2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

Größe: px
Ab Seite anzeigen:

Download "2. Vorlesung. Die Theorie der schwarz-weissen Ketten."

Transkript

1 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen und weißen Steinchen spielen. Mit schwarzen und weißen Steinen köennen wir ganz neue Ketten bilden:,,,... Es entsteht damit etwas völlig Neues. Um das Neue zu sehen, führen wir den Begriff der Menge ein. Dann werde wir sehen, dass man mit schwarzen Ketten nur abzählbare, mit schwarz-weisse Ketten aber überabzählbar große Mengen bilden kann. 1. Mengenlehre der schwarzen Ketten. Ebenso wie die griechisch-klassische Mathematik die Lehre vom Geraden und Ungeraden als Basislehre hatte, so ist für die moderne Mathematik die Lehre vom abzählbar und überabzählbar Unendlichen fundamental. Man könnte es auch als die Mengenlehre der schwarzen und die Mengenlehre der schwarz-weissen Ketten bezeichnen. Wir beginnen mit der Mengenlehre der schwarzen Ketten. Die Länge einer Kette ist die Anzahl ihrer Steinchen. Es gibt genau eine schwarze Kette zu jeder Länge. Mit anderen Worten wir haben eine 1-1 Zuordnung Wir bilden jetzt die Mengen N := {,,,,,... } N := { 1, 2, 3, 4, 5,... }

2 2. Lineare Algebra (L2/L5) Wir schreiben x N genau dann wenn x eine Zahl aus N ist. Die einzelnen Ketten in der Menge N haben endliche Länge, aber wir behaupten, dass die Menge N selbst unendlich ist. Frage. Was heißt unendlich? Hierzu die folgende Beobachtung von Galilei ( ). Galilei hat die Beobachtung gemacht, dass man eine 1-1-Zuornung zwischen den Zahlen und ihren Quadraten herstellen kann x : x 2 : und somit eine 1-1-Zuordnung zwischen einer Menge und einer echten Teilmenge. Galilei hat daraus den weiteren Schluss gezogen, dass je zwei konzentrische Kreise die gleiche Zahl von Punkten (Atomen) haben müssen. In der Mengenlehre wird aus dem nicht-definierten Grundbegriff Zuordnung der definierte Begriff Abbildung zwischen Mengen : Definition. Seien A, B zwei Mengen (endlich oder nicht). Eine Abbildung zwischen A und B ist eine Zuordnung, die jedem Element von A genau ein Element von B zuordnet. Bezeichnung: f : A B. Definition. f ist injektiv (f(x) = f(y) impliziert x = y) f ist surjektiv zu jedem b B gibt es mindestens ein a A mit f(a) = b f ist bijektiv f ist injektiv und surjektiv Damit können wir jetzt den Satz formulieren und beweisen. Satz. Die Zuordnung x x 2 definiert eine Abbildung die injektiv, aber nicht surjektiv ist. f : N N, x x 2,

3 2 Mengen und Abbildungen 3 Beweis. 1. Behauptung. Die Zuordnung definiert eine Abbildung. Die Zuordnung x x 2 ordnet jeder Zahl x genau ein Quadrat zu, nämlich x 2. Also: die Zuordnung x x 2 definiert eine Abbildung. 2. Behauptung. f ist injektiv. Ein Vergleich von Quadraten zeigt, dass zwei Quadrate nur dann die gleich Anzahl von Steinchen haben, ihre Seiten gleichlang sind: Quadrate sind verschieden Sei x,y N mit f(x) = f(y) x 2 = y 2 x = y. Also: f ist injektiv. 3. Behauptung. f ist nicht surjektiv. 1 2 < 2 und 2 < 2 2 x 2 2, für alle x N. f(x) 2, für alle x N. Also: f ist nicht surjektiv. Definition. Eine Menge A heißt unendlich, wenn es eine injektive Abbildung f : A A gibt, die nicht surjektiv ist. Eine Menge heißt endlich, wenn sie nicht unendlich ist. Beispiel. { 1, 2, 3, 4 } ist endlich, N und N sind unendlich. Definition. Die Menge N ist die abzählbar unendliche Standard Menge. Definition. Eine Menge M heißt abzählbar unendlich, wenn es eine bijektive Abbildung f : M N gibt. Bemerkung. Wir haben eingangs gesehen, dass die Menge aller schwarzen Ketten abzählbar ist.

4 4. Lineare Algebra (L2/L5) Wir haben den Begriff Menge bisher recht naiv verwendet. Wir wollen jetzt den Umgang mit Mengen etwas stärker präzisieren. Definition. Eine Menge ist eine Zusammenfassung einer Ansammlung von wohlunterschiedenen Objekten (Elementen) zu einer Einheit. Die Objekte heißen Elemente der Menge. Schreibweise: a M. Bemerkung. Eine Menge N heißt Teilmenge einer Menge M, wenn x N x M. Bemerkung. Wichtig ist hier, dass Mengen selbst wieder Objekte sind, die zu neuen Einheiten zusammengefaßt werden können. Das Element Zeichen schafft eine Hierarchie in der Bildung dieser Mengen: Z.B. { 2,7,+, } = Menge, {1,2,1,3,1} = keine Menge, { 2, {2}, {2, {2}}} = Menge Weiter ist 2 {0,2,4,6,8,10}, 2 {1,3,5,7,9}, 2 {{2}, {2, {2}}} Bemerkung. Wir spielen jetzt mit schwarzen Steinchen auf einem neuen Niveau. Statt lediglich Ketten zu bilden, können wir jetzt Mengen von Mengen von Ketten usw. bilden. Das sieht im Augenblick vielleicht eher künstlich und gewollt aus, aber das täuscht. Wir werden in dieser Vorlesung sehen, dass im Gegenteil mit diesem Trick der Hierarchisierung eine Revolution in der Mathematik erreicht ist. Mengenbildungen. Seien A, B Mengen. Dann sind auch A B := { x x A oder x B } (Vereinigungsmenge) A B := { x x A und x B } (Durchschnittsmenge) P(A) := {B B A } (Potenzmenge) wieder Mengen. Satz. Jede Teilmenge von N ist entweder endlich oder abzählbar unendlich. Beweis. Man ordne die Zahlen aus N wie folgt: 1 < 2 < 3 < 4 <... Sei nun A N. Dann gibt es in dieser Ordnung ein 1., 2., 3. usw. Element aus A. Dann ist entweder A endlich oder die Zuordnung n n-tes Element aus A definiert eine injektive Abbildung f : N A.

5 2. Mengenlehre der schwarz-weissen Ketten. 2 Mengen und Abbildungen 5 Wir wollen jetzt mit schwarzen und weißen Steinchen spielen. Wir bilden also Ketten der Form,,,... Uns fällt sofort auf, dass es zu jeder Länge mehr als eine Kette gibt. Tatsächlich wächst die Anzahl dieser Ketten sehr schnell mit ihrer Länge. #Ketten = 2 = 2 1 = 4 = 2 2 = 8 = Tatsächlich ist das Wachstum exponentiell, d.h. explosionsartig: Satz. Es gibt 2 n schwarz-weisse Ketten der Länge n. Beweis. (durch Induktion) Induktions Anfang. Es gibt 2 Ketten der Länge 1. Induktions Annahme. Angenommen es gibt 2 n Ketten der Länge n. Induktions Schluss. Jede Kette der Länge n gibt Anlass zu zwei Ketten der Länge n + 1 denn man kann ja die Kette entweder mit einem schwarzen oder mit einem weissen Stein verlängern. Also gibt es insgesamt 2 2 n = 2 n+1 Ketten der Länge n + 1. Bemerkung. Wir bezeichnen R := Menge aller schwarz-weissen Ketten N := Menge aller schwarzen Kette Bezeichnen wir weiter R n := Menge aller schwarz-weissen Ketten der Länge n, N n := Menge aller schwarzen Ketten der Länge n dann gilt R := R 1 R 2... und N := N 1 N 2...

6 6. Lineare Algebra (L2/L5) Die Mengen N n wachsen polynomiell und die Mengen R n wachsen exponentiell. Da also Mengen von schwarz-weissen Ketten viel schneller wachsen als Mengen von schwarzen Ketten allein, könnte man die Vermutung haben, dass die Menge aller schwarz-weissen Ketten viel größer ist als die Menge aller schwarzen Ketten (in dem Sinne dass es keine bijektive Abbildung N R gibt). Sowohl R als auch N ist abzählbar unendliche Vereinigung von endlichen Mengen. Ist so etwas abzählbar? Sind unendliche Vereinigungen überhaupt statthaft? Satz. Die Menge aller endlichen schwarz-weissen Ketten ist abzählbar. Beweis. Es gibt verschiedene Möglichkeiten dies zu beweisen. Z.B. kann man jeder endlichen schwarz-weisse Kette z R eine Gödel Nummer g(z) N wie folgt zuordnen z = g(z) = = Behauptung. Die Zuordnung z g(z) ist eine Abbildung g : R N. Es gibt beliebig viele Primzahlen. Sind nämlich Primzahlen, dann ist p 1,p 2,...,p n p n+1 = p 1 p 2... p n + 1 eine Primzahl verschieden von allen Primzahlen p 1,...p n. Also ist jeder beliebig langen schwarz-weissen Kette wie oben genau eine Gödelzahl g(z) zugeordnet. Demnach ordnet die Zuordung z g(z) jeder Zeichenkette genau eine Zahl aus N zu. Die Zuordnung ist somit eine Abbildung. 2. Behauptung. Die Abbildung g : R N ist surjektiv. Sei n N. n = p m 1 1 pm p m n n, denn jede Zahl n hat mindestens eine Primzahlzerlegung. Sei z die schwarz-weisse Kette, die abwechselnd aus m 1 schwarzen, m 2 weissen, m 3 schwarzen usw. Steinen besteht. g(z) = p m 1 1 pm p m n n = n (nach Konstruktion) Also: g : R N ist surjektiv.

7 3. Behauptung. Die Abbildung R N ist injektive. Seien z 1,z 2 R zwei Zeichenketten mit 2 Mengen und Abbildungen 7 g(z 1 ) = g(z 2 ) Dann gilt für die entsprechenden Primzahlzerlegungen p m 1 1 pm p m u u = g(z 1 ) = g(z 2 ) = q n 1 1 qn qn v v, m i, n i N. Die Primzahlzerlegung ist aber eindeutig, d.h. u = v und nach Umsortierung p i = q i, für alle 1 i u. Also: die Zeichenketten z 1 und z 2 sind gleich. Bemerkung. Wir haben hier einige Tatsachen zu Primzahlzerlegungen benutzt, die wir uns in der nächsten Vorlesung noch genauer ansehen müssen. Hier ist noch eine weitere eigenartige Idee. Es gibt einen eigenartigen Zusammenhang zwischen endlich langen schwarz-weisse Ketten und Teilmengen von schwarzen Ketten. Beispiel. Das nächste Beispiel zeigt wie man der Teilmenge {3,6,7,9,10,11} genau eine schwarz-weisse Kette zuordnet. { 3, 6, 7, 9, 10, 11 } { } Wir haben also 1-1-Zuordnung von endlich langen schwarz-weisse Ketten und endlichen Teilmengen von N. Wir wissen bereits, dass die Menge der endlich langen schwarz-weisse Ketten abzählbar ist. Also folgt: Satz. Die Menge aller endlichen Teilmengen von N ist abzählbar. Auf der anderen Seite gilt: Satz. Die Menge P(N) aller Teilmengen von N ist nicht abzählbar. Bemerkung. Der Beweis nutzt die griechische Idee des indirekten Beweises in einer extremen Form aus.

8 8. Lineare Algebra (L2/L5) Beweis des Satzes. (durch Widerspruch) Wir sollen zeigen, dass es keine bijektive Abbildung N P(N) geben kann. Annahme. Es gibt eine surjektive Abbildung f : N P(N). Definiere M := {x N x f(x) } Dann ist M N, also M P(N). Da f surjektiv ist, gibt es ein z N mit f(z) = M 1. Fall. z M. z M = f(z) z f(z) z M (nach Definition von M). 2. Fall. z M. z M = f(z) z f(z) z M (nach Definition von M). Wir bekommen also einen Widerspruch. Damit ist die Annahme widerlegt und der Satz folgt. Literatur. K. Appell, J. Appell: Mengen-Zahlen-Zahlbereiche, Spektrum, Elsevier (2005)

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge Abbildungen Grundlagen der Mathematik Abbildungen Deinition : Abbildung, Deinitionsbereich, Zielbereich, Bildmenge Eine Abbildung : D Z ordnet jedem Element D eindeutig ein Z zu D heißt Deinitionsbereich

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Der Kalkül der Mengen 1 / 58

Der Kalkül der Mengen 1 / 58 Der Kalkül der Mengen 1 / 58 Präzise beschreiben und argumentieren: Aber wie? In welcher Sprache sollten wir versuchen, komplexe Sachverhalte vollständig und eindeutig zu beschreiben? Natürliche Sprachen

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

FÜNFTER VORTRAG ÜBER TRANSEINITE ZAHLEN

FÜNFTER VORTRAG ÜBER TRANSEINITE ZAHLEN FÜNFTER VORTRAG ÜBER TRANSEINITE ZAHLEN Meine Herren! Ich will heute über den Begriff der transfiniten Kardinalzahl vor Ihnen sprechen; und zwar will ich zunächst von einem scheinbaren Widerspruch reden,

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionen Allgemeines Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Datei Nr. 800 Stand: 5. Juli 0

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen 1) Rekursion und Induktion: Rechnen mit natürlichen Zahlen Aufbauend auf: "Anwendungen: Sätze, Beweise, Algorithmen und Programme", "Fasern" Aufgaben: 9 > restart; Axiomatik der natürlichen Zahlen Wir

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Naive Mengenlehre. ABER: Was ist eine Menge?

Naive Mengenlehre. ABER: Was ist eine Menge? Naive Mengenlehre Im Wörterbuch kann man unter dem Begriff Menge etwa die folgenden Bestimmungen finden : Ansammlung, Konglomerat, Haufen, Klasse, Quantität, Bündel,... usf. Die Mengenlehre ist der (gegenwärtig)

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematik III. Topologische Räume

Mathematik III. Topologische Räume Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 63 Wir beschäftigen uns weiter mit der Frage, welchen Teilmengen des R n man ein sinnvolles Volumen zuordnen kann. Es wird sich herausstellen,

Mehr

A = 2 a = 2 Flächeninhalt des Quadrates. Was verbirgt sich hinter 2? Wie sieht die Zahl aus? Wie kann man sie hinschreiben? Kann man sie hinschreiben?

A = 2 a = 2 Flächeninhalt des Quadrates. Was verbirgt sich hinter 2? Wie sieht die Zahl aus? Wie kann man sie hinschreiben? Kann man sie hinschreiben? C:\Eigene Dateien\Unterricht\Mathe 9M 000-001\Wurzel \Wurzel - irrationale Zahl.doc Seite 1 von 1 Die Fläche eines uadratischen Sandsiellatzes soll so verdoelt werden, dass wieder ein Quadrat entsteht.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek hulek@math.uni-hannover.de c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : hulek@math.uni-hannover.de

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Algebraische Kurven - Vorlesung 5. Homogene Komponenten

Algebraische Kurven - Vorlesung 5. Homogene Komponenten Algebraische Kurven - Vorlesung 5 Homogene Komponenten Definition 1. Sei S ein kommutativer Ring und R = S[X 1,...,X n ] der Polynomring über R in n Variablen. Dann heißt zu einem Monom G = X ν = X ν 1

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE. Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5. Jahrhundert v. Chr. entdeckte ein Pythagoreer eine Konsequenz der

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr