Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Größe: px
Ab Seite anzeigen:

Download "Das Kryptosystem von McEliece. auf der Basis von linearen Codes"

Transkript

1

2 Das Kryptosystem von McEliece auf der Basis von linearen Codes

3 Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25

4 Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient φ(c) = m Entschlüsselung ohne Schl. sehr ineffizient 2/25

5 Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient φ(c) = m Entschlüsselung ohne Schl. sehr ineffizient ψ(e) = d Schlüsselberechnung sehr ineffizient 2/25

6 Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient φ(c) = m Entschlüsselung ohne Schl. sehr ineffizient ψ(e) = d Schlüsselberechnung sehr ineffizient Grundlagen einiger Systeme RSA: Faktorisierung ElGamal: diskreter Logarithmus 2/25

7 Grundlage des McEliece-Kryptosystem - Allgemeines Dekodierungsproblem linearer Codes - Gegeben: [n,k]-code C überãn, mit Generatormatrix G t Æ(Fehlerstellen) c n 2 (Fehlerbehafteter Code) Gesucht: e n 2, w(e) t (Fehlervektor) m k 2 (Nachricht) mit m G + e = c 3/25

8 Lösen des allgemeinen Dekodierungsproblems Ansatz: Bruteforce e n 2, w(e) t m k 2 Größenordnung ( n t) 2 k m G + e O(kn + n) O( ( n t) 2k kn) schlecht 4/25

9 Lösen des allgemeinen Dekodierungsproblems Wir können es nicht viel besser! Das Problem ist NP-vollständig (Beweis in [BTM78]) 5/25

10 Idee von McEliece 6/25

11 Erinnerung an lineare Codes Definition Ein binärer linearer Code C der Länge n ist ein Unterraum des n 2 mit Dimension k. k Basisvektoren von C bilden die Spalten einer Generatormatrix von C. Ist C ein linearer Code mit Generatormatrix G = [E k,p], P k,n k 2, so ist die Kontrollmatrix H = [ P T,E n k ]. Beispiel G = ( ) H = /25

12 Äquivalenz von linearen Codes Definition Seien G und G Generatormatrizen von [n,k]-codes C und C. P n,n 2 Permutationsmatrix, S k,k 2 invertierbar G und G heißen äquivalent G = S G P Sind zwei Generatormatrizen äquivalent, so heißen die zugehörigen Codes C und C ebenfalls äquivalent. Zu C gibt es sehr viele äquivalente Codes. 8/25

13 Definition des Kryptosystems (nach [MCE78]) C ein t Fehler korregierender, binärer, linearer [n,k]-code mit Generatormatrix G Klartextraum: P = k 2 Chiffretextraum: C n 2 Schlüssel Privat: G S k,k 2 invertierbar P n,n 2 eine Permutationsmatrix Öffentlich: G = S G P (public generator matrix) 9/25

14 Definition des Kryptosystems Verschlüsselung E G : P C E G (m) = m G + e, e R n 2, w(e) t Entschlüsselung D (G,S,P) : C P D (G,S,P) (c) = DECODE(c P 1 ) S 1 10/25

15 Korrektheit Satz Für alle m n 2 gilt D (G,S,P) (E G (m)) = m Beweis Es gilt: D (G,S,P) (E G (m)) = D (G,S,P) (m G + e) = D (G,S,P) (m S G P + e) = DECODE((m S G P + e) P 1 ) S 1 = DECODE(m S G P P 1 + e P 1 ) S 1 = DECODE(m S G + e P 1 ) S 1 11/25

16 Korrektheit Satz Für alle m n 2 gilt D (G,S,P) (E G (m)) = m Beweis Es gilt: D (G,S,P) (E G (m)) = D (G,S,P) (m G + e) = D (G,S,P) (m S G P + e) = DECODE((m S G P + e) P 1 ) S 1 = DECODE(m S G P P 1 + e P 1 ) S 1 = DECODE(m S G + e P 1 ) S 1 Beachte: w(e P 1 ) t, also ebenfalls ein beliebiger Fehlervektor! 12/25

17 Korrektheit (2) D (G,S,P) (E G (m)) = DECODE(m S G + e P 1 ) S 1 m S k 2 = P 13/25

18 Korrektheit (2) D (G,S,P) (E G (m)) = DECODE(m S G + e P 1 ) S 1 m S k 2 = P m S G C, also ein Codewort 14/25

19 Korrektheit (2) D (G,S,P) (E G (m)) = DECODE(m S G + e P 1 ) S 1 m S k 2 = P m S G C, also ein Codewort Da C bis zu t Fehler korrigieren kann und w(e P 1 ) t gilt: DECODE(m S G + e P 1 ) S 1 = m S S 1 = m 14/25

20 Wahl des Codes Vorschlag der Originalarbeit [MCE78] Goppa-Codes über irreduziblen Polynomen vom Grad t ([HOS90], [GAB95]) m Æ,n = 2 m,k = n tm, mit m = 10,t = 50 n = 1024, k = 524 gute minimale Hamming-Distanz schnelle Decodierung (O(nt)) mit dem Patterson-Algorithmus ([HOS90, Kap. 3.5], [GAB95, S. 11ff]) 15/25

21 Beispiel n = 8, k = 2, t = 2 G = ( ) S = ( ) S 1 = ( ) P = [e 3,e 1,e 2,e 6,e 5,e 8,e 7,e 4 ] P 1 = [e 2,e 3,e 1,e 8,e 5,e 4,e 7,e 6 ] 16/25

22 Effizienz von McEliece Satz: Die Anzahl der Operationen für E G (m),g k,n 2 liegt in O(nk). Beweis: E G (m) = m G + e, e R n 2, m k 2 Die Multiplikation von m mit einer Spalte von G benötigt 2k XOR-Operationen. Also n 2k Operationen insgesamt. E G = O(nk) 17/25

23 Effizienz von McEliece Satz: O(nt + k 2 ). Beweis: Die Anzahl der Operationen für D (S,G,P) (c) liegt in D (G,S,P) (c) = DECODE(c P 1 ) S 1 c := c P 1 n Schritte. m := DECODE(c ) O(nt) m S 1 O(k 2 ), da m k 2, S 1 k,k 2 D (S,G,P) = O(nt + k 2 ) 18/25

24 Erzeugung der Parameter Generatorpolynom P 2 m[x], grad(p) = t ist mit Wahrscheinlichkeit p 1 t irreduzibel Test auf Irreduzibilität ist effizient Generatormatrix Kontrollmatrix H: [HOS90, Kap ] t Auswertung des Goppa-Polynoms t Inversen im 2 m mit Spaltenumformungen zur systematisch Form system. Generatormatrix Spaltenumformungen in umgekehrter Reihenfolge 19/25

25 Erzeugung der Parameter P Einheitsmatrix E n zufällige Spaltenvertauschungen abspeichern P 1 : Vertauschungen in umgekehrter Reihenfolge S Einheitsmatrix E k zufällige elementare Zeilenoperationen speichern S 1 : Zeilenoperationen in umgekehrter Reihenfolge 20/25

26 Sicherheit (Größe des Schlüsselraumes) Irriduzible Polynome vom Grad t = 50 [HOS90] > > Äquivalente Codes Invertierbare Matrizen > Permutationsmatrizen = 1024! Zum Vergleich Ausprobieren aller Goppa-Polynome: > Jahre. Anzahl der Atome im Universum: /25

27 Bester bekannter Angriff Es gilt m G + e = c m G = c + e Wähle zufällig k Stellen: c i = (c i1,...,c ik ), e i = (e i1,...,e ik ) Streiche Spalten von G, die nicht in {i 1,...,i k } liegen =: G i Wenn G i invertiertbar und w(e i ) = 0 m = c i G 1 i 22/25

28 Bester bekannter Angriff (Komplexität) Wahrscheinlichkeit: ( n ) k Möglichkeiten für k Stellen aus n Stellen ) k Stellen aus n t fehlerfreien Stellen ( n t k p = ( n t k ) ( n k) = d.h. erst nach etwa 1 p Versuchen findet man k fehlerfreie Stellen. k k Matrix invertieren: O(k 3 ) k 3 ( n k) ( n t ) = k 23/25

29 Bester bekannter Angriff (Komplexität) Für t = 37 wird (n k) ( n t k ) maximal In [CAS98] werden Optimierungen des Angriffs vorgestellt mit Laufzeitverbesserungen um Faktor 2 11 Bester bekannter Angrif auf DES: /25

30 Literatur [BTM78] E.R.Berlekamp, R.J.McEliece, H.van Tilborg: On the Inherent Intractability of Certain Coding Problems, IEEE Transactions of Inforamtion Theory, Vol.IT-24, No.3 (1978) [MCE78] R.J.McEliece: A Public-Key Cryptosystem Based On Algebraic Coding Theory, DSN Progress Report 42-44, (1978) [HOS90] P.Horster, R.Sperling:, Ein Public-Key-Kryptosystem auf der Basis von Goppa-Codes, Hüthig Guch Verlag Heidelberg, (1990) [GAB95] E.M.Gabidulin: Public-key cryptosystems based on linear codes, Report 95-30, Faculty of Technical Mathematics and Informatics, Delft University of Technology, (1995) [CAS98] Anne Canteaut, Nicolas Sendrier: Cryptoanalysis of the Original McEliece Cryptosystem. ASIACRYPT 1998: /25

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen.

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen. ChrNelius : Lineare Algebra II (SS 2005) 1 Einschub A) Elementarmatrizen Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog Elementarmatrizen vornehmen (A1) DEF: Seien r, s IN mit

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten

Mehr

Post-quantum cryptography

Post-quantum cryptography Post-quantum cryptography Post-quantum cryptography 1. Komplexität & Quantencomputer 2. Kryptografie in Gittern 3. FHE Eine Revolution im Datenschutz? WIESO? KOMPLEXITÄT Public-Key-Kryptografie Grafiken:

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Urbild Angriff auf Inkrementelle Hashfunktionen

Urbild Angriff auf Inkrementelle Hashfunktionen Urbild Angriff auf Inkrementelle Hashfunktionen AdHash Konstruktion: (Bellare, Micciancio 1997) Hashe Nachricht x = (x 1,..., x k ) als H(x) = k i=1 h(i, x i) mod M. Inkrementell: Block x i kann leicht

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238 7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

6. Lösungsblatt

6. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF. JOHANNES BUCHMANN DR. JULIANE KRÄMER Einführung in die Kryptographie WS 205/ 206 6. Lösungsblatt 9..205 Ankündigung Es besteht

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

Kapitel 4: Das Überdeckungsproblem

Kapitel 4: Das Überdeckungsproblem Kapitel : Das Überdeckungsproblem Kapitel Das Überdeckungsproblem Kapitel : Das Überdeckungsproblem Seite / 25 Kapitel : Das Überdeckungsproblem Inhaltsverzeichnis. Überdeckungsmatrizen.2 Minimalüberdeckungen.

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Post-Quantum Kryptographie für IPsec

Post-Quantum Kryptographie für IPsec Post-Quantum Kryptographie für IPsec Dipl.-Inf. Ephraim Zimmer 24. Februar 2015 PQC für IPsec Folie 2 von 27 PQC für IPsec Folie 3 von 27 Peter Shor - 1994 Algorithms for Quantum Computation: Discrete

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Rang und Inverses einer Matrix

Rang und Inverses einer Matrix Rang und Inverses einer Matrix wgnedin@math.uni-koeln.de 29. April 2014 In dieser Notiz werden Methoden und Beispiele zur Berechnung des Rangs einer Matrix sowie der Inversen einer invertierbaren Matrix

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 CAROLINE LASSER Inhaltsverzeichnis 1. Vektorräume 2 1.1. Vektorräume und Unterräume (13.10.) 2 1.2. Lineare Unabhängigkeit (20.10.) 3 1.3. Basen

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger, Dirk Bongartz Lehrstuhl für Informatik I 27. Januar 2005 Teil I Mathematische Grundlagen Welche klassischen Verfahren gibt es? Warum heissen die klassischen Verfahren

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81

Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81 Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr