Physik III Übung 6 - Lösungshinweise

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik III Übung 6 - Lösungshinweise"

Transkript

1 Pysik III Übung 6 - Lösungsinweise Stefan Reutter WiSe 2012 Moritz Kütt Stand: Franz Fujara Aufgabe 1 [H] Rettungsscwimmen Eine Rettungsscwimmerin siet besorgt einer Gruppe Jugendlicer zu, die sic am Strand mit diversen Alkoolika volllaufen lassen und sic in und wieder gegenseitig ins Wasser scubsen. Zu einer späten Stunde passiert es scließlic: einer der Jugendlicen wird abgetrieben und screit nun um Hilfe. Er scafft es gerade so, x = 10 m vom Strand seine Position zu alten, kommt aber aus eigener Kraft nict wieder an den Strand zurück. Idiot x y Weitere Idioten x Rettungsscwimmerin Die Rettungsscwimmerin sprintet los, um den besoffenen Idioten zu retten. Am Strand kann sie 8 m/s laufen, im Wasser aber nur 2 m/s scwimmen. Der Rettungsturm ist zufälligerweise ebenfalls x = 10 m vom Wasser entfernt und y = 50 m in senkrecter Rictung vom Ertrinkenden. Berecne und skizziere den Weg, auf dem die Rettungsscwimmerin am scnellsten zu irem Ziel kommt. Was at das Ganze mit Brecung von elektromagnetiscen Wellen zu tun? Hier andelt es sic natürlic um ein Analogon zum Fermatscen Prinzip. Die Rettungsscwimmerin versuct, genau wie eine Welle, die an einer Grenzfläce zwiscen Medien mit untersciedlicen Lictgescwindigkeiten, die Zeit zu minimieren, die sie zum Ziel benötigt. Daer muss auc die Lösung so ausseen wie beim Fermatscen Prinzip: Es muss das Snelliussce Brecungsgesetz rauskommen. v 1 = sin α v 2 sin β Beim Berecnen aben wir uns leider etwas zu weit aus dem Fenster gelent. Will man das durcexerzieren, kommt eine rect komplizierte Gleicung eraus. Sowas kann man natürlic 1

2 nict in der Klausur nacrecnen, und war eigentlic auc nict Sinn der Aufgabe, desalb sparen wir es uns an dieser Stelle. Aufgabe 2 [H] Die Welle Eine Welle möcte sic in einem Material ausbreiten. Das Material at ein ɛ r = 6 und µ r = 1. a) Wie groß ist die Pasengescwindigkeit? b) Wie groß ist der Wellenwiderstand des Materials? a) v = 1 ɛ0 ɛ r µ 0 µ r = 0.4c b) Z W = µr µ 0 ɛ r ɛ 0 = 153.8Ω Aufgabe 3 [H]: Solarzellen Bei voller Sonneneinstralung fällt auf einen Quadratmeter Erdoberfläce eine Leistung von rund 1000 W. Diese kann man gescickt nutzen - für Pflanzen, um angeneme Temperaturen fürs Eisessen zu gewärleisten, aber auc zur Stromerzeugung: mit Solarzellen. Diese sind Halbleiter. Ire wictigsten elektriscen Eigenscaften kann man über eine Strom- Spannungs-Kennlinie darstellen. Die Kennlinie einer Solarzelle abe die Form I(U) = I S (e eu akt 1) IK Ist die elektrisce Leistung, die man anand dieser Kennlinie berecnen kann, negativ, kann man aus der Solarzelle Energie gewinnen. Wir wollen uns das im Folgenden etwas näer anscauen. a) Wie groß wäre der Wirkungsgrad (bei voller Sonneneinstralung) einer quadratiscen, 20 cm 20 cm großen Solarzelle für eine Spannung von U = 8 V? Die Solarzelle weist einen Kurzsclussstrom I K = 2 A auf, einen Sperrspannungssättigungsstrom I S = 10 ma und einen Diodenfaktor a = 65. Weiterin wird sie bei einer Temperatur T = 300 K betrieben. e ist die Elementarladung, k die Boltzmann-Konstante. b) Bestimme aus den oben angegebenen Parametern die maximale Leistung und den maximalen Wirkungsgrad der Solarzelle. Ermittle die Lösung näerungsweise grafisc. c) Scätze die gesamte abgestralte Leistung der Sonne ab. 2

3 a) Die Leistung ist P = U I = I S U(e λu 1) I K U P(8 V) = 6.7 W wobei λ die ganzen Konstanten im Exponent beinaltet. Für den Wirkungsgrad teilt man noc durc die einfallende Lictleistung von P L = 0.04 m W/m 2 = 40 W η = P P L = 17% b) Wir leiten diese Funktion ab, um deren Minimum zu bestimmen (die Leistung muss so negativ wie möglic sein) dp du = I S(λUe λu + e λu 1) I K! = 0 Das ist so one Weiteres nict nac U auflösbar. Eine Näerungslösung durc Reienentwicklung wäre denkbar, ist aber für Ordnung 2 zu sclect und darüber auc nict gut nac U aufzulösen. Stattdessen lösen wir die Aufgabe grafisc. Wir screiben die Gleicung einmal um IK λu + 1 = + 1 e λu I S Zeicnet man diese beiden Funktionen sorgfältig (eine e-funktion und eine Gerade kann man u.u. noc inbekommen), ergibt sic als Lösung etwas zwiscen 6 und 6.5 V

4 Man kann das Ganze natürlic auc numerisc macen, die Lösung ergibt sic dann zu U = 6.3 V. Die maximale Leistung dort ist fast genau P max = 10 W, was einem Wirkungsgrad von 25% entsprict. c) Der Abstand zwiscen Erde und Sonne beträgt etwa R = m. Die Gesamtleistung der Sonne ergibt sic unter der Anname isotroper Abstralung aus der Intensität als Fläcenintegral P Sonne = 4πR 2 I = W öer. Die Diskrepanz liegt auptsäclic an Inten- In Wirklickeit ist der Wert noc um etwa 1 3 sitätsverlusten in der Erdatmospäre. Aufgabe 4 [H] Stralungsdruck Kennt man die Intensität I einer Welle, kann man über P = I c den Stralungsdruck dieser Welle berecnen. Dies ist tatsäclic mecaniscer Druck. Durc den Stralungsdruck der Sonne werden kleine Teilcen aus dem Sonnensystem inausgewet. Wir betracten nun Teilcen mit der Dicte ρ = 1g/cm 3, die sic im Abstand d zur Sonne befinden. Sie absorbieren Sonnenstralung über iren kompletten Querscnitt πr 2. Bei welcem Radius r gleicen sic Abstoßungskraft der Sonne und Gravitation durc die Sonne gerade aus? Hinweis: Die gesamte von der Sonne abgegebene Leistung P entnemt bitte Aufgabe 3 c). Auf die Teilcen wirken in unserem Fall die Gravitationskraft der Sonne und eine abstoßende Kraft durc den Stralungsdruck. Wir sucen deren Gleiceit, also: F G =F S F G =G m sm d 2 F S =PA = I c πr2 = G m 4 s 3 πr3 ρ d 2 Die Intensität I der Sonnenstralung im Abstand d ängt mit der Leistung der Sonne P s wie folgt zusammen: I = P S 4πd 2 4

5 Einsetzen, Kräfte gleicsetzen, und nac r umstellen: P S 4πd 2 c πr2 = G m s 3 πr3 ρ d 2 3P S r = 16πρGm s c = 0.402µm Dabei wurde mit einer Sonnenleistung von P s = W gerecnet. Die Sonnenmasse war m s = kg Aufgabe 5 [H] Komplizierte Brecung 4 Luft a Die Abbildung zeigt einen Lictstral, der auf eine Glasplatte fällt. Die Platte at die Dicke d und den Brecungsindex n. Ein Teil des Strals wird an der Glasoberfläce reflektiert, ein anderer läuft durc das Glas, und wird am Plattenboden reflektiert. Es resultieren zwei Stralen. Glas Luft d a) Bestimme einen Ausdruck für den Einfallswinkel, bei dem der Abstand a zwiscen beiden resultierenden Stralen maximal ist. b) Wie groß ist dieser Einfallswinkel bei einem Brecungsindex n = 1.6? Welcen Abstand aben die Lictstralen, wenn die Glasplatte d = 5cm dick ist? l α α a α β d ββ a) Wir können aus der Zeicnung folgendes erkennen: l =2d tan β a =l cos α =2d tan β cos α 5

