Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Überblick. Kapitel 7: Anwendungen der Differentialrechnung"

Transkript

1 Überblick Kapitel 7: Anwendungen der Differentialrechnung 1

2 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1

3 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2

4 Beispiel 1: Steigung der Tangente, Fortsetzung Kapitel 7.1: Implizites Differenzieren 3

5 Beispiel 2: Kapitel 7.1: Implizites Differenzieren 4

6 Beispiel 2: Kapitel 7.1: Implizites Differenzieren 5

7 Beispiel 2: Fortsetzung Kapitel 7.1: Implizites Differenzieren 6

8 Methode des impliziten Differenzierens Kapitel 7.1: Implizites Differenzieren 7

9 Die zweite Ableitung implizit definierter Funktionen, Beispiel 5: Kapitel 7.1: Implizites Differenzieren 8

10 Beispiel 1: Makroökonomisches Modell für geschlossene Wirtschaft: Kapitel 7.2: Ökonomische Beispiele 1

11 Beispiel 1(b): Kapitel 7.2: Ökonomische Beispiele 2

12 Beispiel 1(b): Interpretation der Lösung: Kapitel 7.2: Ökonomische Beispiele 3

13 Beispiel 1(c): Kapitel 7.2: Ökonomische Beispiele 4

14 Beispiel 2: Angebot und Nachfrage mit Verbrauchersteuer Kapitel 7.2: Ökonomische Beispiele 5

15 Ableitung der inversen Funktion Kapitel 7.3: Differentiation der Inversen 1

16 Beispiel 1: Kapitel 7.3: Differentiation der Inversen 2

17 Ableitung der Inversen Kapitel 7.3: Differentiation der Inversen 3

18 Das Wichtigste über Inverse Kapitel 7.3: Differentiation der Inversen 4

19 Geometrische Interpretation Kapitel 7.3: Differentiation der Inversen 5

20 Beispiel 2: Kapitel 7.3: Differentiation der Inversen 6

21 Beispiel 2: Lösung Kapitel 7.3: Differentiation der Inversen 7

22 Beispiel 3: Zweite Ableitung der inversen Funktion Kapitel 7.3: Differentiation der Inversen 8

23 Beispiel 3: Zweite Ableitung der inversen Funktion Kapitel 7.3: Differentiation der Inversen 9

24 Motivation Kapitel 7.4: Lineare Approximation 1

25 Definition der linearen Approximation Kapitel 7.4: Lineare Approximation 2

26 Beispiel 1: Bestimmen Sie die lineare Approximation Kapitel 7.4: Lineare Approximation 3

27 Beispiel 3: Bestimmen Sie eine Approximation für Kapitel 7.4: Lineare Approximation 4

28 Das Differential einer Funktion Kapitel 7.4: Lineare Approximation 5

29 Das Differential und die tatsächliche Funktionswertänderung Kapitel 7.4: Lineare Approximation 6

30 Geometrische Interpretation des Differentials Kapitel 7.4: Lineare Approximation 7

31 Notation Kapitel 7.4: Lineare Approximation 8

32 Beispiel 4: Berechnen Sie die folgenden Differentiale: Kapitel 7.4: Lineare Approximation 9

33 Regeln für Differentiale Kapitel 7.4: Lineare Approximation 10

34 Invarianz des Differentials Kapitel 7.4: Lineare Approximation 11

35 Quadratische Approximationen Kapitel 7.5: Polynomiale Approximationen 1

36 Quadratische Approximation Kapitel 7.5: Polynomiale Approximationen 2

37 Quadratische Approximation Kapitel 7.5: Polynomiale Approximationen 3

38 Lineare und quadratische Approximation Kapitel 7.5: Polynomiale Approximationen 4

39 Beispiel 1: Bestimmen Sie die quadratische Approximation für Kapitel 7.5: Polynomiale Approximationen 5

40 Approximationen höherer Ordnung Kapitel 7.5: Polynomiale Approximationen 6

41 Beispiel 3: Taylor-Polynom 3. Grades für Kapitel 7.5: Polynomiale Approximationen 7

42 Beispiel 4: Taylor-Approximation für e-funktion Kapitel 7.5: Polynomiale Approximationen 8

43 Fehler bei der Approximation Kapitel 7.6: Taylor-Formel 1

44 Lagrange sche Form des Restgliedes Kapitel 7.6: Taylor-Formel 2

45 Restglied bei linearer Approximation Kapitel 7.6: Taylor-Formel 3

46 Anwendung des Restgliedes Kapitel 7.6: Taylor-Formel 4

47 Beispiel 2: Taylor-Formel für e-funktion Kapitel 7.6: Taylor-Formel 5

48 Restglied bei Entwicklung um x = x 0 Kapitel 7.6: Taylor-Formel 6

49 Motivation Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 1

50 Preiselastizität der Nachfrage Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 2

51 Preiselastizität der Nachfrage Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 3

52 Preiselastizität der Nachfrage Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 4

53 Preiselastizität der Nachfrage Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 5

54 Preiselastizität der Nachfrage Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 6

55 Allgemeine Definition der Elastizität Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 7

56 Beispiel 1: Elastizität einer Potenzfunktion Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 8

57 Anmerkung 1: Terminologie Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 9

58 Elastizitäten als logarithmische Ableitungen Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 10

59 Elastizitäten als logarithmische Ableitungen Kapitel 7.7: Warum Ökonomen Elastizitäten benutzen 11

60 Stetigkeit, geometrisch gesehen Kapitel 7.8: Stetigkeit 1

61 Stetigkeit in Form von Grenzwerten Kapitel 7.8: Stetigkeit 2

62 Möglichkeiten der Unstetigkeit Kapitel 7.8: Stetigkeit 3

63 Rechenregeln für Grenzwerte aus Kap. 6.5: Kapitel 7.8: Stetigkeit 4

64 Regeln aus Kap. 6.5 in Worten: Kapitel 7.8: Stetigkeit 5

65 Eigenschaften von stetigen Funktionen Kapitel 7.8: Stetigkeit 6

66 Folgerungen aus den Eigenschaften Kapitel 7.8: Stetigkeit 7

67 Zusammenfassung Kapitel 7.8: Stetigkeit 8

68 Beispiel 1(a): Wo ist die Funktion stetig? Kapitel 7.8: Stetigkeit 9

69 Grenzwert Kapitel 7.9: Mehr über Grenzwerte 1

70 Beispiel 1: Kapitel 7.9: Mehr über Grenzwerte 2

71 Beispiel 1: Graph der Funktion; vertikale Asymptote Kapitel 7.9: Mehr über Grenzwerte 3

72 Abbildung 2: Einseitige Grenzwerte Kapitel 7.9: Mehr über Grenzwerte 4

73 Definition einseitiger Grenzwerte Kapitel 7.9: Mehr über Grenzwerte 5

74 Links- und rechtsseitige Grenzwerte Kapitel 7.9: Mehr über Grenzwerte 6

75 Uneigentliche Grenzwerte Kapitel 7.9: Mehr über Grenzwerte 7

76 Beispiel 2; Abbildung 3 Kapitel 7.9: Mehr über Grenzwerte 8

77 Beispiel 3: Begründen Sie die folgenden Grenzwerte: Kapitel 7.9: Mehr über Grenzwerte 9

78 Einseitige Stetigkeit Kapitel 7.9: Mehr über Grenzwerte 10

79 Beispiel 4: Abbildung 3 Kapitel 7.9: Mehr über Grenzwerte 11

80 Stetigkeit auf einem Intervall Kapitel 7.9: Mehr über Grenzwerte 12

81 Grenzwerte im Unendlichen Kapitel 7.9: Mehr über Grenzwerte 13

82 Uneigentliche Grenzwerte; Abbildung 4 Kapitel 7.9: Mehr über Grenzwerte 14

83 Beispiel 5(a): Untersuchen Sie die Grenzwerte für x Unendlich Kapitel 7.9: Mehr über Grenzwerte 15

84 Warnungen Kapitel 7.9: Mehr über Grenzwerte 16

85 Beispiel 6: Kapitel 7.9: Mehr über Grenzwerte 17

86 Stetigkeit und Differenzierbarkeit; Abbildung 5 Kapitel 7.9: Mehr über Grenzwerte 18

87 Die Betragsfunktion ist nicht differenzierbar an der Stelle x = 0 Kapitel 7.9: Mehr über Grenzwerte 19

88 Rechtsseitige und linksseitige Ableitung Kapitel 7.9: Mehr über Grenzwerte 20

89 Mathematisch exakte Definition von Grenzwerten Kapitel 7.9: Mehr über Grenzwerte 21

90 Abbildung 6 Kapitel 7.9: Mehr über Grenzwerte 22

91 Zwischenwertsatz Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 1

92 Anwendungen des Zwischenwertsatzes; Beispiel 1 Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 2

93 Graph zu Beispiel 1 Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 3

94 Newton-Verfahren zur Nullstellenbestimmung Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 4

95 Newton-Verfahren zur Nullstellenbestimmung Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 5

96 Newton-Verfahren, Formel für die Folge der Punkte Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 6

97 Newton-Verfahren, Formel für die Folge der Näherungspunkte Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 7

98 Beispiel 3: Finden Sie eine Näherung für die Nullstelle von Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 8

99 Beispiel 3: Finden Sie eine Näherung für die Nullstelle von Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 9

100 Anmerkung 1, Abbildung 2: Kapitel 7.10: Zwischenwertsatz, Newton-Verfahren 10

101 Was ist eine unendliche Folge? Kapitel 7.11: Unendliche Folgen 1

102 Beispiel 1/n Kapitel 7.11: Unendliche Folgen 2

103 Konvergenz einer Folge Kapitel 7.11: Unendliche Folgen 3

104 Beispiel 1: Kapitel 7.11: Unendliche Folgen 4

105 Beispiel 2: Kapitel 7.11: Unendliche Folgen 5

106 Grenzwerte eines Quotienten, wenn Zähler und Nenner gegen Null Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 1

107 Regel von L Hôspital Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 2

108 Beispiel 1: Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 3

109 Beispiel 3: Bestimmen Sie Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 4

110 Fazit aus Beispiel 3 und Warnungen Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 5

111 Regel von L Hôspital Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 6

112 Regel von L Hôspital Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 7

113 Ein wichtiger Grenzwert Kapitel 7.12: Unbestimmte Formen und Regeln von L Hôspital 8

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Ableitung einer Betragsfunktion Differenzierbarkeit

Ableitung einer Betragsfunktion Differenzierbarkeit Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler

Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler https://cuvillier.de/de/shop/publications/1601 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS03 30.0.03 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflußgrößen und sind damit

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315 324 Mathematica-Befehle A Algebra 'SymbolicSum, 25,94 Apart 128 C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312 S Series 142,167,235 SetCoordinates 297 Sum 26,94,167,184 T Table 211 D D 70,71,74,209,215

Mehr

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr..

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr.. Differentialund Integralrechnung Von G. M. Fichtenholz Mit 168 Abbildungen Dreizehnte Auflage /' M^ntrKkiVr.. s^os«^

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK EINFÜHRUNG IN DIE HÖHERE MATHEMATIK MIT BESONDERER BERÜCKSICHTIGUNG IHRER ANWENDUNGEN AUF GEOMETRIE, PHYSIK, NATURWISSENSCHAFTEN UND TECHNIK VON DR.PHIL.KARL STRUBECKER ORD. PROFESSOR AN DER TECHNISCHEN

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Formelsammlung für Wirtschaftswissenschaftler

Formelsammlung für Wirtschaftswissenschaftler Fred Böker Formelsammlung für Wirtschaftswissenschaftler Mathematik und Statistik PEARSON.. ;. ; ; ; *:;- V f - - ' / > Щ DtUClllirn ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

12 Differenzierbare Funktionen

12 Differenzierbare Funktionen Physikalisches Experiment 12 Differenzierbare Funktionen 12.1 Physikalisches Experiment Eine Person wirft zum Zeitpunkt t 0 einen Ball senkrecht in die Höhe. Die Funktion h : Ö0,T R mit hôtõ h 0 v 0 t

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Kernkompetenz Mathematik (Teil Analysis)

Kernkompetenz Mathematik (Teil Analysis) Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität

Mehr

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren

Näherungsverfahren zur Berechnung von Nullstellen. Das Newtonsche Iterationsverahren Näherungsverfahren zur Berechnung von Nullstellen Das Newtonsche Iterationsverahren. Dieses Verfahren der Nullstellenanäherung macht von der Tatsache Gebrauch, dass der Funktionsgraph einer differenzierbaren

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten. FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Die Tangente als Näherung einer Funktion

Die Tangente als Näherung einer Funktion Die Tangente als Näherung einer Funktion Eine Motivation der Ableitung der Wurzelfunktion Marco Johannes Türk 13. Mai 2014 Marco Johannes Türk Die Tangente als Näherung einer Funktion 13. Mai 2014 1 /

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Grenzwerte, Stetigkeit, Differenziation

Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte von Funktionen In 33Kapitel 9 wurden Folgen und deren Grenzwerte eingeführt Mittels der Konvergenz von Folgen wird der Begriff der Konvergenz für

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsæter Peter Hammond mit Arne Strøm Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte Auflage Übersetzt und fachlektoriert durch Dr. Fred Böker Professor für

Mehr

7.9. Kurvendiskussion

7.9. Kurvendiskussion 7.9. Kurvendiskussion Bei der systematischen Untersuchung einer gegebenen Funktion und der durch sie dargestellten Kurve interessiert man sich vor allem für die folgenden Charakteristika, die einen guten

Mehr