzahnte Ausführung mehrerer Programme. Abbildung 13.1 zeigt exemplarisch die dadurch

Mehr

Vorlesung Datenbanksysteme Univ.-Prof. Dr. Günther Specht. Universität Innsbruck Institut für Informatik Datenbanken und Informationssysteme (DBIS)

Vorlesung Datenbanksysteme Univ.-Prof. Dr. Günther Specht. Universität Innsbruck Institut für Informatik Datenbanken und Informationssysteme (DBIS) Synchronisation paralleler Transaktionen Kapitel X Vorlesung Datenbanksysteme Univ.-Prof. Dr. Günther Specht Universität Innsbruck Institut für Informatik Datenbanken und Informationssysteme (DBIS) Vorlesungsinhalt

Mehr

Beispielszenarien. 12. Transaktionen. ACID-Eigenschaften. Transaktion

Beispielszenarien. 12. Transaktionen. ACID-Eigenschaften. Transaktion 12. Transaktionen Beispielszenarien Transaktionsbegriff Probleme im Mehrbenutzerbetrieb Serialisierbarkeit Sperrprotokolle zur Synchronisation Isolationsebenen in SQL Platzreservierung für Flüge quasi

Mehr

Aufgabe 10.1: Lösung:

Aufgabe 10.1: Lösung: 1 Aufgabe 10.1: Lösung: Aus Konfliktserialisierbarkeit folgt allgemeine Serialisierbarkeit. Bleibt zu zeigen, dass jetzt auch aus Serialisierbarkeit Konfliktserialisierbarkeit folgt, falls die Transaktionen

Mehr

Datenbanken 1. Sommersemester Übung 8

Datenbanken 1. Sommersemester Übung 8 Datenbanken 1 Sommersemester 2017 Übung 8 (v3.0-9.6.2017) Übersicht Aufgabe 1: Einfache Transaktionen Model (Lock/Unlock) Aufgabe 2: 2-Phasen-Sperrprotokoll (Two phase locking) Aufgabe 3: 2-Phasen-Sperrprotokoll

Mehr

Grundlagen von Datenbanken. Referentielle Aktionen, Sichten, Serialisierbarkeit und Locking

Grundlagen von Datenbanken. Referentielle Aktionen, Sichten, Serialisierbarkeit und Locking Grundlagen von Datenbanken Referentielle Aktionen, Sichten, Serialisierbarkeit und Locking SQL DDL: Referentielle Aktionen (1/3) Potentielle Gefährdung der referentiellen Integrität durch Änderungsoperationen

Mehr

Datenbanken 1. Sommersemester Übung 8

Datenbanken 1. Sommersemester Übung 8 Datenbanken 1 Sommersemester 2017 Übung 8 (v2.0-9.6.2017) Übersicht Aufgabe 1: Einfache Transaktionen Model (Lock/Unlock) Aufgabe 2: 2-Phasen-Sperrprotokoll (Two phase locking) Aufgabe 3: 2-Phasen-Sperrprotokoll

Mehr

Kapitel 3 Synchronisation

Kapitel 3 Synchronisation LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 3 Synchronisation Vorlesung: PD Dr. Peer Kröger

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Das Script für die Lehrveranstaltung Datenmanagement wurde im Wintersemester 2007/2008 komplett überarbeitet und neu strukturiert. Wir bitten darum, eventuelle Fehler im Script an Milan

Mehr

Kapitel 5 Mehrversionen-CC. MVCC: Annahmen & Eigenschaften

Kapitel 5 Mehrversionen-CC. MVCC: Annahmen & Eigenschaften Kapitel 5 Mehrversionen-CC Bisher sind wir immer von der Grundannahme ausgegangen, dass jedes Datenobjekt x nur in einer Version vorliegt. Die Konsequenz daraus war, dass durch jedes Schreiben der Wert

Mehr

Synchronisation in Datenbanksystemen in a nutshell

Synchronisation in Datenbanksystemen in a nutshell Synchronisation in Datenbanksystemen in a nutshell 1. Modell für nebenläufige Transaktionen und Korrektheitskriterium Transaktionsmodell: Folgen von Lese und Schreiboperationen abgeschlossen durch c=commit.

Mehr

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Mehrbenutzersynchronisation Ausführung der drei Transaktionen T 1, T 2 und T 3 : (a) im Einzelbetrieb und Zeitachse T 1 T2 T 3 (b) im (verzahnten) Mehrbenutzerbetrieb (gestrichelte Linien repräsentieren

Mehr

Teil II Concurrency Control. Kapitel 2 Serialisierbarkeitstheorie

Teil II Concurrency Control. Kapitel 2 Serialisierbarkeitstheorie Teil II Concurrency Control Kapitel 2: Serialisierbarkeitstheorie Korrektheitskriterien Kapitel 3: Konservative Concurrency Control-Protokolle Kapitel 4: Optimistische Concurrency Control-Protokolle Kapitel

Mehr

DB I S. 1 Referentielle Aktionen [10 P.] Gegeben sei folgende Datendefinition:

DB I S. 1 Referentielle Aktionen [10 P.] Gegeben sei folgende Datendefinition: 1 Referentielle Aktionen Gegeben sei folgende Datendefinition: [10 P.] CREATE TABLE Wissenschaftler( SVNr int PRIMARY KEY, Vorname varchar(25) NOT NULL, Nachname varchar(25) NOT NULL, Gehalt int NOT NULL

Mehr

8. Transaktionsverarbeitung. Architektur von Datenbanksystemen I

8. Transaktionsverarbeitung. Architektur von Datenbanksystemen I 8. Transaktionsverarbeitung Architektur von Datenbanksystemen I Einordnung ARCHITEKTUR VON DATENBANKSYSTEMEM I - Key/Value Store - Row Store - Column Store - Data Compression - Transaction Processing -

Mehr

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Kapitel 10 Mehrbenutzersynchronisation 381 / 520 Mehrbenutzersynchronisation Alle TAs strikt seriell (also nacheinander) auszuführen ist sicher, aber langsam Oft werden Systemressourcen nicht voll ausgenutzt,

Mehr

Übung Datenbanksysteme I Transaktionen, Selektivität, XML

Übung Datenbanksysteme I Transaktionen, Selektivität, XML Übung Datenbanksysteme I G-3.1.09, Campus III Hasso Plattner Institut Übersicht Übungsthemen Transaktionen Selektivität XML Chart 2 Wiederholung Transaktionen Eine Transaktion ist eine Folge von Operationen

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Kapitel V Deadlocks (Verklemmungen) 1 Deadlocks System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Prozesse benötigen Genehmigung vor der Benutzung von Ressourcen.

Mehr

Vorlesung "Verteilte Systeme" Wintersemester 2000/2001. Verteilte Systeme. 14. Transaktionen

Vorlesung Verteilte Systeme Wintersemester 2000/2001. Verteilte Systeme. 14. Transaktionen Verteilte Systeme 14. Transaktionen Motivation Sicherung konsistenter Systemzustände Beispiele Amnesieproblematik bei zustandsbehafteten Servern Sicherung des Primaries (Primary-Backup- Approach) Aktive

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Koordination des Mehrbenutzerbetriebs 9. Koordination des Mehrbenutzerbetriebs

Koordination des Mehrbenutzerbetriebs 9. Koordination des Mehrbenutzerbetriebs 9. Mehrbenutzerbetrieb: DBS bedient gleichzeitig mehrere Benutzer Benutzer arbeiten zwar unabhängig voneinander, können aber die gleiche Relation oder sogar den gleichen Datensatz bearbeiten! Aktivität

Mehr

6.3 Verteilte Transaktionen

6.3 Verteilte Transaktionen 6.3 Verteilte Transaktionen Situation: Fragmentierung: Ein Datenbestand ist über mehrere Stationen verteilt (z.b. verteilte Datenbank, verteiltes Dateisystem,...) d.h. in Fragmente aufgeteilt, für die

Mehr

1 Referentielle Aktionen

1 Referentielle Aktionen 1 Referentielle Aktionen Betrachten Sie das folgende Datenbankschema: Person(Vorname, Nachname, DOB, Wohnort, Lieblingsfilm Film.IMDb-ID, Videothek Videothek.VID) Film(IMDb-ID, Titel, (ProduzentVN, ProduzentNN)

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. Gunter Schlageter et. al. Kurs 01672 Datenbanken II LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere das Recht der Vervielfältigung

Mehr

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Mehrbenutzersynchronisation Ausführung der drei Transaktionen T 1, T 2 und T 3 : (a) im Einzelbetrieb und Zeitachse T 1 T 2 T 3 (b) im (verzahnten) Mehrbenutzerbetrieb (gestrichelte Linien repräsentieren

Mehr

Transaktionsmanagement - Einführung. Prof. Dr. T. Kudraß 1

Transaktionsmanagement - Einführung. Prof. Dr. T. Kudraß 1 Transaktionsmanagement - Einführung Prof. Dr. T. Kudraß 1 Einführung Nebenläufige Ausführung von Benutzerprogrammen wesentlich für gute Performance des DBMS Weil Plattenzugriffe häufig und relativ langsam

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

8. Synchronisations-Verfahren

8. Synchronisations-Verfahren 8. Synchronisations-Verfahren Die verschiedenen Synchronisationsverfahren unterscheiden sich i.w. dadurch, wie sie die Einhaltung des Serialisierbarkeitsprinzips gewährleisten wann die Prüfung auf Serialisierbarkeit

Mehr

Kapitel 9a Transaktionen - Synchronisation

Kapitel 9a Transaktionen - Synchronisation LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme Wintersemester 2018/2019 Kapitel 9a Transaktionen - Synchronisation Vorlesung:

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................

Mehr

Mehrbenutzer-Synchronisation

Mehrbenutzer-Synchronisation Mehrbenutzer-Synchronisation Konflikt-Kategorien Serialisierung Historien Sperrungen Verklemmungen Optimistische Synchronisation Synchronisation in SQL Kapitel 11 1 Mehrbenutzersynchronisation Ausführung

Mehr

Vorlesung "Systemsoftware II" Wintersemester 2002/03

Vorlesung Systemsoftware II Wintersemester 2002/03 (c) Peter Sturm, Universität Trier 1 Verteilte Systeme 16. Transaktionen Motivation Sicherung konsistenter Systemzustände Beispiele Amnesieproblematik bei zustandsbehafteten Servern Sicherung des Primaries

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

Mehrbenutzersynchronisation

Mehrbenutzersynchronisation Mehrbenutzersynchronisation VU Datenbanksysteme vom 4.11. 2015 Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Nebenläufigkeit

Mehr

Systeme I: Betriebssysteme Kapitel 6 Deadlocks. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 6 Deadlocks. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 6 Deadlocks Wolfram Burgard Version 13.12.2017 1 Inhalt Vorlesung Verschiedene Komponenten / Konzepte von Betriebssystemen Dateisysteme Prozesse Nebenläufigkeit und wechselseitiger

Mehr

Konflikte. Konflikt-Äquivalenz von Read/Write-Plänen, Konflikt-Serialisierbarkeit

Konflikte. Konflikt-Äquivalenz von Read/Write-Plänen, Konflikt-Serialisierbarkeit Konflikte Zwei Transaktionen liegen im Konflikt, wenn sie ein Objekt o gemeinsam nutzen, wobei mindestens eine der Transaktionen in o schreibt. Für eine Menge von Transaktionen T kann man nun alle Konflikte

Mehr

6. Serialisierbarkeit

6. Serialisierbarkeit 6. Serialisierbarkeit Nothing is as practical as a good theory Albert Einstein Anomalien im Mehrbenutzerbetrieb Synchronisation von Transaktionen - Ablaufpläne, Modellannahmen - Korrektheitskriterium:

Mehr

5. Transaktionsverarbeitung

5. Transaktionsverarbeitung 5. Transaktionsverarbeitung 5.1. Einführung Viele Anwendungsprogramme / interaktive Benutzer arbeiten gleichzeitig (konkurrierend) auf gemeinsamer Datenbank (mit den gleichen Daten). Notwendigkeit: Abwicklung

Mehr

Holger Schwarz Universität Stuttgart, IPVS

Holger Schwarz Universität Stuttgart, IPVS DATENBANKANWENDUNG Wintersemester 2013/2014 Holger Schwarz Universität Stuttgart, IPVS holger.schwarz@ipvs.uni-stuttgart.de Beginn: 23.10.2013 Mittwochs: 11.45 15.15 Uhr, Raum 46-268 (Pause 13.00 13.30)

Mehr

AG Datenbanken und Informationssysteme Wintersemester 2006 / Übungsblatt. Aufgabe 2: Sperrprotokolle in Datenbankystemen

AG Datenbanken und Informationssysteme Wintersemester 2006 / Übungsblatt. Aufgabe 2: Sperrprotokolle in Datenbankystemen AG Datenbanken und nformationssysteme Wintersemester 26 / 27 Prof. Dr.-ng. Dr. h. c. Theo Härder Fachbereich nformatik Technische Universität Kaiserslautern Aufgabe 1: Verklemmungen 9. Übungsblatt Für

Mehr

6. Serialisierbarkeit 1

6. Serialisierbarkeit 1 6. Serialisierbarkeit 1 Motivation Erinnerung Anomalien im Mehrbenutzerbetrieb Synchronisation von Transaktionen Nothing is as practical as a good theory Albert Einstein - Ablaufpläne, Modellannahmen -

Mehr

3.5 Synchronisation ohne Sperren

3.5 Synchronisation ohne Sperren Überblick Nachteil von Sperren: Einschränkung der Parallelität Deadlocks 1. Lösungsversuch: Weiterhin pessimistisches Verfahren, aber statt Sperren, Zeitstempel (nicht zur Verklemmungsvermeidung sondern

Mehr

Datenbanksysteme I Transaktionsmanagement. 20.6.2011 Felix Naumann

Datenbanksysteme I Transaktionsmanagement. 20.6.2011 Felix Naumann Datenbanksysteme I Transaktionsmanagement 20.6.2011 Felix Naumann Motivation - Transaktionsmanagement 2 Annahmen bisher Isolation Nur ein Nutzer greift auf die Datenbank zu Lesend Schreibend In Wahrheit:

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Access-Modell. A4. Im Operandenteil von Anweisungen vorkommende Objekte seien unstrukturiert und stehen in keinerlei Beziehung zueinander.

Access-Modell. A4. Im Operandenteil von Anweisungen vorkommende Objekte seien unstrukturiert und stehen in keinerlei Beziehung zueinander. Access-Modell Das Access-Modell beruht auf folgenden vereinfachenden Annahmen: A1. Im Operationsteil einer Anweisung sei nur der Operator Access erlaubt. Die beabsichtigte Semantik ist, daß die Daten aus

Mehr

Kommunikation und Datenhaltung

Kommunikation und Datenhaltung Kommunikation und Datenhaltung Transaktionsverwaltung Überblick über den Datenhaltungsteil Motivation und Grundlagen Architektur von Datenbanksystemen Datenbankanfragen Relationenmodell und Relationenalgebra

Mehr

Eigenschaften von TAs: ACID-Prinzip

Eigenschaften von TAs: ACID-Prinzip Transaktionsparadigma Definition: Transaktion ununterbrechbare Folge von DML-/DDL-Befehlen begin transaction --- end transaction begin: meist implizit mit ersten Datenbankzugriff end: commit (work) oder

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Kapitel 3 Teil 2 Synchronisation - Algorithmen I

Kapitel 3 Teil 2 Synchronisation - Algorithmen I Kapitel 3 Teil 2 Synchronisation - Algorithmen I Inhalt: Pessimistische Scheduler, optimistische Scheduler, hybride Scheduler Scheduling-Algorithmen Scheduler (1) Entwurf von Scheduling-Algorithmen (Scheduler)

Mehr

Scheduler. vereinfachende Annahmen: alle Transaktionen werden wirksam nur Konflikt-Serialisierbarkeit keine Versionen

Scheduler. vereinfachende Annahmen: alle Transaktionen werden wirksam nur Konflikt-Serialisierbarkeit keine Versionen Scheduler Der Scheduler des Informationssystems hat zunächst die Aufgabe, die Anweisungen von parallel auszuführenden Transaktionen in einer geeigneten Reihenfolge anzuordnen. Darüber hinaus muß er auch

Mehr

2.3 View Serialisierbarkeit

2.3 View Serialisierbarkeit 2.3 View Serialisierbarkeit Das Problem, dass tote Aktionen bei FSSR ausgeklammert werden, lässt sich beheben, wenn man die Gleichheit der Reads-From-Relation eines gegebenen Schedules mit einem seriellen

Mehr

Mehrbenutzer-Synchronisation

Mehrbenutzer-Synchronisation MehrbenutzerSynchronisation KonfliktKategorien Serialisierung Historien Sperrungen Verklemmungen Optimistische Synchronisation Synchronisation in SQL Mehrbenutzersynchronisation Ausführung der drei Transaktionen,

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2013/2014 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 19. Dezember 2013 Betriebssysteme / verteilte Systeme

Mehr

Concurrency und Recovery

Concurrency und Recovery Concurrency und Recovery Concurrency Gleichzeitiger Zugriff auf Datenbankdaten im Mehrbenutzerbetrieb Recovery Wiederherstellen der Datenbank im Fehlerfall In der Praxis sind Concurrency und Recovery unverzichtbar.

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS 30.01.2018 DATENMODELLIERUNG 2 (184.790) DATENBANKSYSTEME (184.686) GRUPPE

Mehr

Datenbanksysteme. Transaktionen. Burkhardt Renz. Sommersemester Fachbereich MNI Technische Hochschule Mittelhessen

Datenbanksysteme. Transaktionen. Burkhardt Renz. Sommersemester Fachbereich MNI Technische Hochschule Mittelhessen Datenbanksysteme Transaktionen Burkhardt Renz Fachbereich MNI Technische Hochschule Mittelhessen Sommersemester 2019 Übersicht Transaktionen Motivation ACID-Eigenschaften Recovery Ursachen für Recovery

Mehr

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, )

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) 6. Transitive Hülle 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) Gruppe Halbgruppe Halbgruppe Halbgruppe Wir betrachten den (kommutativen) Semiring über R { } mit

Mehr

IT-Kompaktkurs. Datenbanken Skript zur Folge 4. Prof. Dr. Manfred Gruber Fachhochschule München

IT-Kompaktkurs. Datenbanken Skript zur Folge 4. Prof. Dr. Manfred Gruber Fachhochschule München Fachhochschule München Munich University of Applied Sciences IT-Kompaktkurs Skript zur Folge 4 Prof. Dr. Manfred Gruber Fachhochschule München manfred.gruber@informatik.fh-muenchen.de Nov 1, 2000 Transaktions-Konzept,

Mehr

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011 Schulbesuch Erich-Kästner Gesamtschule 07. April 0 Bünde Fakultät für Mathematik Universität Bielefeld dotten@math.uni-bielefeld.de Übersicht Was ist ein Sudoku-Rätsel? Die Regeln und das Ziel Zentrale

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Systemprogrammierung (Lehramt) Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2006 G-Verklemmungen.fm

Systemprogrammierung (Lehramt) Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2006 G-Verklemmungen.fm G Verklemmungen G Verklemmungen Einordnung: Prozessor (CPU, Central Processing Unit) Hauptspeicher (Memory) Ein-, Ausgabegeräte/ Periphere Geräte (I/O Devices) externe Schnittstellen (Interfaces) Hintergrundspeicher

Mehr

Datenintegrität und Transaktionskonzept

Datenintegrität und Transaktionskonzept und Transaktionskonzept 1. / Datenkonsistenz 1 Mögliche Gefährdung der : Missachtung von Konsistenzbedingungen ("Semantische Integrität") Inkorrekte Verweise auf Datensätze in verschiedenen Tabellen ("Referentielle

Mehr

Datenbanken: Transaktionskonzept und Concurrency Control

Datenbanken: Transaktionskonzept und Concurrency Control Wesentlich für das Arbeiten mit Datenbanken sind konsistente Datenbestände! Folgerung: es muss sichergestellt werden, dass Datenmanipulationen von Benutzern immer in einem erneut konsistenten Zustand der

Mehr

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS MUSTERLÖSUNG 30.01.2018 DATENMODELLIERUNG 2 (184.790) DATENBANKSYSTEME

Mehr

Betriebssysteme - Deadlocks

Betriebssysteme - Deadlocks Betriebssysteme - Deadlocks alois.schuette@h-da.de Version: (8c45d65) ARSnova 19226584 Alois Schütte 23. März 2016 1 / 41 Inhaltsverzeichnis Dieser Teil erörtert das Problem von Deadlocks (Verklemmungen):

Mehr

Mehrbenutzer-Synchronisation

Mehrbenutzer-Synchronisation Mehrbenutzer-Synchronisation Konflikt-Kategorien Serialisierung Historien Sperrungen Verklemmungen Optimistische Synchronisation Synchronisation in SQL Kapitel 11 1 Mehrbenutzersynchronisation Ausführung

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j,

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j, 6.2 Boolesche Matrixmultiplikation und Transitive Hülle Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und (min, +) durch (, ), d.h.: n C = A B; c ij

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter WS 2009/10 Isomorphie Zwei Graphen (V 1, E 1 ) und (V 2, E 2 ) heißen isomorph, wenn es eine bijektive, Kanten erhaltende und Kanten

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr