Funktionen in zwei Variablen

Größe: px
Ab Seite anzeigen:

Download "Funktionen in zwei Variablen"

Transkript

1 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage, Sankt Gallen, Verlag Wilhelm Surbir, Seiten

2 1 Einleitung Eine Funktion war als eine Vorschrift definiert, die jedem Element einer Menge X (Definitionsbereich) genau ein Element einer Menge Y zuordnet. Bisher war für uns stets X = Y = R. In den folgenden Kapiteln werden wir nun insbesondere Funktionen mit dem Definitionsbereich R betrachten, alllerdings lassen sich fast alle erzielten Resultate leicht auf Funktionen mit Definitionsbereichen R n beliebiger Dimension n übertragen. 1.1 Beispiele aus der Ökonomie 1. Die Nachfrage q 1 nach einem Gut G 1 werde als Funktion des Preises p 1 und des Preises p eines zweiten Gutes G betrachtet: q 1 = f(p 1, p ). (a) konkurrierende Güter (Beispiel: Butter und Magarine) Die Funktion f ist abnehmend als Funktion von p 1 (umso teurer die Butter wird, desto geringer die Nachfrage nach Butter) wachsend als Funktion von p (umso teurer die Magarine wird, desto grösser die Nachfrage nach Butter). Häufig verwendete Modelle: q 1 = a bp 1 + cp, a, b, c > q 1 = k pβ p α 1 (b) komplementäre Güter (Beispiel: Pfeifen und Tabak) Die Funktion f ist abnehmend als Funktion von p 1 (umso teurer die Pfeifen werden, desto geringer die Nachfrage nach Pfeifen) abnehmend als Funktion von p (umso teurer der Tabak wird, desto geringer die Nachfrage nach Pfeifen). Häufig verwendete Modelle: q 1 = a bp 1 cp, a, b, c > q 1 = k 1 p α 1 p β. Eine Firma stellt die beiden Produkte 1 und in Mengen q 1 und q her. Die Kostenfunktion C(q 1, q ) ist eine monoton wachsende Funktion in beiden Variablen q 1 und q. Ein mögliches Modell ist: C(q 1, q ) = aq 1 + bq 1q + cq + dq 1 + eq + f.

3 3 3. Die Cobb-Douglas Produktionsfunktion Es bezeichne K: den 1. Produktionsfaktor (Kapital) A: den. Produktionsfaktor (Arbeit) Q = f(k, A): das Produktionsergebnis als Funktion der Produktionsfaktoren. Ein häufig verwendeter Ansatz zur Modellierung der Funktion f ist Q = f(k, A) = c K α A β, c >, < α < 1, < β < 1. Dieses Modell erfüllt die folgende ökonomische Gesetzmässigkeit: Steigert man den Arbeitseinsatz (bei gleichbleibendem Kapital) stets um den gleichen Betrag A, so nimmt der Produktionszuwachs Q ab. Indem wir das Kapital als konstant ansehen, erhalten wir eine Funktion in einer reellen Veränderlichen: Q = c A β, < β < 1. Die eigentliche Cobb-Douglas Produktionsfunktion erfüllt ferner die Bedingung: α + β = 1 das heisst: Q = c K α A 1 α. 4. In der Wahrscheinlichkeitsrechnung spielt die sogenannte -dimensionale Gaußsche Verteilung eine wichtige Rolle. Sie gibt Anlass, die Funktion genauer zu untersuchen. f(, ) = e ( + )

4 4 1. Methoden der graphischen Darstellung 1..1 Das,,direkte Bild Diese Darstellung ist vor allem geeignet, sich ein (richtiges) Bild einer Funktion an sich zu machen. Es ist wenig geeignet, zwichen verschiedenen Funktionen zu unterscheiden. IR IR z = f(,) 1.. Das Schrägbild Über den Punkten (, ) des Definitionsbereiches der Funktion errichten wir eine Strecke der Länge z = f(, ). Die Endpunkte aller dieser Strecken bilden eine Fläche im Raum, die auch als der Graph von f bezeichnet wird. (,,z) z = f(,) (,)

5 5 Beispiele: 1. Der Graph der Funktion z = f(, ) = 8 ist eine Ebene Der Graph der Funktion ist ein Rotationsparaboloid. z = f(, ) =

6 6 3. Der Graph der Funktion ist ein hperbolisches Paraboloid. z = f(, ) = Der Graph der Funktion ist eine sogenannte Gauß-Glocke. z = f(, ) = e ( + ) 1,,75,5,5,

7 7 5. Hier der Graph der Funktion f(, ) = sin( ) : 7,5 5,,5,,5 5, 7,

8 Niveaulinien Wir schneiden den Graphen einer Funktion in zwei Variablen mit horizontalen Ebenen (parallel zur (, )-Ebene in einer bestimmten Höhe z über dieser Ebene). Die Schnittkurve projizieren wir senkrecht in die (, )-Ebene (und beschriften die Projektion gegebenenfalls mit der Höhe z). Beispiele: 1. z = f(, ) = 8 Als Niveaulinien erhalten wir eine Familie paralleler Geraden: z = : = + 1 z = : = + 8 z = : = + 6 z = 4 : =

9 9. z = f(, ) = 8 Als Niveaulinien erhalten wir eine Familie konzentrischer Kreise: z > 8 : keine Lösung z = 8 : + = z = 4 : + = 4 z = : + =

10 1 3. z = f(, ) = Als Niveaulinien erhalten wir eine Familie von gleichseitigen Hperbeln: z = : = oder = ± z = 4 : = 4 z = 4 : = 4 z = 8 : = 8 z = 1 : =

11 11 4. z = f(, ) = e ( + ) Für einen konstanten Wert z = k gilt k = e ( + ), ln(k) = + und die Niveaulinien sind eine Familie konzentrischer Kreise. 1,5 1,,5, 1,5 1,,5,,5 1, 1,5,5 1, 1,5

12 1 5. Ein Bild der Niveaulinien der Funktion f (, ) = sin( ) : sehen Sie hier 5,,5, 5,,5,,5 5,,5 5,

13 13 Maple 1 Maple umfasst einen Kern häufig benutzter Befehle (Standard-Rechenanweisungen). Zusätzlich müssen für speziellere Themenbereich bestimmte Programmpackete mit dem with- Befehl geladen werden. Beim Umgang mit Funktionen in zwei Veränderlichen sollte mit dem Befehl with(plots) stets das Packet aller Druckbefehle eingebunden werden. Hier wollen wir zunächst eine Funktion f in zwei Veränderlichen definieren und ihren Graphen sowie die Niveaulinien zeichnen. > restart: > with(plots): > f := (,) -> 4* - * ; > plot3d( f(,), =-3..3, =-3..3 ); > contourplot( f(,), =-3..3, =-3..3 ); Probieren Sie das aus!

14 14 Aufgabe 1.1 Stellen Sie die Niveaulinien der folgenden Funktionen dar: f(, ) =, f(, ) = 4 3,, f(, ) =.

15 15 Partielle Ableitungen und partielle Elastizitäten.1 Partielle Ableitungen Gegeben sei eine Funktion z = f(, ). Die partiellen Ableitungen von f sind definiert als f = f = f = f = f( +, ) f(, ) f(, + ) f(, ) partielle Ableitung nach partielle Ableitung nach Interpretation: Wir betrachten die Flächenkurve, die als Schnitt der Ebene = konstant und der Fläche z = f(, ) entsteht. Die partielle Ableitung von f nach ist die Steigung der Tangente an diese Kurve im Punkt (,, z). Aufgabe.1 Berechnen Sie alle partiellen Ableitungen der folgenden Funktionen. 1. f(, ) = f(, ) = e

16 16 3. U(, ) = + ( 4. f(, ) = ln )

17 17 Maple Partielle Ableitungen von Funktionen in mehreren Veränderlichen können mit dem Operator D berechnet werden. > restart: > f := (,) -> 4** - ** ; > D[1](f); > D[](f)(1,-1); > D[1](f); > D[](f)(1,-1); Probieren Sie das aus! Verstehen Sie die Snta des D-Operators?

18 18. Partielle Elastizitäten Gegeben sei eine Funktion z = f(, ). Die partiellen Elastizitäten von f sind definiert als ǫ f, = lim f f f = lim f = f (, ) f(, ) partielle Elastizität bezüglich ǫ f, = lim f f f = lim f = f (, ) f(, ) partielle Elastizität bezüglich Interpretation: Die prozentuale Änderung von f beträgt etwa das ǫ f, -fache der prozentualen Änderung von bei Konstanthaltung der Variablen. f f ǫ f, Aufgabe. 1. f(, ) = c α β. f(, ) = e

19 19 Nachfrageelastizitäten Es seien die folgenden beiden Nachfragefunktionen gegeben: q 1 = q 1 (p 1, p ) die Nachfrage nach Gut 1 als Funktion des Preises von Gut 1 und des Preises von Gut. q = q (p 1, p ) die Nachfrage nach Gut als Funktion des Preises von Gut 1 und des Preises von Gut. Dann sind die folgenden vier Nachfrage-Elastizitäten gegeben: ǫ 1,1 = ǫ q1,p 1 = p 1 q 1 q 1 p 1 Nachfragelastizität von q 1 bezüglich p 1 ǫ, = ǫ q,p = p q q p Nachfragelastizität von q bezüglich p ǫ 1, = ǫ q1,p = p q 1 q 1 p Nachfragelastizität von q 1 bezüglich p ǫ,1 = ǫ q,p 1 = p 1 q q p 1 Nachfragelastizität von q bezüglich p 1 Interpretation ǫ 1,1 gibt annährend die prozentuale Änderung der Nachfrage nach Gut 1 an, wenn der Preis p 1 von Gut 1 um 1% steigt. ǫ 1, gibt annährend die prozentuale Änderung der Nachfrage nach Gut 1 an, wenn der Preis p von Gut um 1% steigt. Aufgabe.3 q 1 = 3 p p 1 und q = 15 + p 1 p

20 .3 Höhere partielle Ableitungen Partielle Ableitungen werden es uns erlauben, notwendige und hinreichende Kriterien für die Eistenz von Etrema bei Funktionen zweier Variablen zu formulieren. Die partiellen Ableitungen. Ordnung sind definiert als f = f = ( ) f f = f = ( ) f f = f = ( ) f f = f = ( ) f Wir erwähnen noch das folgende Resultat: Satz.1 Sind die gemischten partiellen Ableitungen f und f stetige Funktionen, so gilt f = f.

21 1 Aufgabe.4 Berechnen Sie alle partiellen Ableitung. Ordnung. 1. f(, ) = f(, ) = e 3. f(, ) = 7 5

22 .4 Geometrische Deutung der partiellen Ableitungen Sei z = f(, ) eine Funktion und (,, z ) ein Punkt auf der zugehörigen Fläche. Durch diesen Punkt gibt es zwei spezielle Kurven (Wege) auf der Fläche: 1. Der Schnitt der Fläche mit der Ebene = (parallel zur -z-ebene). Die Schnittkurve (auf der Fläche) in -Koordinatenrichtung durch (,, z ), die -Schnittkurve, kann dann als Funktion in einer Veränderlichen geschrieben werden: z = z() = f(, ). Der Schnitt der Fläche mit der Ebene = (parallel zur -z-ebene). Die Schnittkurve (auf der Fläche) in -Koordinatenrichtung durch (,, z ), die -Schnittkurve, kann dann als Funktion in einer Veränderlichen geschrieben werden: z = z() = f(, ) z z

23 3 Aufgabe.5 Bestimmen Sie die Gleichungen der beiden Flächenkurven (zu den Koordinatenrichtungen) auf der Fläche z = f(, ) = + durch den Punkt (1, 1, )

24 4 Bedeutung der partiellen Ableitungen: f (, ) : Anstieg der -Schnittkurve f (, ) : Anstieg der -Schnittkurve f (, ) = : -Schnittkurve hat in (,, z ) eine horizontale Tangente f (, ) = : -Schnittkurve hat in (,, z ) eine horizontale Tangente f (, ) > (< ) : -Schnittkurve ist nahe bei (,, z ) konve (konkav) f (, ) > (< ) : -Schnittkurve ist nahe bei (,, z ) konve (konkav)

25 5 3 Die Tangentialebene einer Fläche Sei z = f(, ) eine Funktion. Der Graph der Funktion ist die Fläche F = { (,, z) R 3 : z = f(, ) } und wir hatten in den vorhergehenden Kapiteln einige Beispiele von Graphen kennengelernt. Eine Ebene E ist durch eine Gleichung z = a + b + c definiert und stellt eine spezielle (ebene) Fläche E = { (,, z) R 3 : z = a + b + c } dar. Wir wollen die freien Parameter a, b, c so bestimmen, dass E die Fäche F in einem Punkt (,, z = f(, )) berührt, d.h. Gemeinsamer Punkt z = f(, ) = a + b + c Gleiche Steigung in -Richtung Gleiche Steigung in -Richtung f f (, ) (, ) = f (, ) = a = f (, ) = b Durch Kombination der Bedingungen erhält man die Gleichung der Ebene E, der sogenannten Tangentialebene an die Fläche z = f(, ) im Punkt (,, z ): z z = f (, ) ( ) + f (, ) ( ) Da lineare Funktionen (also hier Ebenen) sehr einfach zu handhaben sind, werden komplizierte Funktionen oft in der Nähe eines für uns interessanten Punktes linearisiert (d.h. hier durch die Tangentialebene ersetzt). Dieses Vorgehen ist die direkte Verallgemeinerung der Situation für Funktionen in einer Veränderlichen. Hier hatten wir die komplizierte Funktion in der Nähe eines Punktes durch die Tangente ersetzt.

26 6 Aufgabe 3.1 Bestimmen Sie die Gleichungen der Tangentialebene an die Fläche z = f(, ) = in den Punkten (1, 1) und ( 1, )

27 Inhaltsverzeichnis 1 Einleitung 1.1 Beispiele aus der Ökonomie Methoden der graphischen Darstellung Das,,direkte Bild Das Schrägbild Niveaulinien Partielle Ableitungen und partielle Elastizitäten 15.1 Partielle Ableitungen Partielle Elastizitäten Höhere partielle Ableitungen Geometrische Deutung der partiellen Ableitungen Die Tangentialebene einer Fläche 5

Funktionen in zwei (und mehreren) Veränderlichen

Funktionen in zwei (und mehreren) Veränderlichen Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstsemester 8 Funktionen in zwei (und mehreren) Veränderlichen Inhalt: 1. Definition und Beispiele.

Mehr

3 *Flächenkurven und partielle Ableitungen* Flächenkurven Flächenkurven und partielle Ableitungen... 18

3 *Flächenkurven und partielle Ableitungen* Flächenkurven Flächenkurven und partielle Ableitungen... 18 Universität Basel 5 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Funktionen in zwei oder mehreren Veränderlichen I Inhaltsverzeichnis 1 Einleitung

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1 Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Produktionsfunktionen Inhaltsverzeichnis 1 Homogene Funktionen 2 1.1 Definition und

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen 7-E Partielle Ableitungen einer Funktion von n Variablen Bei einer Funktion y f x1, x,..., xn von n unabhängigen Variablen x1, x,..., x n lassen sich insgesamt n partielle Ableitungen

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1

Fehlerfortpflanzung & Extremwertbestimmung. Folie 1 Fehlerfortpflanzung & Etremwertbestimmung Folie 1 Fehlerfortpflanzung Einführung In vielen technischen Zusammenhängen sind die Werte bestimmter Größen nicht genau bekannt sondern mit einer Unsicherheit

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 11 Übung 1 1 / 21 2 / 21 Gleichgewicht in Wettbewerbsmärkten Aufgabe

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü17 FH-Studiengang Angewandte Elektronik, SS 018 Übungsaufgaben zu Mathematik 6. Differentialrechnung in mehreren Variablen 11. (a) Berechnen Sie die Gleichung der Ebene, die durch die Punkte (1,, 1),

Mehr

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion.

Wenn die einzelnen Variablen Elemente der reellen Zahlen sind, also reellen Funktion. FernUNI Hagen WS 00/0 Dierentialrechnung bei Fkt. mit mehreren Variablen In der Ökonomie sowie in vielen anderen Anwendungsbereichen der Mathematik ist eine beobachtete Größe häuig von mehreren Variablen

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Funktionen mit mehreren reellen Variablen 18.11.08 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 12 Übung 1 1 / 18 2 / 18 Zu Aufgaben 1 und 2 Worum geht es? Sie können

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

Serie 3: Partielle Ableitungen

Serie 3: Partielle Ableitungen D-ERDW, D-HEST, D-USYS Mathematik II FS Dr Ana Cannas Serie 3: Partielle Ableitungen Bemerkungen: Die Aufgaben der Serie 3 bilden den Fokus der Übungsgruppen vom / März Skizzieren Sie den Graphen sowie

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Funktionen mit mehreren Variablen. Voraussetzungen:

Funktionen mit mehreren Variablen. Voraussetzungen: Funktionen mit mehreren Variablen Voraussetzungen: Grundlegende Kenntnisse über Ableiten (Zu inden in dem Artikel Dierential und Integralrechnung au www.antigauss.de), sowie eine Vorstellung davon, was

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

2 Funktionen mehrerer Veränderlicher

2 Funktionen mehrerer Veränderlicher 2 Funktionen mehrerer Veränderlicher 4 2 Funktionen mehrerer Veränderlicher Wir betrachten nun Funktionen, die auf einer Teilmenge des R n definiert sind. Wir betrachten eine Funktion f, deren Definitionsbereich

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x)

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x) 3.2.4. Analyse von Funktionen Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. Begriffe: Die Funktion f hat in x 0 I eine stationäre Stelle,

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml FernUNI Hagen WS 00/0 Aufgabe 1.1 Berechnen Sie jeweils die 1. Ableitung der Funktion f: 1- a) f() = e 1+ e + b) f() = (+) Aufgabe 1. Von einer Funktion f ist bekannt: (1) f ist ein Polynom. Grades ()

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Das Gewinnmaximierungsproblem einer Firma kann in zwei Teile zerlegt werden: 1. Welche Inputkombination ist für einen gegebenen Output

Das Gewinnmaximierungsproblem einer Firma kann in zwei Teile zerlegt werden: 1. Welche Inputkombination ist für einen gegebenen Output Kapitel 7: Kosten Hauptidee: Aus der Produktionsfunktion einer Firma bestimmen wir ihre Kostenfunktion. Diese spielt eine zentrale Rolle für die Gewinnmaximierung der Firma. Das Gewinnmaximierungsproblem

Mehr

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P]

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P] Mathematik Name: Lösungen Nr. K Punkte: /3 Note: Schnitt: 7..3 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die

Mehr

Mikroökonomik 3. Vorlesungswoche

Mikroökonomik 3. Vorlesungswoche Mikroökonomik 3. Vorlesungswoche Tone Arnold Universität des Saarlandes 1. November 2007 Tone Arnold (Universität des Saarlandes) 3. Vorlesungswoche 1. November 2007 1 / 71 Nutzenmaximierung Optimale Entscheidung

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Papierfalten und Algebra

Papierfalten und Algebra Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Mathematik-Klausur vom 10. Februar 2003

Mathematik-Klausur vom 10. Februar 2003 Mathematik-Klausur vom 10. Februar 2003 Aufgabe 1 Für eine Hausrenovierung wurde ein Kredit von 25 000 bei einem Zinssatz von,5% (p.a.) aufgenommen. Die Laufzeit soll 30 Jahre betragen. a) Berechnen Sie

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II Teil 8: Satz von Rolle - Mittelwertsatz - Monotoniekriterium Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Mathematik 1 Probeprüfung 1

Mathematik 1 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 1 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (A) zum Modul Höhere Mathematik für Ingenieure 5. Juli 8, 8. - 1. Uhr (1.Termin) - Lösungen zum Theorieteil - Aufgabe 1: Die -periodische Funktion f : R R sei auf [, ) gegeben durch + 3,

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

1. Angebot und Nachfrage

1. Angebot und Nachfrage 1. Angebot und Nachfrage Georg Nöldeke WWZ, Universität Basel Intermediate Microeconomics, HS 12 1. Angebot und Nachfrage 1/39 2 / 39 1.1 Gleichgewicht in Wettbewerbsmärkten Wir betrachten einen Markt

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Wie reagiert Nachfrage nach dem Gut auf Preisänderungen?

Wie reagiert Nachfrage nach dem Gut auf Preisänderungen? 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 7.7 Warum Ökonomen Elastizitäten benutzen? 7.Oktober

Mehr

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

Funktionen mehrerer Variablen

Funktionen mehrerer Variablen Funktionen mehrerer Variablen Partielle Ableitungen 1-E Die Grundfragen Um Differentialrechnung im Mehrdimensionalen zu formulieren, müssen wir folgende Fragen beantworten: 1-1 Wie wird die Konstruktion

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Lösungen zur Serie 5

Lösungen zur Serie 5 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Monopol. Wir betrachten nun den Extremfall eines Monopols: Es gibt nur einen Anbieter/Verkäufer, den Monopolisten Wir nehmen des weiteren an, es gebe

Monopol. Wir betrachten nun den Extremfall eines Monopols: Es gibt nur einen Anbieter/Verkäufer, den Monopolisten Wir nehmen des weiteren an, es gebe Kapitel 10: Monopol Hauptidee: Ein Unternehmen mit Marktmacht nimmt den Marktpreis nicht als gegeben hin. Es maximiert seinen Gewinn indem es einen Output wählt, für welchen der Preis höher ist als die

Mehr