Klausur zur Spieltheorie Musterlösung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Spieltheorie Musterlösung"

Transkript

1 Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten Strategien). A P A 0, 0 3, 1 P 1, 3 2, 2 Lösung Die Nash GGe in reinen Strategien sind (A, P ) und (P, A). Das GG in gemischten Strategien berechnet sich wie folgt. Spieler 1 muss indifferent sein zwischen seinen beiden reinen Strategien, gegeben die gemischte Strategie (q, 1 q) des Spielers 2. Für die Auszahlungen des Spielers 1 muss daher gelten: 0 q + 3(1 q) = q + 2(1 q). Auflösen nach q ergibt q = 0.5. Die gemischte Strategie des Spielers 2 ist also (0.5, 0.5). Da das Spiel symmetrisch ist, ist die gemischte Strategie des Spielers 1 ebenfalls (0.5, 0.5). Das GG in gemischten Strategien ist also ((0.5, 0.5), (0.5, 0.5)). 1

2 Aufgabe 2 Eine Firma F überlegt sich, in einen Markt einzutreten, in dem sich ein Monopolist M befindet. Tritt die Firma ein, so kann der Monopolist entweder kämpfen oder den Eintritt zulassen. Im Falle des Kampfes sind die Auszahlungen für beide Firmen 3 und bei Zulassen des Eintritts sind die Auszahlungen für beide gleich 2. Tritt die Firma F nicht ein, so ist ihre Auszahlung gleich null, und die des Monopolisten ist gleich 5. a) Stellen Sie das Spiel in extensiver Form dar. F M E N K Z ( 3, 3) (2, 2) (0, 5) b) Bestimmen Sie alle Nash Gleichgewichte. Lösung Die Nash GGe sind (N, K) und (E, Z). c) Welches der Gleichgewichte ist teilspiel perfekt? Lösung Das GG (N, K) enthält eine unglaubwürdige Drohung. Das teilspiel perfekte GG ist (E, Z). 2

3 Aufgabe 3 Gegeben sei das folgende Nullsummen Spiel: L R T 5, 5 2, 2 B 6, 6 1, 1 a) Bestimmen Sie das Nash Gleichgewicht des Spiels. Lösung Das Nash GG ist (T, R). b) Angenommen, obiges Spiel wird 20 mal wiederholt. Bestimmen Sie das Nash Gleichgewicht des wiederholten Spiels. Lösung Rückwärtige Induktion ergibt, dass im GG in jeder Runde (T, R) gespielt wird. 3

4 Aufgabe 4 Was versteht man unter einer dominierten Strategie? Erläutern Sie dieses Konzept anhand eines einfachen Beispiels. Lösung Eine Strategie s dominiert eine Strategie s eines Spielers, wenn die Auszahlung des Spielers bei s immer mindestens genauso hoch ist wie seine Auszahlung bei s, unabhängig von den Strategien seiner Gegner. Beispiel Gefangenendilemma: Die Strategie A dominiert die Strategie B (für beide Spieler). A B A 2, 2 6, 1 B 1, 6 5, 5 4

5 Hauptfragen Aufgabe 5 Peter und Laura wollen vier Flaschen Bier unter sich aufteilen. Die Verhandlung wird durch folgendes Zwei Stufen Spiel dargestellt: In der ersten Stufe verlangt Laura einen Anteil für sich, der zwischen null und vier Flaschen liegen kann, d.h. eine Zahl aus der Menge {0, 1, 2, 3, 4}. In der zweiten Stufe kann Peter zustimmen oder ablehnen. Die Auszahlungen sind wie folgt: Stimmt Peter dem Vorschlag von Laura zu, so wird das Bier entsprechend aufgeteilt. Lehnt er ab, so erhält jeder zwei Flaschen Bier. a) Stellen Sie das Spiel in Extensivform dar. L J N J N J N J N J N

6 b) Bestimmen (bzw. beschreiben) Sie alle teilspiel perfekten Nash Gleichgewichte des Spiels. Lösung Bezeichne (s P (0), s P (1),... s P (4)) Peters Strategie in Abhängigkeit von Lauras Vorschlag. Rückwärtige Induktion ergibt: Peter spielt entweder die Strategie (JJJNN) oder (JJNNN). Laura ist dann indifferent zwischen den Vorschlägen 2, 3, und 4. Es gibt also 6 teilspiel perfekte Nash GGe: Laura spielt 2, 3, oder 4, und Peter spielt (JJJNN) oder (JJNNN). In jedem der GGe sind die Auszahlungen (2, 2). c) Gibt es ein Nash Gleichgewicht, in dem einer der Spieler mehr als zwei Flaschen Bier bekommt? Antwort Nein. Verlangt Laura eine Zahl grösser als 2, so wird Peter ablehnen und beide erhalten 2. Peter kann nicht mehr als 2 erhalten, da Laura sich eine Auszahlung von 2 in jedem Fall sichern kann. 6

7 Aufgabe 6 In einem Markt können die Bedingungen entweder gut oder schlecht sein. Die Natur zieht diese jeweils mit der Wahrscheinlichkeit 0, 5. Zwei Firmen überlegen, ob sie in den Markt eintreten sollen. Das Spiel läuft wie folgt ab. Firma 1 beobachtet den Zug der Natur (gut oder schlecht), Firma 2 jedoch nicht. Firma 1 entscheidet zuerst, ob sie eintritt (E 1 ) oder nicht (N 1 ). Firma 2 beobachtet den Zug von Firma 1 und entscheidet dann, ob sie ihrerseits eintritt (E 2 ) oder nicht (N 2 ). Die Gewinne sind wie folgt: Eine Firma, die nicht eintritt, erhält den Gewinn null. Bei guter Marktlage gilt: Treten beide Firmen ein, so sind die Gewinne 1 pro Firma. Tritt nur eine Firma ein, so ist ihr Gewinn 3. Bei schlechter Marktlage gilt: Treten beide Firmen ein, so sind die Gewinne 2 pro Firma. Tritt nur eine Firma ein, so ist ihr Gewinn 1. 7

8 a) Stellen Sie das Spiel entweder in Normalform oder in Extensivform dar (Sie können wählen, welche Form Ihnen lieber ist). Normalform Die Natur zieht gut: E 2 N 2 E 1 1, 1 3, 0 N 1 0, 3 0, 0 Die Natur zieht schlecht: E 2 N 2 E 1 2, 2 1, 0 N 1 0, 1 0, 0 b) Bestimmen Sie die beste Antwort der Firma 1 auf den Zug der Natur. D.h., was wird Firma 1 tun, wenn die Bedingungen gut/schlecht sind? Lösung s 1 (gut) = E 1, s 1 (schlecht) = N 1. c) Angenommen, Firma 2 bestimmt ihre Vermutungen nach dem Satz von Bayes, wenn immer dies möglich ist. Gegeben die Strategie der Firma 1 aus Aufgabenteil a), welche Vermutungen über den Zug der Natur (gut oder schlecht) sollte Firma 2 haben, wenn sie beobachtet, dass Firma 1 in den Markt eingetreten bzw. nicht eingetreten ist? Lösung µ(gut E 1 ) = µ(schlecht N 1 ) = 1. 8

9 d) Gegeben diese Vermutungen der Firma 2, bestimmen Sie die beste Antwort der Firma 2 auf jede mögliche Aktion (E 1 bzw. N 1 ) der Firma 1. Lösung s 2 (E 1 ) = E 2, s 2 (N 1 ) = N 2. e) Wie lautet (zusammenfassend) das perfekte Bayesianische Gleichgewicht des Spiels? Lösung s 1 (gut) = E 1, s 1 (schlecht) = N 1, µ(gut E 1 ) = µ(schlecht N 1 ) = 1, s 2 (E 1 ) = E 2, s 2 (N 1 ) = N 2. 9

10 Aufgabe 7 Siehe Übungsblatt 5, Aufg. 1c). Betrachten Sie das folgende Spiel in Normalform. A B A 2, 2 4, 1. B 1, 4 3, 3 a) Bestimmen Sie das Nash Gleichgewicht des Stufenspiels. Lösung Das Nash GG ist (A, A). b) Angenommen, das Spiel wird unendlich oft wiederholt. Zeigen Sie, dass ein Paar von Trigger Strategien ein Nash Gleichgewicht des wiederholten Spiels darstellt, wenn der Diskontfaktor hinreichend hoch ist. Lösung Es ist zu prüfen, ob einer der Spieler sich durch Abweichen in einer Periode t besser stellen kann, gegeben der andere hält sich an die Trigger Strategie. Angenommen Spieler 2 hält sich an die Trigger Strategie. Die Auszahlung des Spielers 1 bei der Trigger Stragegie ist V T = 3 1 δ. Die Auszahlung des Spielers 1 bei Abweichen (zu A) in Periode t ist V A = 4 2δ 1 δ. Abweichen lohnt nicht, falls V T V A, also falls 3 4 2δ δ

11 Zwei Trigger Strategien bilden demnach ein GG, wenn der Diskontfaktor mindestens 0.5 beträgt. c) Das Spiel wird wie folgt modifiziert: A B C A 2, 2 4, 1 2, 2 B 1, 4 3, 3 2, 2 C 2, 2 2, 2 6, 6 Dieses Spiel wird zweimal hintereinander gespielt. Entwerfen Sie eine Strategiekombination, die ein Nash Gleichgewicht des Spiels darstellt, und bei der in der ersten Runde (B, B) gespielt wird. Lösung Die Strategie lautet Spiele B in der ersten Runde. In der zweiten Runde spiele A, falls in der ersten Runde (B, B) gespielt wurde, und spiele C sonst. Die Auszahlung eines Spielers bei dieser Strategiekombination ist = 5. Weicht z.b. Spieler 1 ab und spielt in beiden Runden A, während sich Spieler 2 an die Strategie hält, dann ist die Auszahlung des Spielers = 2 < 5. Abweichen lohnt sich also nicht. Spielen beide Spieler die angegebene Strategie, so ist dies ein Nash GG, bei dem in der ersten Runde (B, B) gespielt wird. 11.

Spieltheorie Übungsblatt 5

Spieltheorie Übungsblatt 5 Spieltheorie Übungsblatt 5 Tone Arnold Universität des Saarlandes 16. Juni 2008 Tone Arnold (Universität des Saarlandes) Musterlösung Übungsblatt 5 16. Juni 2008 1 / 19 Aufgabe 1 (a) Betrachten Sie das

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2006 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für die Beantwortung

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008 Spieltheorie Teil 6 Tone Arnold Universität des Saarlandes 25. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 6 25. März 2008 1 / 104 Wiederholte Spiele In vielen Fällen finden Interaktionen

Mehr

Kapitel 7: Multistufenspiele und Wiederholte Spiele. Literatur: Tadelis Chapters 9, 10 und 11

Kapitel 7: Multistufenspiele und Wiederholte Spiele. Literatur: Tadelis Chapters 9, 10 und 11 Kapitel 7: Multistufenspiele und Wiederholte Spiele Literatur: Tadelis Chapters 9, 10 und 11 Multistufenspiele Wenn mehrere Spiele in Normalform mit denselben Spielern hintereinander gespielt werden sprechen

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Übungen zu Kapitel 4: Einführung in die Spieltheorie

Übungen zu Kapitel 4: Einführung in die Spieltheorie Universität Erfurt Lehrstuhl für Mikroökonomie Prof Dr Bettina Rockenbach Übungen zu Kapitel 4: Einführung in die Spieltheorie Aufgabe 41 Spieler B Spieler A B1 B2 A1 5, 6 7, 2 A2 4, 5 9, 1 Im obigen Spiel

Mehr

Periode nicht (R, R) spielen. (40 Punkte)... (26 Punkte) (23 Punkte) 16a: (R; L) 16b: (L; R) 16d: (R; L, L) 16e: (L; R, L)

Periode nicht (R, R) spielen. (40 Punkte)... (26 Punkte) (23 Punkte) 16a: (R; L) 16b: (L; R) 16d: (R; L, L) 16e: (L; R, L) Version Aufgabe: In einem Markt sei die inverse Nachfragefunktion P = 60 Q. Die Kostenfunktion eines Monopolisten in diesem Markt ist C = 4Q. Bei welcher der folgenden Mengen erziehlt der Monopolist den

Mehr

Mikroökonomik II/Makroökonomik II

Mikroökonomik II/Makroökonomik II Mikroökonomik II/Makroökonomik II Prof. Dr. Maik Heinemann Universität Lüneburg Institut für Volkswirtschaftslehre Wirtschaftstheorie und Makroökonomik heinemann@uni-lueneburg.de Wintersemester 2007/2008

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Mikroökonomik 11. Vorlesungswoche

Mikroökonomik 11. Vorlesungswoche Mikroökonomik 11. Vorlesungswoche Tone Arnold Universität des Saarlandes 6. Januar 2008 Tone Arnold (Universität des Saarlandes) Mikroökonomik 11. Vorlesungswoche 6. Januar 2008 1 / 67 Oligopoltheorie

Mehr

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info)

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) 1 KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) In Kap. 9 gesehen: Manche Nash-GGe in extensiven Spielen erscheinen unplausibel: wenn sie unglaubwürdige Drohungen...... bzw. zeitinkonsistente

Mehr

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht Dynamische Spiele mit unvollständiger Information Perfektes Bayesianisches Gleichgewicht Spieltheorie University of Bonn Dezsö Szalay Dieser Teil basiert auf Kapitel 4 "Gibbons (1992), A primer in Game

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren.

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Spieltheorie Winter 2013/14 Professor Dezsö Szalay 3. Wiederholte Spiele Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Eine Klasse von Spielen, die man jedoch relativ gut versteht

Mehr

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3 Übersicht Teil : Spiele mit simultanen Spielzügen und reinen : Diskrete Sequentielle Spiele (Kapitel 3) Teil Diskrete () Reine Simultane Spiele Stetige (Kapitel 5) Gemischte (Kapitle 7 & 8) Kapitel 6 Übersicht

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

Industrieökonomik II Wintersemester 2007/08 1. Industrieökonomik II. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008

Industrieökonomik II Wintersemester 2007/08 1. Industrieökonomik II. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008 Industrieökonomik II Wintersemester 2007/08 1 Industrieökonomik II Prof. Dr. Ulrich Schwalbe Wintersemester 2007/ 2008 Industrieökonomik II Wintersemester 2007/08 2 Gliederung 1. Wettbewerbsbeschränkungen

Mehr

Lösungshinweise zu den zusätzlichen Übungsaufgaben

Lösungshinweise zu den zusätzlichen Übungsaufgaben Lösungshinweise zu den zusätzlichen Übungsaufgaben Aufgabe Z.1 Als Gleichgewicht ergibt sich, mit Auszahlungsvektor 5, 5. Aufgabe Z. Spieler 1: Zentralbank mit reinen und diskreten Strategien 0 und 4.

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Spieltheorie und Anwendungen 1. Spiele mit simultanen und sequentiellen Zügen Informationsmengen Normalform vs.

Mehr

Das Gefangenendilemma (Prisoner s Dilemma)

Das Gefangenendilemma (Prisoner s Dilemma) SPIELTHEORIE Das Gefangenendilemma (Prisoner s Dilemma) 2 Zwei Herren (Braun und Blau) haben eine Bank überfallen. Der Sheriff hat sie gefasst, kann aber nur ein minder schweres Verbrechen nachweisen (unerlaubter

Mehr

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen.

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen. Zusatzaufgaben In diesem Dokument werden wir Ihnen einige zusätzliche Übungsaufgaben zur Verfügung stellen. Es ist hiermit noch nicht abgeschlossen, sondern soll bis zum Ende des Semesters wachsen. Falls

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

6. Dynamische Spiele mit unvollständiger Information

6. Dynamische Spiele mit unvollständiger Information 6. Dynamische Spiele mit unvollständiger Information Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 6. Dynamische Spiele mit unvollständiger Information

Mehr

Übung Kapitel

Übung Kapitel Einführung in die Spieltheorie und Experimental Economics Übung Kapitel 4 28.09.205 Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen Aufgabe a) Dominante Strategie 2 l r o 2, 4, 0 u 6, 5 4,

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information Spieltheorie Winter 2013/14 Professor Dezsö Szalay 2. Dynamische Spiele mit vollständiger Information In Teil I haben wir Spiele betrachtet, in denen die Spieler gleichzeitig (oder zumindest in Unkenntnis

Mehr

Wörterbuch für Fremdsprachige Einfacher Taschenrechner

Wörterbuch für Fremdsprachige Einfacher Taschenrechner WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Peter-Merian Weg 6 Postfach CH-4002 Basel Veranstaltung: VWL 2a: Einführung in die Spieltheorie Wiederholungsprüfung Version D (Die Inhalt

Mehr

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen AVWL I (Mikro) 5-30 Prof. Dr. K. Schmidt 5.7 Einfuhrung in die Spieltheorie Ein \Spiel" besteht aus: einer Menge von Spielern einer Menge von moglichen Strategien fur jeden Spieler, einer Auszahlungsfunktion,

Mehr

6. Wiederholte Spiele

6. Wiederholte Spiele 6. Wiederholte Spiele 6.1. Grundlegende Konzepte Es gibt zwei wesentliche Gründe, wiederholte Spiele zu betrachten. Zum einen finden die ökonomischen und sozialen Interaktionen, die wir als Spiele modellieren,

Mehr

Klausur Mikroökonomik II. Wichtige Hinweise

Klausur Mikroökonomik II. Wichtige Hinweise Prof. Dr. Anke Gerber Klausur Mikroökonomik II 1. Termin Wintersemester 2013/14 07.02.2014 Wichtige Hinweise 1. Lösen Sie nicht die Heftung der ausgeteilten Klausur. 2. Verwenden Sie nur das ausgeteilte

Mehr

IÖ Übungsaufgaben: Lösungen

IÖ Übungsaufgaben: Lösungen IÖ Übungsaufgaben: Lösungen Tone Arnold Universität des Saarlandes 21. Juli 2008 Tone Arnold (Universität des Saarlandes) IÖ Übungsaufgaben: Lösungen 21. Juli 2008 1 / 111 Aufgabe 1 Betrachten Sie einen

Mehr

3.9 Wiederholte Spiele

3.9 Wiederholte Spiele 1 3.9 Wiederholte Spiele Ein zentrales Defizit der bisherigen Theorie besteht darin, daß die wiederholte Interaktion in immer demselben Wettbewerbsumfeld nicht thematisiert wurde. Es ist schon sehr früh

Mehr

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg.

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg. Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre Spieltheorie Prof. Dr. Gernot Sieg Übungsaufgaben Wintersemester 2002/2003 III Inhaltsverzeichnis 1 Statische

Mehr

10. Vorlesung. 12. Dezember 2006 Guido Schäfer

10. Vorlesung. 12. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Literatur: Tadelis Chapter 7 und 8 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 6.: Nash Gleichgewicht und

Mehr

Lösungen Aufgabenblatt 5 zur Spieltheorie SS 2017

Lösungen Aufgabenblatt 5 zur Spieltheorie SS 2017 Lösungen Aufgabenblatt 5 zur Spieltheorie SS 017 Aufgabe 5.1: Bestimmen Sie sämtliche Nash-Gleichgewichte in reinen und gemischten Strategien der Spiele: Spiel 1 x y a, 1 1, 1 b 0, 1 3, 5 Spiel 1: Spiel

Mehr

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien

Probleme bei reinen Strategien. Nash Gleichgewichte in gemischten Strategien Kopf 1, 1 1, 1 Zahl 1, 1 1, 1. Gemischte Strategien Probleme bei reinen Strategien Bisher hatten wir angenommen, daß sich jeder Spieler b auf genau eine Strategie S b S b festlegt. Das ist nicht immer plausibel. Nash Gleichgewichte in gemischten Strategien

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen. Rückwärtsinduktion und Teilspielperfektheit. 3.2 Wiederholte Spiele und kooperatives Verhalten

Mehrstufige Spiele mit beobachtbaren Handlungen. Rückwärtsinduktion und Teilspielperfektheit. 3.2 Wiederholte Spiele und kooperatives Verhalten . Einführung: Idee, Beispiele, formale Darstellung. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information Mehrstufige

Mehr

Informationsökonomik

Informationsökonomik Informationsökonomik Tone Arnold Universität des Saarlandes 8. Januar 2008 Tone Arnold (Universität des Saarlandes) Informationsökonomik 8. Januar 2008 1 / 59 Signalisieren privater Information Der Wert

Mehr

Spieltheorie, A. Diekmann Musterlösungen

Spieltheorie, A. Diekmann Musterlösungen Spieltheorie, A. iekmann Musterlösungen Übungsblatt 1 Aufgabe 1 c) Geben Sie Pareto-optimale Strategienprofile an. Lösung: (Steal, Split), (Split, Split), (Split, Steal) d) Geben Sie das oder die Nash-Gleichgewichte

Mehr

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum.

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Fassung vom 1. Dezember Weitere Materialien sind erhältlich unter: http://www.rub.de/spieltheorie

Mehr

Darstellung von Spielen: Extensivform versus Normalform

Darstellung von Spielen: Extensivform versus Normalform Spieltheorie Sommersemester 2007 1 Darstellung von Spielen: Extensivform versus Normalform Wir haben zwei Arten kennen gelernt, ein Spiel zu beschreiben: die Normalform, oder auch strategische Form und

Mehr

K nimmt das Angebot an oder lehnt es ab: ja oder nein. Nimmt K in t an, erzielen V und K die Nutzen:

K nimmt das Angebot an oder lehnt es ab: ja oder nein. Nimmt K in t an, erzielen V und K die Nutzen: 1 Rubinsteins Verhandlungsspiel mit alternierenden Angeboten Spieler: Käufer K, Verkäufer V In Perioden t = 0, 2, 4,...: V macht ein Angebot p V,t [0, 1] K nimmt das Angebot an oder lehnt es ab: ja oder

Mehr

Perfekte und vollständige Information

Perfekte und vollständige Information Dynamische Spiele und unvollständige Information Mehrstufige Spiele mit beobachtbaren Handlungen: Rückwärtsinduktion und Teilspielperfektheit Wiederholte Spiele und kooperatives Verhalten Unvollständige

Mehr

4. Wiederholte Spiele

4. Wiederholte Spiele 4. Wiederholte Spiele Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 4. Wiederholte Spiele Spieltheorie, Wintersemester 2014/15 1 / 43 Literaturhinweise

Mehr

4. Wiederholte Spiele

4. Wiederholte Spiele 4. Wiederholte Spiele Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 4. Wiederholte Spiele Spieltheorie, Wintersemester 2014/15 1 / 43 Literaturhinweise

Mehr

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Spieltheorie Sommersemester 2007 1 3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Beispiel (Sequentieller Geschlechterkampf): Betrachten wir eine abgewandelte Geschichte des Spiels

Mehr

Industrieökonomik Übungsblatt 2: Lösungen

Industrieökonomik Übungsblatt 2: Lösungen Industrieökonomik Übungsblatt 2: Lösungen Tone Arnold Universität des Saarlandes 4. Juni 2008 Tone Arnold (Universität des Saarlandes) Industrieökonomik Übungsblatt 2 4. Juni 2008 1 / 28 Aufgabe 1 Betrachten

Mehr

Genauer gesagt handelt es sich zum einen um Spiele mit einseitiger unvollständiger Information.

Genauer gesagt handelt es sich zum einen um Spiele mit einseitiger unvollständiger Information. Spieltheorie Sommersemester 2007 1 Signalspiele Wir betrachten eine spezielle Klasse von Spielen mit unvollständiger Information, die sogenannten Signalspiele, für die es in der Ökonomik zahlreiche Anwendngen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6 Übersicht : Wiederholte Spiele Einleitung Dilemmas der realen Welt Endlich wiederholte Spiele Unendlich wiederholte Spiele Auswege aus dem Gefangenendilemma Evidenz durch Experimente 1 Übersicht 2 Einleitung

Mehr

9.4Teilspiel-perfekteGleichgewichte

9.4Teilspiel-perfekteGleichgewichte 1 9.4Teilspiel-perfekteGleichgewichte In diesem Abschnitt werden wir, von einer Variation der Auszahlungsmatrix des vorangegangenen Abschnitts ausgehend, einige weitere Kritikpunkte an dem Cournot- Modellaufgreifen.DamitwerdenwirdannquasiautomatischzudemSelten'schenKonzept

Mehr

Grundlagen und Nash Gleichgewichte in reinen Strategien

Grundlagen und Nash Gleichgewichte in reinen Strategien Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von

Mehr

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen 1 Kap 13: Wiederholte Spiele In vielen Situation interagieren Spieler wiederholt: Konkurrenz auf Märkten oder in Auktionen Interaktion innerhalb von Organisationen und Gruppen (Firmen, Verwaltungen, Dorfgemeinschaften,

Mehr

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein mark.kirstein@tu-dresden.de Dresden,

Mehr

Kleines Lexikon der Begriffe*

Kleines Lexikon der Begriffe* Kleines Lexikon der Begriffe* Auszahlungsfunktion (payoff function) Eine Funktion, die jedem Strategienprofil einen Auszahlungsvektor zuweist. Der Auszahlungsvektor enthält für jeden Spieler einen Wert

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Übung zur Vorlesung Anwendungsorientierte Spieltheorie und Verhaltensorientierte Mikroökonomik

Mehr

3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht

3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht 3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht Von der spieltheoretischen Situation her gesehen war das Dixit-Modell von den vorangegangenen Modellen insoweit unterschiedlich, als hier eine

Mehr

Spieltheorie - Wiederholte Spiele

Spieltheorie - Wiederholte Spiele Spieltheorie - Wiederholte Spiele Janina Heetjans 12.06.2012 1 Inhaltsverzeichnis 8 Wiederholte Spiele 3 8.1 Einführung und Motivation................................. 3 8.2 Unendlich oft wiederholte Spiele:

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Extensive Spiele mit perfekter Information

Extensive Spiele mit perfekter Information Seminarvortrag Extensive Spiele mit perfekter Information Michael Fleermann 05.06.2012 1 Einführung und Definition Ein extensives Spiel ist eine explizite Beschreibung der sequenziellen Struktur eines

Mehr

Vorlesung Spieltheorie, A. Diekmann. Übungen 1-3

Vorlesung Spieltheorie, A. Diekmann. Übungen 1-3 Vorlesung Spieltheorie, A. Diekmann Übungen 1-3 Abgabetermin bis: Freitag, 15. April 2016 Jedes einzelne Übungsblatt enthält 2 bis 3 Aufgaben. Jede Aufgabe gibt bei korrekter Lösung einen Punkt. Bei der

Mehr

Grundlagen der politischen Spieltheorie

Grundlagen der politischen Spieltheorie Kursplan für BA-Vertiefungsseminar Grundlagen der politischen Spieltheorie Universität Konstanz, Sommersemester 2014 Seminarleiter: Michael Becher, Ph.D. Zimmer: D 329 (E208) Email: michael.becher@uni-konstanz.de

Mehr

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien)

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen können beim Auffinden von Nash Gleichgewichten helfen Ein durch Dominanzüberlegungen ermitteltes Gleichgewicht ist

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 19.09.2012 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

Mikroökonomik B (Bachelor) Prüfung vom

Mikroökonomik B (Bachelor) Prüfung vom Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 28.07.2011 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

Man kann das Dominanzkonzept leicht abschwächen... um schärfere Prognosen zu bekommen. Man kann unterstellen, dass die Spieler nicht nur

Man kann das Dominanzkonzept leicht abschwächen... um schärfere Prognosen zu bekommen. Man kann unterstellen, dass die Spieler nicht nur 1 Schwache Dominanz Man kann das Dominanzkonzept leicht abschwächen...... um schärfere Prognosen zu bekommen. Man kann unterstellen, dass die Spieler nicht nur... keine strikt dominierten Strategien spielen......

Mehr

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08 2. Grundzüge der Mikroökonomik 2.10 Einführung in die Spieltheorie 1 Spieltheorie befasst sich mit strategischen Entscheidungssituationen, in denen die Ergebnisse von den Entscheidungen mehrerer Entscheidungsträger

Mehr

Lösungen Aufgabenblatt 3 zur Spieltheorie SS 2017

Lösungen Aufgabenblatt 3 zur Spieltheorie SS 2017 Lösungen Aufgabenblatt 3 zur Spieltheorie SS 07 Aufgabe 3.: Zwei Länder nutzen ein Gewässer für den Fischfang. Wir bezeichnen mit x und y die Fangmenge (pro Z.E., z.b. einem Jahr) von Land bzw. Land. Land

Mehr

Teilspielperfektes Gleichgewicht

Teilspielperfektes Gleichgewicht 35 15Juli06 Teilspielperfektes Gleichgewicht (subgame perfect equilbrium) Ermittlung i.a. durch Rückwärtsinduktion möglich. DN, Prinzip 1: Looking forward, reason back Strengeres Konzept als das Nash-GG:

Mehr

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Stackelberg-Modelle In den Cournot- bzw. Bertrand-Modellen agieren die Firmen gleichzeitig. Diese Annahme ist nicht immer gerechtfertigt.

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1 Seite 1 Musterlösung zur Einsendearbeit zum Kurs 4110 Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1 Die folgende Lösungsskizze soll Ihnen einen Anhaltspunkt geben,

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Gegeben seien die Ebene E : 4x + x + 8 =, der Punkt P = ( und die Gerade H : x(λ = (4,, + λ(,,, λ R. (a Bestimmen Sie eine Gerade durch den Punkt P, die senkrecht

Mehr

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht . Einführung: Idee, Beispiele, formale Darstellung 2. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information

Mehr

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener

Mehr

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 Theorie des Konsumentenverhaltens Aufgabe 1 Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 ) x 1 + x

Mehr

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Kapitel 4 Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel

Mehr

5 Wiederholte Spiele. 5.1 Einleitung. Literaturhinweise zu Kapitel 5:

5 Wiederholte Spiele. 5.1 Einleitung. Literaturhinweise zu Kapitel 5: Spieltheorie (Winter 2009/10) 5-1 Prof. Dr. Ana B. Ania 5 Wiederholte Spiele Literaturhinweise zu Kapitel 5: Osborne (2004), Kapitel 14 Gibbons (1992), Kapitel 2 Fudenberg und Tirole (1991), Kapitel 5

Mehr

Kapitel 14: Wiederholte Spiele. Beispiel: Zweimal gespieltes GD Basisspiel: (C = Cooperate, D = Defect) GD C D C 2, 2 0, 3

Kapitel 14: Wiederholte Spiele. Beispiel: Zweimal gespieltes GD Basisspiel: (C = Cooperate, D = Defect) GD C D C 2, 2 0, 3 Kapitel 14: Wiederholte Spiele In vielen Situationen interagieren Spieler wiederholt Konkurrenz auf Märkten oder in Auktionen Soziale Interaktionen innerhalb von Gruppen oder Organisationen (z.b. orf,

Mehr

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig?

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Ringvorlesung Technische Mathematik 10. November 2009 Inhaltsverzeichnis Das Gefangenendilemma 1 Das Gefangenendilemma 2 Situationsanalyse

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Mikroökonomik B 4.3 Wiederholte Spiele

Mikroökonomik B 4.3 Wiederholte Spiele Mikroökonomik B 4.3 Wiederholte Spiele Dennis L. Gärtner 6. Juli 1 / 41 Übersicht Annahmen: Dynamisches Spiel: Spieler treffen Entscheidungen sequentiell. Vollständige Information: Präferenzen der Spieler

Mehr

Mikroökonomik B (Bachelor) Probeklausur

Mikroökonomik B (Bachelor) Probeklausur Mikroökonomik B (Bachelor) Probeklausur Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen Sie sich Ihre Zeit sorgfältig ein! Der

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

67. Aufgabe. Lösungen Übungsaufgaben Prof. Dr. Friedel Bolle Lehrstuhl für Volkswirtschaftslehre, insbesondere Wirtschaftstheorie

67. Aufgabe. Lösungen Übungsaufgaben Prof. Dr. Friedel Bolle Lehrstuhl für Volkswirtschaftslehre, insbesondere Wirtschaftstheorie Lösungen Übungsaufgaben 67-73 Prof. Dr. Friedel Bolle Lehrstuhl für Volkswirtschaftslehre, insbesondere Wirtschaftstheorie (Mikroökonomie) Lösungen Übungsaufgaben 67-73 67. Aufgabe Prisoners Dilemma Spieler

Mehr