6 Das Brecungsgesetz können wir vereinfacen (n 1 = 1), und aben sin α = n sin β β = arcsin sin α n Wir können das nun in die Gleicung für a einsetzen a = 2d tan arcsin sin α cos α n Hier kann man folgendes benutzen: x tan (arcsin x) = 1 x 2 Einsetzen, anscließend Ableitung nac α bilden: sin α n a =2d 1 cos α sin α 2 n a =2d sin α cos α n 2 sin 2 α da dα = Auf gleicen Nenner bringen sin 2 α n 2 sin 2 α + cos 2 α + sin2 α cos 2 α n 2 sin 2 α n 2 sin 2 α 3/2 da sin 2 α + sin 4 α + n 2 cos 2 α sin 2 α cos 2 α + sin 2 α cos 2 α dα = n2 n 2 sin 2 α 3/2 Und cos 2 α = 1 sin 2 α nutzen: da sin 2 α + sin 4 α + n 2 n 2 sin 2 α dα = n2 n 2 sin 2 α 3/2 = sin4 α 2n 2 sin 2 α + n 2 n 2 sin 2 α 3/2 Für das Extremum muss die Ableitung null werden, dies klappt ier, falls der Zäler null wird. 0 =! sin 4 α 2n 2 sin 2 α + n 2 (sin 2 α) 1/2 =n 2 ± n 4 n 2 =n 1 2 ± 1 1n2 6

7 Der Sinus auf der linken Seite dieser Gleicung ist immer kleiner als 1. Die Lösung mit dem Plus auf der Recten würde jedoc immer größer als eins sein, oder komplex - daer ist die zweite Lösung sinnvoll. Wir aben also sin α =n n 2 α = arcsin n n 2 b) α = arcsin = 48.5 a =2d sin α cos α = 3.5cm n 2 sin 2 α Aufgabe 6 [P,D] Polarisation und Anwendung Jeder weiß: Der Sommer kommt zurück. Auc klar ist, dass dann wieder Sonnenbrillen praktisc sind. Oft werden Sonnenbrillen mit Polarisationsfiltern verkauft. Wieso ist das, insbesondere im Straßenverker, ilfreic? Finde weitere Anwendungen für polarisiertes Lict bzw. Polarisationsfilter im täglicen Leben (nict für Laborexperimente). Lict kann durc Reflexion polarisiert werden. Im Straßenverker gibt es eine ganze Reie von Fläcen, an denen Sonnenlict reflektiert werden kann, z.b. Windscutzsceiben/Hecksceiben/Seitensceiben anderer Autos, die gantzen metalliscen Fläcen etc. Das dort reflektierte Lict, das mic z.b. als nacfolgenden Farradfarer im Auge erreict ist daer fast immer teilweise orizontal polarisiert. Mit einer senkrect polarisierenden Brille kann ic daer viele Störungen/Blendungen vermeiden. Weitere Anwendungen im alltäglicen Leben: 3D Brillen in Kinos (aben in der regel zwei zirkulär polarisierte Gläser - der Projektor wirft zwei gegeneinander verscobene Bilder aus versciedenen Perspektiven an die Wand) Fotograpie: Mit einem entsprecendem Polarisationsfilter ersceint der Himmel dunkler 7

8 Aufgabe 7 [P,D] Brecen Unter Wasser Warum kann man mit einer Taucerbrille unter Wasser viel besser seen als one? Wie kann man es scaffen, knapp unter der Wasseroberfläce trotzdem gut zu seen, wenn man keine Taucerbrille dabeiat? Es gibt einen Fisc, der immer knapp unter der Wasseroberfläce scwimmt, sodass die Hälfte seiner Augen über die Wasseroberfläce ragt. Er kann gleiczeitig in Luft und Wasser scarf seen. Wie eißt der Fisc und wie mact er das? Hinweis: Der Fisc eißt nict Anna. Dass man unter Wasser mit Brille besser siet, liegt daran, dass die Brecungseigenscaften außen an der Linse vom Brecungsindex des Mediums abängen. Wir sind für das Leben an der Luft ausgerüstet und unser Auge ist von Kindesbeinen an darauf trainiert (oder vielleict auc scon genetisc vorprogrammiert), Dinge in der Luft zu erkennen. Da Wasser aber einen öeren Brecungsindex at, landen die Stralen von Objekten nict an der gewonten Stelle sondern vor oder inter der Netzaut und man siet alles unscarf. Moritz Urlaubstipp: Man kann sic auc ein Luftpolster verscaffen, wenn man mit den Fingern Ringe bildet und dict vors Auge ält. Tauct man nun den Kopf mit den Fingern zuerst ein, kann man sic immer noc Korallen anseen. Bei dem Fisc andelt es sic um das Vierauge mit wissenscaftlicem Namen Anableps. Er at zweigeteilte Augen mit zwei Linsen, die versciedene Geometrien aufweisen. So kann er mit der Unterälfte der Augen unter Wasser seen und mit der Oberälfte über Wasser. Aufgabe 8 [P] Noc Ein Fisc Fisce sind scon tolle Tiere. Der sogenannte Scützenfisc at die (äußerst nützlice) Fäigkeit, die Brecung des Licts an der Wasseroberfläce zu berücksictigen, um Insekten in der Luft zu jagen. Der Scützenfisc Karl-Otto at eine saftige, auf einem Blatt sitzende, Fliege erspät und will sie nun erscießen. Er siet sie unter einem Winkel von 20 zur Vertikalen, sein Auge ist 2 cm unter der Wasseroberfläce. Sein Maul ist in orizontaler Rictung 1 cm näer an der Fliege als das Auge, und genau an der Wasseroberfläce. Die Fliege sitzt in 10 cm Höe über dem Wasser. Unter welcem Winkel zur Vertikalen muss Karl-Otto spucken, um die Fliege zu treffen? 8

9 γ β A α=20 x A Die Skizze stellt die Situation dar. x BI, X BA und x BM sind die orizontale Entfernung vom Lictbrecpunkt zum Insekt, Auge und Maul. x ist die Entfernung zwiscen Maul und Insekt. tan γ = x x BI = x + x BM tan γ = x BI x BM x A = x BA + x BM tan β = x BI tan γ = tan β x A + x BA tan α = x BA A tan γ = tan β x A + A tan α 9

10 Nun muss man noc das Brecungsgesetz einsetzen, um tan β zu bestimmen. sin α sin β = 1 n = 3 4 n sin α tan (arcsin (n sin α)) = 1 (n sin α) 2 tan γ = n sin α x 1 (n sin α) 2 A + A tan α γ = 25.9 Zur Info: β = 27.1, ist also noc ein Stückcen flacer, das mact immerin 2.7 mm auf die Entfernung aus. Würde der Fisc einfac unter α spucken (also dain, wo er die Fliege siet), landet er sogar 1.2 cm daneben - obwol der Winkel scon ser steil ist, ergibt sic also noc eine durcaus nict unereblice Abweicung. Aufgabe 9 [P] Holleiter Wir betracten einen quadratiscen Holleiter der Seitenlänge 3 cm. Ein Wellenpaket legt in seinem Inneren eine Strecke von 100 m in 1 µs zurück. a) Wie groß ist die Pasengescwindigkeit in diesem Leiter? b) Wie groß ist die Wellenlänge der Welle im Vakuum? Wir betracten eine Mode mit E in y-rictung, die sic in z-rictung entlang des Leiters ausbreitet. Am Rand des Holleiters muss das elektrisce Feld dann 0 sein, da die Wand in die gleice Rictung wie das E-Feld zeigt, was bei einem idealen Leiter nict get. Zwiscen den Wänden bildet sic eine steende Welle aus. Es muss gelten k x = π a wobei a die Seitenlänge des Leiters ist. In y-rictung nemen wir die Welle als konstant an (das ist die niedrigste Mode). Also ist 2π k 2 = k 2 x + k2 z = λ ω = ck = c k 2 x + k2 z v P = ω k z = c k k z = c k 2 v G = ω k z = c k z k 2 x + kz 2 k 1 kx k c = 2 1 λ 2 2a λ 1 2a = c k z k = c2 v P = c 2 10

11 a) Die Gruppengescwindigkeit ist gegeben. Wir verwenden v P v G = c 2 v G = 100 m 1 µs v P = c2 v G = 3c = 10 8 m/s c 3 b) Wir stellen die Gleicung für die Gruppengescwindigkeit oben nac λ um λ = 2a 1 vg c 2 8 = 6 cm = 5.7 cm 9 11

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Polarisiertes Licht (O6)

Polarisiertes Licht (O6) Polarisiertes Lict (O6) Ziel der Versuces Aus linear polarisiertem Lict ist unter Verwendung einer λ/4-platte irkular und elliptisc polarisiertes Lict u ereugen und mit einem Analsator nacuweisen. Teoretiscer

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Säcsisces Staatsministerium für Kultus Sculjar 2001/2002 Geltungsbereic: für Klassen 10 an - Mittelsculen - Fördersculen - Abendmittelsculen Scriftlice Absclussprüfung Pysik Realsculabscluss Allgemeine

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

Wochenplan Woche vom...

Wochenplan Woche vom... Wocenplan Woce vom... Temenübersict Arbeitsblatt 1 Holzylinder Inalt, Scwerpunkte des Temas Volumenberecnungen und Masseberecnung für den Holzylinder Kontrolle Arbeitsblatt Netze von, Oberfläcenberecnung,

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik Grundkurs Pysik: Abiturprüfung 1997 Aufgabe 3 Atompysik 1. Der gesamte sictbare Bereic (00 nm λ 750 nm) des elektromagnetiscen Spektrums soll auf einem Scirm dargestellt werden. a) Begründen Sie, warum

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II ***

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II *** Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt Bestimme, in welcer Höe der Ballon

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizscule Hannover - Seminararbeit - Modellierung von Ausflussvorgängen J I Sculjar: 2010 Fac: Matematik Inaltsverzeicnis 1 Einleitung 2 11 Vorwort 2 12 Vorbereitung 2 2 Ausflussvorgang bei konstantem

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Aufgaben zur Quantenphysik

Aufgaben zur Quantenphysik ufgaben zur Quantenpysik 187. In eine Nactsictgerät wird eine Fotozelle aus der Legierung gcso verwendet, das eine ustrittsarbeit von 1,04 ev at. a) b welcer Wellenlänge werden bei Bestralen it Lict aus

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens.

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens. ut-physik: GRUDWISSE 7. KLASSE METHODIK METHODE BEISPIEL Modellvorstellungen: aturwissenscaft benutzt Modelle, um Vorgänge in der atur quantitativ zu bescreiben und vorerzusagen. Lictstralen gedact als

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife Counterlife STORY OF THE MONTH TEXT ALEXANDRA CHRISTEN BILDER ALEXANDRA CHRISTEN / ZVG WEBCODE 7106 An der Dorfstrasse 16 im zugeriscen Baar stet ein kleines Inselparadies. Mit einem Ceck-In- Scalter,

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr

iek Institut für Entwerfen und Konstruieren

iek Institut für Entwerfen und Konstruieren Grundlaen der Darstellun Institut für Entwerfen und Konstruieren Prof. José Luis Moro Heiko Stacel Mattias Rottner 1 Konstruktion der senkrecten Axonometrie 2 Mertafelprojektion B(A) A B A Aufriss Seitenriss

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2 Das Delta-Potential Quantenmecanik Projekt Gruppe PLANCK Anton Hörl Tomas Kloiber Bernd Kollmann Miriam Mutici Jakob Scwarz Max Planck (1858 1947) 4.4 Delta-Potential Ist die räumlice Ausdenung eines Potentials

Mehr

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε'

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' -Diagramm von Blatt 3 1. (a) Auf eine 2 cm dicke ebene Glasplatte fällt unter dem Einfallswinkel 50 ein Lichtstrahl. Zeichne seinen weiteren

Mehr

Physik in der Praxis: Fortgeschrittenen-Praktikum

Physik in der Praxis: Fortgeschrittenen-Praktikum MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Pysik in der Praxis: Fortgescrittenen-Praktikum 1. Versuc: Quantisierter Leitwert von Punktkontakten Durcfürung 19.04.2011 Abgabe am Übungsleiter

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Wie hoch kann ein Sandturm werden?

Wie hoch kann ein Sandturm werden? Wie oc kann ein Sandtur werden? Soerspaß it ordsee-sand auf Langeoog Alltäglice inge lassen sic it den Mitteln der Ingenieure beandeln. So wird i folgenden Beitrag der Zusaenalt von Sandtüren erklärt und

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 4. Übungsblatt - 15.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (3 Punkte) Welche

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Übungen zur Atomphysik IV

Übungen zur Atomphysik IV Ue AP 36 Übungen zur Atompysik IV Die Ursprünge der Quantenteorie Scwarzkörper-Stralung (Stefan-Boltzmann, Wien) 37 Übungen: scwarzer Straler 38 Lösungen: scwarzer Straler 39 Plancksces Stralungsgesetz

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Liebe Grüße. von Eurem Jackie. h h. Die vertraulichen Briefe eines Findelkaters. Silke Sintram. Verlag Gisela Preuss

Liebe Grüße. von Eurem Jackie. h h. Die vertraulichen Briefe eines Findelkaters. Silke Sintram. Verlag Gisela Preuss Liebe Grüße Silke Sintram von Eurem Jackie Die vertraulicen Briefe eines Findelkaters 0 Verlag Gisela Preuss Der Findelkater Das Katzenbaby namenlos wurde im kalten Winter von einer Frau, unter Sträucern

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

2. Klausur in K2 am 7.12. 2011

2. Klausur in K2 am 7.12. 2011 Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY

V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY V E K TO R A NALYSIS TEIL I SIEGFRIED PETRY Fassung vom 5 Januar 013 1 I n a l t 1 Grundbegriffe 3 Vektorfunktionen 3 1 Screibweise und Definition 3 Ableitung einer Vektorfunktion 3 3 Differentiationsregeln

Mehr

WALTER SCHOTTKY INSTITUT

WALTER SCHOTTKY INSTITUT Lerstul für Halbleitertecnologie Lösung zur Zentralübung 3 Aufgabe 1: a Klassisce Betractung (i E 1 ev und V ev (ii E 4 ev und V ev > vollständige Reflexion R 1 > Transmission über die Stufe inweg, R Aber:

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterscrift) Klausur Strömungsmecanik I 09. 03. 2011 1. Aufgabe (11 Punkte) Nac dem Start des Space Suttles fallen die zwei gleic großen, offenen Booster mit jeweils einer Masse

Mehr

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung

Realschule Schüttorf November 2006 Mathematik Klasse 10 Wiederholung 1.) Ein Farradändler verkauft in einer Woce 8 Damen- und 1 Herrenfarräder für 589. Ein Damenfarrad ist 11 günstiger als ein Herrenfarrad. Berecne jeweils den Preis eines Damen- und den Preis eines Herrenfarrades!.)

Mehr

Analytische Geometrie

Analytische Geometrie nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt

Mehr

3D-Optik. www.opto-engineering.com

3D-Optik. www.opto-engineering.com 3D-Optik 2014 Inalt 3D-Optik Opto Engineering entwickelt 3D-Objektive und Projektoren mit einem ocpräzisen Neigungsmecanismus, der es erlaubt, die Sceimpflug-Bedingung einzualten und das ganze Sictfeld

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Aufgaben zum Thema Kraft

Aufgaben zum Thema Kraft Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr