Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Größe: px
Ab Seite anzeigen:

Download "Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren"

Transkript

1 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe, zustandslos In der Praxis: Betriebsarten für Blockchiffren erlauben das Verschlüsseln beliebig langer Klartexte Stromchiffren eher für ressourcenbeschränkte Einsatzgebiete, z.b. Mobilkommunikation 43

2 In diesem Kapitel: Was sind Stromchiffren? Praktische Bausteine (LFSRs). Präsentation einer speziellen Stromchiffre (des A5 aus dem GSM Mobilfunknetz). Erklärung eines Angriffs auf den A5! Etwas Theorie. 44

3 Synchrone Stromchiffre Schlüssel f Zustand g Klartext Chiffretext 45

4 Synchrone Stromchiffre (2) Synchronisation zwischen Sender und Empfänger muss gewährleistet sein. ( ggf. zusätzl. Maßnahmen) Es gibt auch andere selbstsynchronisierende Stromchiffren, die wir in der Vorlesung aber nicht weiter behandeln. Änderung eines Chiffretext-Blocks Änderung eines Klartext-Blocks. ( kein Schutz der Authentitzität) 46

5 Katastrophaler Fehler bei Synchronen Stromchiffren: Mehrfache Verwendung eines Startzustandes. Genauso schlimm (und dumm) wie bei der Vernam-Chiffre. Diesen Fehler trifft man in der Praxis erstaunlich oft an!!! Beispiel: Christiane Rütten, Verschusselt statt verschlüsselt , 11:57 47

6 Synchrone Stromchiffre (3) Häufigster Spezialfall: Binäre additive Flußchiffre. Pseudozufälliger Bitstrom, erzeugt mit Hilfe eines Pseudozufallsbitgenerators (PZBG): Schlüssel PZBG Klartext Chiffretext Der mit dem PZBG erzeugte Schlüsselstrom wird zum Verschlüsseln bit-weise zum Klartext addiert, zum Entschlüsseln bit-weise vom Chiffretext subtrahiert. (In beiden Fällen die gleiche Operation: XOR.) 48

7 Abstrakte PZBGs Schlüssel Klartext PZG Schlüsselstrom Chiffretext Ein PZBG ist kryptographisch sicher, wenn man den Schlüsselstrom ohne Kenntnis des Schlüssels nicht von einem zufälligen Bit-Strom ( Würfe mit einer fairen Münze ) unterscheiden kann. 49

8 4.1: Schieberegister Einfaches SR: Funktion SR mit Rückkopplung: 4.1: Schieberegister 50

9 LFSR Ist die Rückkopplungsfunktion linear, dann sprechen wir von einem linearen rückgekoppelten Schieberegister oder einem linearen Feedback-Shiftregister (LFSR). Beispiel: 4.1: Schieberegister 51

10 Eigenschaften von LFSR: Lokale Zufälligkeit Effizient, insbesondere in Hardware Große Periode (n-bit Register: maximal 2 n 1) (Warum nicht größer?) Lösbar durch lineare Gleichungen 4.1: Schieberegister 52

11 Allgemeine LFSR x3 x2 x 1 x 0 a3 a2 a1 a0 4.1: Schieberegister 53

12 Allgemeine LFSR (2) PZBG g : {0, 1} n {0, 1} n+1, definiert durch g(x n 1,..., x 0 ) = (x 0, f an 1,...a 0 (x n 1,..., x 0 ), x n 1,..., x 1 ) mit der Feedback-Funktion f an 1,...a 0 (x n 1,..., x 0 ) = a i x i 0 i<n 4.1: Schieberegister 54

13 Allgemeine LFSR (3) Die Theorie der LFSR ist mathematisch gut verstanden. Es ist nicht schwierig, das Feedback-Polynom so zu wählen, daß ein maximales LFSR vorliegt. Umgekehrt sind known plaintext Angriffe auf LFSR sogar dann einfach, wenn das Feedback-Polynom unbekannt, also Teil des Schlüssels, ist (was i.d.r. nicht der Fall ist). Beispiel: n = 4, Bitfolge LFSR sind... linear. ( Welche Überraschung! ) Ein LFSR bildet einen sehr schlechten PZBG! Aber: LFSR werden gerne als Bausteine für PZBGs genutzt, in Verbindung mit nichtlinearen Bausteinen. 4.1: Schieberegister 55

14 4.2: A5-PZBG im GSM Mobilfunknetz Das GSM Sicherheitsprotokoll Ki Nutzerkennung Zufallszahl RAND SRES := A3(Ki,RAND) SRES =? A3(Ki,RAND) Ki Kc := A8(Ki,RAND) Kc := A8(Ki,RAND) Verschlüsselte Sprachdaten A5(Kc) 4.2: A5-PZBG im GSM Mobilfunknetz 56

15 Der A5-PZBG Takt kontrolle LFSR1 LFSR2 LFSR3 Takt LSFR1: 19 bit, LFSR2: 22 bit, LFSR3: 23 bit, gesamt: 64 bit 4.2: A5-PZBG im GSM Mobilfunknetz 57

16 Der A5-PZBG (2) Die Feedback-Polynome der drei LFSR sind bekannt. Die mittleren Bits m 1, m 2 und m 3 der LFSR dienen als Input für die Taktkontrollfunktion t : {0, 1} 3 {0, 1} 3. Deren Verhalten hängt von der Summe s = m 1 + m 2 + m 3 (nicht mod 2) ab: { (m1, m t(m 1, m 2, m 3 ) = 2, m 3 ) falls s 2 (m 1, m 2, m 3 ) sonst. Also werden immer mindestens 2, manchmal alle drei LFSR getaktet im Durchschnitt werden Register getaktet. 4.2: A5-PZBG im GSM Mobilfunknetz 58

17 Der A5 PZBG (Beobachtungen) Jedes Register wird im Durchschnitt etwa 3/4-mal pro Ausgabebit getaktet. Es gibt schwache Schlüssel, bei denen mindestens eines der LFSR konstant Null ist. Der Anteil der schwachen Schlüssel ist > Die Zykluslänge ist unbekannt. Experimente deuten darauf hin, dass sie im Durchschnitt etwa 2 23 beträgt. 4.2: A5-PZBG im GSM Mobilfunknetz 59

18 Der A5 PZBG (Arbeitsweise) Einsatz des A5 zur Verschlüsselung digitalisierter (Sprach-)Daten. GSM sendet in kurzen Abständen Datenblöcke ( Frames ). Ein Frame enthält bis zu 228 Datenbits (114 für jede Kommunikationsrichtung bei full duplex Arbeitsweise). Zu jedem Frame gehört eine (öffentlich bekannte) Frame-Nummer (22 bit). 4.2: A5-PZBG im GSM Mobilfunknetz 60

19 Der A5 PZBG (Arbeitsweise 2) Resynchronisation vor jedem Frame: Setze A5 auf Initialzustand (=Schlüssel) Generiere aus Initialzustand und Frame-Nummer den Startzustand für den Frame. Vermutlich Schlüsselwechsel bevor Frame-Nummern sich wiederholen. (Darauf wird in der mir bekannten Literatur nicht eingegangen. Es dauert einige Stunden, bis nach 2 22 Frames ein Schlüsselwechsel nötig wird.) 4.2: A5-PZBG im GSM Mobilfunknetz 61

20 Ein Angriff auf den A5 PZBG Known Plaintext Angriff: Gegeben: 64 bit b 0, b 1,..., b 63 des Schlüsselstroms. Gesucht: Startzustand der LFSRs: x 18,... x 0 (LFSR1), y 21,... u 0 (LFSR2) z 22,... z 0 (LFSR3). ( Tafel) 4.2: A5-PZBG im GSM Mobilfunknetz 62

21 Folgerungen für die Sicherheit des A5 PZBG Von einer guten Chiffre mit einem 64 bit Schlüssel würde man erwarten, daß ein Angriff im Durchschnitt etwa 2 63 Schritte erfordert, wie bei einem Brute-Force Angriff. Der A5 Schlüsselstromgenerator ist in diesem Sinne kein guter Algorithmus. Das Abhören der (mit dem A5 Algorithmus verschlüsselten) Luftschnittstelle im GSM Mobilfunknetz ist mit dem in dieser Vorlesung geschilderten Angriff zwar nicht trivial, aber möglich. Weitere verbesserte Angriffe machen das Abhören der Luftschnittstelle sogar sehr einfach. 4.2: A5-PZBG im GSM Mobilfunknetz 63

22 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre Satz 3 PZBG kryptographisch sicher Binäre additive Stromchiffre sicher. Beweis-Idee: Wenn die Schlüsselstrom-Bits echt zufällig sind, ist die Chiffre sicher ( Vernam-Chiffre). Kann man die Chiffre knacken, dann hat man auch ein Kriterium, den Schlüsselstrom von einem Strom echt zufälliger Bits zu unterscheiden. 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 64

23 Was heisst hier sicher? Ein Kryptosystem gilt als sicher gegen eine bestimmte Klasse von Angriffen, wenn es keine effizienten Algorithmen gibt, die bei einem derartigen Angriff mit signifikanter Wahrscheinlichkeit erfolgreich sind. Die Begriffe effizient und signifikante Wahrscheinlichkeit lassen sich grundsätzlich mit konkreten Vorstellungen identifizieren ( MIPS-Jahre, Wahrscheinlichkeit kleiner als ). Die Begriffe haben aber auch eine streng formale Definition in der Komplexitätstheorie. ( Tafel) 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 65

24 PZBG (Definition) Ein Pseudozufallsbitgenerator (PZBG) ist eine Familie von effizient berechenbaren Funktionen mit l(k) k. f k : {0, 1} k {0, 1} l(k) Intention: Nimm einen kurzen k-bit Schlüssel als Input für f, um einen langen l(k)-bit Schlüsselstrom zu erzeugen. In der Regel ist l(k) k. 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 66

25 PZBG (Angreifer) Ein Angreifer auf einen PZBG ist ein effizienter Algorithmus, der einen l(k)-bit Schlüsselstrom als Eingabe hat und ein Bit ausgibt. Sei x 0 {0, 1} l(k) ein mit dem PZBG unter einem zufälligen Schlüssel erzeugter Schlüsselstrom, x 1 {0, 1} l(k) sei das Ergebnis von l(k) unabhängigen Würfen mit einer fairen Münze. Der Vorteil eines Angreifers (auf einen PZBG) ist Pr[A gibt 0 aus x 0] Pr[A gibt 0 aus x 1 ]. 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 67

26 PZBG (Definition der Sicherheit) Ein PZBG ist sicher, wenn es keinen effizienten Angreifer gibt, der einen signifikanten Vorteil erreicht. Intention: Der Vorteil gibt an, ob man zwischen einem pseudozufälligen und einem zufälligen Schlüsselstrom unterscheiden kann. Bei einem sicheren PZBG soll dies eben praktisch unmöglich sein. 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 68

27 PZBGs aus PZBGs Sei λ 0. Wir definieren eine Familie {f λ k } k IN von Funktionen f λ k : {0, 1} k {0, 1} k+λ, mit Hilfe einer Familie {f k } k IN von Funktionen f k : {0, 1} k {0, 1} k : Theorie: Die Sicherheit eines PZBGs als Stromchiffre 69

28 PZBGs aus PZBGs (2) Algorithmus zur Berechnung von f λ k : Eingabe: (x 1,..., x k ) {0, 1} k und λ 0. Ausgabe: (z 1,..., z k+λ ) {0, 1} k. Für i := 1 bis λ: Berechne (z i, x 1,..., x k ) := f k (x 1,..., x k ). Setze (z λ+1,..., z λ+k ) := (x 1,..., x k ). 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 70

29 Das Ein-Bit-ist-genug Theorem Satz 4 (Ein-Bit-ist-genug) Sei λ = λ(k) 0 durch ein Polynom in k beschränkt. Dann gilt: Beweis: ( Tafel) a) Wenn {f k } k IN effizient berechenbar ist, dann ist auch {fk λ} k IN effizient berechenbar. b) Wenn {f k } k IN sicher ist, dann ist auch {fk λ} k IN sicher. 4.3: Theorie: Die Sicherheit eines PZBGs als Stromchiffre 71

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

Betriebsarten für Blockchiffren

Betriebsarten für Blockchiffren Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln 5: Blockchiffren Klartexte 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 Chiffretexte (n bit) (n bit) VERschlüsseln ENTschlüsseln 74 5.1: Abstrakte Blockchiffren Familie

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 12

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin. Wireless Security IT Security Workshop 2006 Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.de HU-Berlin - Institut für Informatik 29.09.2006 (HU-Berlin - Institut

Mehr

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verschlüsselung Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verfahren Sender und Empfänger haben sich auf einen gemeinsamen Schlüssel geeinigt (geheim!!). Sender

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

WEP and WPA: Lessons learned in WLAN-Security Vortrag im Rahmen des Seminars Kryptographie und Sicherheit am 31. Mai 2006 Von Tina Scherer Gliederung WEP WPA Aufbau Schwächen Cracking WEP Angriffe Behobene

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht

FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION. Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht FREIHEIT GESTALTEN VERSCHLÜSSELUNG ALS FREIHEIT IN DER KOMMUNIKATION Christian R. Kast, Rechtsanwalt und Fachanwalt für IT Recht INHALTSÜBERSICHT Risiken für die Sicherheit von Kommunikation und die Freiheit

Mehr

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr.

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY 1 Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. Bernd Borchert GLIEDERUNG 1. Motivation Gründe für die Entwicklung Ideen für

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Andre Pawlowski, Gymnasium Holthausen, LK Mathematik, 2004/2005

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Kryptographie und Fehlertoleranz für Digitale Magazine

Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Kryptographie und Fehlertoleranz für digitale Magazine 1 Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Professur für Mediensicherheit 13. März 2013 Stefan Lucks Kryptographie

Mehr

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik Skript zur Stammvorlesung Sicherheit Karlsruher Institut für Technologie Fakultät für Informatik Europäisches Institut für Systemsicherheit Institut für Kryptographie und Sicherheit Version 0.5 Dragon

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)

Mehr

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik Skript zur Stammvorlesung Sicherheit Karlsruher Institut für Technologie Fakultät für Informatik Institut für Theoretische Informatik Arbeitsgruppe für Kryptographie und Sicherheit Die aktuelle Version

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Grundlagen des Datenschutzes und der IT-Sicherheit (11) Vorlesung im Sommersemester 2005 von Bernhard C. Witt

Grundlagen des Datenschutzes und der IT-Sicherheit (11) Vorlesung im Sommersemester 2005 von Bernhard C. Witt und der IT-Sicherheit (11) Vorlesung im Sommersemester 2005 von Struktur der heutigen Vorlesung Fortsetzung der Vertiefung zu grundlegenden Anfragen: Beispiele zu kryptographischen Grundlagen - symmetrische

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Fakultät Informatik, Proseminar Technische Informationssysteme Sind Handyverbindungen abhörsicher?

Fakultät Informatik, Proseminar Technische Informationssysteme Sind Handyverbindungen abhörsicher? Fakultät Informatik, Proseminar Technische Informationssysteme? Dresden, Gliederung -Einführung -Mobilfunkstandard GSM -Mobilfunkstandard UMTS -Mobilfunkstandard LTE -Vergleich der Mobilfunkstandards -Beispiel

Mehr

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität.

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität. Kryptologie Zur Terminologie Die Begriffe KRYPTOLOGIE und KRYPTOGRAPHIE entstammen den griechischen Wörtern kryptos (geheim), logos (Wort, Sinn) und graphein (schreiben). Kryptographie ist die Lehre vom

Mehr

Blockverschlüsselung und AES

Blockverschlüsselung und AES Blockverschlüsselung und AES Proseminar/Seminar Kryptographie und Datensicherheit SoSe 2009 Universität Potsdam ein Vortrag von Linda Tschepe Übersicht Allgemeines SPNs (Substitutions- Permutations- Netzwerke)

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

CrypTool im Überblick

CrypTool im Überblick CrypTool im Überblick Martin Schütte 3. Juni 2012 Inhaltsverzeichnis I. Erste Schritte 2 1. Programm-Aufbau 2 2. Symmetrische Verschlüsselungen 2 3. Asymmetrische Verfahren 3 4. Hashfunktionen 3 5. Tools

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

Teil II SYMMETRISCHE KRYPTOGRAPHIE

Teil II SYMMETRISCHE KRYPTOGRAPHIE Teil II SYMMETRISCHE KRYPTOGRAPHIE KAPITEL 4 EINFÜHRUNG In der Geschichte der Kryptographie gab es bis zur Entdeckung von Public-Key-Verfahren in den 1970er Jahren ausschliesslich symmetrische Verfahren.

Mehr

Sicher Surfen IV: Verschlüsselung & Kryptographie

Sicher Surfen IV: Verschlüsselung & Kryptographie Sicher Surfen IV: Verschlüsselung & Kryptographie Georg Wagner 25. Mai 2001 1 Was ist Kryptographie? Kryptographie ist aus den griechischen Wörtern für Verstecken und Schreiben zusammengesetzt und kann

Mehr

Verschlüsselung. Claus Bauer, Datenschutzbeauftragter. CERDAT GmbH

Verschlüsselung. Claus Bauer, Datenschutzbeauftragter. CERDAT GmbH Verschlüsselung Claus Bauer, Datenschutzbeauftragter CERDAT GmbH Inhaltsübersicht: Risiken für die Sicherheit von Kommunikation und die Freiheit sicher zu Kommunizieren Technische Grundlagen von Verschlüsselung

Mehr

Der Advanced Encryption Standard (AES)

Der Advanced Encryption Standard (AES) Der Advanced Encryption Standard (AES) Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Geschichte des AES Die Struktur des AES Angriffe auf den AES Aktuelle Ergebnisse DerAdvanced Encryption Standard

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit: Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Integrität: Garantie der Korrektheit (unverändert,

Mehr

MMS Übung 1. Caesar Chiffre im Hinblick auf Robustheit. 17.05.13 Multimedia Sicherheit Übung 1 1

MMS Übung 1. Caesar Chiffre im Hinblick auf Robustheit. 17.05.13 Multimedia Sicherheit Übung 1 1 MMS Übung 1 Caesar Chiffre im Hinblick auf Robustheit 17.05.13 Multimedia Sicherheit Übung 1 1 Caesar Chiffre Wurde nach dem römischen Feldherrn Gaius Julius Caesar benannt Benutzt für die geheime Kommunikation

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Sicherheit in mobiler Kommunikation

Sicherheit in mobiler Kommunikation Sicherheit in mobiler Kommunikation Sabine Keuser ETH Zürich Seminar Mobile Computing Professor: F. Mattern Betreuerin: M. Moschgath 1 Sicherheitsprobleme mobiler Netze In verkabelten Netzen bieten die

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Motivation Sicherheit. WLAN Sicherheit. Karl Unterkalmsteiner, Matthias Heimbeck. Universität Salzburg, WAP Präsentation, 2005

Motivation Sicherheit. WLAN Sicherheit. Karl Unterkalmsteiner, Matthias Heimbeck. Universität Salzburg, WAP Präsentation, 2005 Universität Salzburg, WAP Präsentation, 2005 Gliederung 1 WLAN die neue drahtlose Welt Gefahren in WLAN Netzwerken Statistische Untersuchen 2 Gliederung WLAN die neue drahtlose Welt Gefahren in WLAN Netzwerken

Mehr

Kapitel 3: Schutzkonzepte und deren Umsetzung

Kapitel 3: Schutzkonzepte und deren Umsetzung Kapitel 3: Schutzkonzepte und deren Umsetzung Brandenburg an der Havel, den 7. Dezember 2004 1 Gliederung 1. Firewalls 2. Kryptologie 3. Authentifizierung 4. Sicherheitsprotokolle

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Sicherheit in Wireless LANs

Sicherheit in Wireless LANs Sicherheit in Wireless LANs VS-Seminar Wintersemester 2002/2003 Betreuer: Stefan Schmidt Übersicht Funktion und Aufbau von Infrastruktur Wireless LAN Sicherheit in Wireless LANs Sicherungsmechanismen in

Mehr

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK)

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Vortrag zum Thema: Symmetrische Verschlüsselung (DES, 3DES, AES) und Schlüsselaustausch (Diffie-Hellman) Referent:

Mehr

Kryptographie Laborautomation WS 02/03 Patrick Gleichmann

Kryptographie Laborautomation WS 02/03 Patrick Gleichmann Kryptographie Laborautomation WS 02/03 Patrick Gleichmann 1 0. Was ist Sicherheit? Verstecken!= Verschlüsseln Was ist Sicherheit überhaupt? Dazu folgendes Beispiel: Wenn man etwas in einen Safe steckt,

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik Angriffe gegen Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 07. Dezember 2009 Angriffe gegen Outline 1 Zur Geschichte 2 3 Angriffe gegen

Mehr

Nationale Initiative für Internet- und Informations-Sicherheit

Nationale Initiative für Internet- und Informations-Sicherheit Sichere Kommunikation im Zeitalter von PRISM? Nationale Initiative für Internet- und Informations-Sicherheit Mathias Gärtner, NIFIS e.v. zweiter Vorstand Öffentlich bestellter und vereidigter Sachverständiger

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

SECURE DATA DRIVE CLIENTSEITIGE VERSCHLÜSSELUNG Technical Insight, Oktober 2014 Version 1.0

SECURE DATA DRIVE CLIENTSEITIGE VERSCHLÜSSELUNG Technical Insight, Oktober 2014 Version 1.0 SECURE DATA DRIVE CLIENTSEITIGE VERSCHLÜSSELUNG Technical Insight, Oktober 2014 Version 1.0 mit den eingetragenen Materialnummern Inhalt Inhalt... 2 1 Vorwort... 3 2 Allgemeines zur Verschlüsselung...

Mehr

Vertrauenswürdige Kommunikation in verteilten Systemen

Vertrauenswürdige Kommunikation in verteilten Systemen Vertrauenswürdige Kommunikation in verteilten Systemen Teil I Kryptographische Grundlagen Vertrauensmodelle Kerberos Teil II IPSec AH/ESP IKE Szenario Alice möchte Bob vertraulich eine Nachricht (typischerweise

Mehr

Programmiertechnik II

Programmiertechnik II X.509: Eine Einführung X.509 ITU-T-Standard: Information Technology Open Systems Interconnection The Directory: Public Key and attribute certificate frameworks Teil des OSI Directory Service (X.500) parallel

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Inhalt. Grundlegendes zu Bankkarten. Moduliertes Merkmal. PIN-Sicherheit. Seitenkanalangriffe

Inhalt. Grundlegendes zu Bankkarten. Moduliertes Merkmal. PIN-Sicherheit. Seitenkanalangriffe Inhalt Grundlegendes zu Bankkarten Moduliertes Merkmal PIN-Sicherheit Seitenkanalangriffe Harald Baier Ausgewählte Themen der IT-Sicherheit h_da SS 10 24 PIN-Erzeugung bei Debitkarten 1. Variante: Kartendaten

Mehr

Grundlagen. Murat Zabun. Seminar. Sicherheit im Internet. Universität Dortmund WS 02/03

Grundlagen. Murat Zabun. Seminar. Sicherheit im Internet. Universität Dortmund WS 02/03 Grundlagen Murat Zabun Seminar Sicherheit im Internet Universität Dortmund WS 02/03 1 Inhaltsverzeichnis INHALTSVERZEICHNIS 1.Einleitung 1.1 Grundlagen der Kryptographie 1.2 Verfahren der Kryptographie

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Digital Rights Management 4FriendsOnly.com Internet Technologies AG Vorlesung im Sommersemester an der Technischen Universität Ilmenau

Mehr

Sicherheitsdienste im TCP/IP Protokollstapel

Sicherheitsdienste im TCP/IP Protokollstapel OLAF GELLERT Sicherheitsdienste im TCP/IP Protokollstapel Diplomarbeit Universität Hamburg Fachbereich Informatik Anwendungen in Geistes- und Naturwissenschaften (AGN) Betreuer: Prof. Dr. Klaus Brunnstein

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Verschlüsselung im Internet

Verschlüsselung im Internet Verschlüsselung im Internet Christian Bockermann Verschlüsselung September 2006 1 Überblick Kryptographie Was ist das? Warum braucht man das? Wie funktioniert das? Beispiele (Rucksäcke,RSA) Anwendungen

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur Authentikation und digitale Signatur Daniel Elmar Tögl 23. Jänner 2009 1 Inhaltsverzeichnis 1 Einleitung 3 1.1 Begrie................................ 3 1.1.1 Alice und Bob........................ 3 1.1.2

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

GSM Protokoll für Mobiltelefone

GSM Protokoll für Mobiltelefone GSM Protokoll für Mobiltelefone Schriftliche Ausarbeitung zur Lehrveranstaltung Sicherheitsaspekte in der Softwaretechnik Veranstalter: Steffen Helke vorgelegt von: Florian Lindner, Sascha Falk WS 2004/05

Mehr

Secure Sockets Layer (SSL) Prof. Dr. P. Trommler

Secure Sockets Layer (SSL) Prof. Dr. P. Trommler Secure Sockets Layer (SSL) Prof. Dr. P. Trommler Übersicht Internetsicherheit Protokoll Sitzungen Schlüssel und Algorithmen vereinbaren Exportversionen Public Keys Protokollnachrichten 29.10.2003 Prof.

Mehr

Proseminar : Allgegenwärtiges Rechnen. Vortrag über Sicherheit. Christian Fricke cfricke@rz.uni-potsdam.de

Proseminar : Allgegenwärtiges Rechnen. Vortrag über Sicherheit. Christian Fricke cfricke@rz.uni-potsdam.de Proseminar : Allgegenwärtiges Rechnen Vortrag über Sicherheit Christian Fricke cfricke@rz.uni-potsdam.de 1 I. Einleitung : Sicherheitseigenschaften und Angriffsarten Definition 1: Unter Funktionssicherheit

Mehr

Grundlagen und Verfahren der starken Kryptographie

Grundlagen und Verfahren der starken Kryptographie Grundlagen und Verfahren der starken Kryptographie Seminararbeit im Seminar Neue Technologien in Internet und WWW Wintersemester 2003/04 Universität Jena vorgelegt von Eike Kettner Januar 2004 Abstract

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Inhaltsverzeichnis. 1 Einleitung 2 2 Geschichte 3

Inhaltsverzeichnis. 1 Einleitung 2 2 Geschichte 3 Inhaltsverzeichnis 1 Einleitung 2 2 Geschichte 3 2.1 Maria Stuart 3 2.2 Die eiserne Maske 4 2.3 Vigenere und Charles Babbage 4 2.4 Die Enigma 5 2.5 Die Navajo Code Sprecher 6 2.6 PGP 6 3 Grundlagen der

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Elliptische Kurven und ihre Anwendungen in der Kryptographie

Elliptische Kurven und ihre Anwendungen in der Kryptographie Elliptische Kurven und ihre Anwendungen in der Kryptographie Heiko Knospe Fachhochschule Köln heiko.knospe@fh-koeln.de 29. März 2014 1 / 25 Weierstraß-Gleichung Elliptische Kurven sind nicht-singuläre

Mehr

Kapitel 2 Kryptographische Grundlagen

Kapitel 2 Kryptographische Grundlagen Kapitel 2 Kryptographische Grundlagen 2.1 Kryptographische Verfahren Ziel: Grundlagen zu Krypto-Verfahren, Für Vertiefung: Kryptographie-Vorlesung Kryptographie: Lehre von den Methoden zur Ver- und Entschlüsselung

Mehr

Vortrag Keysigning Party

Vortrag Keysigning Party Vortrag Keysigning Party Benjamin Bratkus Fingerprint: 3F67 365D EA64 7774 EA09 245B 53E8 534B 0BEA 0A13 (Certifcation Key) Fingerprint: A7C3 5294 E25B B860 DD3A B65A DE85 E555 101F 5FB6 (Working Key)

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

Sicherheit in Informationsnetzwerken Protokoll. Cryptool Versuch 1 am 15.06.07

Sicherheit in Informationsnetzwerken Protokoll. Cryptool Versuch 1 am 15.06.07 Sicherheit in Informationsnetzwerken Protokoll Cryptool Versuch 1 am 15.06.07 Felix Nagel Matthias Rosenthal Dominic Beinenz (Gruppe E2) Seite 1 von 72 INHALTSVERZEICHNIS 1. FÜHREN SIE DIE DEMO ZUM DIFFIE/HELLMAN

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr