Theoretische Informatik 1

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik 1"

Transkript

1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007

2 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert 3 Registermaschine: Konfigurationen RM-Berechnenbarkeit

3 Teilgebiete der Informatik ohne Theoretische Grundlagen Komplexitätstheorie Sprachen & Semantik Datenstrukturen Programmiersprachen Logik & Berechenbarkeit KI & Maschinelles Lernen Theoretische Informatik Automatentheorie Informatik Algorithmen Praktische Informatik Software- Technik Betriebssysteme (integr.) Schaltkreise Technische Informatik Robotik Angewandte Informatik Databases Automatisierungstechnik Netzwerke Protokolle Rechner- Architektur Medizintechnik Geoinformatik WWW & Internet

4 Teilgebiete der Informatik ohne Theoretische Grundlagen Theoretische Informatik 1 Inhalte Intuitive und formale Berechenbarkeit Registermaschinen (RAM) und Turingmaschinen Zeitkomplexität P, NP, NP-vollständig Probabilistische Algorithmen, BPP,ZPP Maschinelles Lernen: probably approximative correct (PAC) learning

5 Teilgebiete der Informatik ohne Theoretische Grundlagen Infos zur LV Homepage Newsgroup news://news.tu-graz.ac.at:119/tu-graz.lv.ti1 Bücher: M. Sipser,Introduction to the Theory of Computation. PWS Publishing, Boston, 1997 A.Asteroth, Ch. Baier, Theoretische Informatiker, Pearson Studium, München, 2003 Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997 Internet: Wikipedia, Google. z.b. Quantenalgorithmen

6 Teilgebiete der Informatik ohne Theoretische Grundlagen Softwaretechniker ohne Theoretische Informatik Nach langer Tüftellei hast Du ein Programm für das Problem XY geschrieben. Der erste Test mit Testdaten (Länge 50bit) hat funktioniert. Der Chef kommt und verlangt eine Demonstration auf realitischen Daten, also ca.10kbit. Das Programm rechnet, und rechnet, und rechnet...und Du stehst ratlos daneben. Nach ein Stunde Rechenzeit ohne Ergebnis beschließt der Chef, das Problem einem Mitarbeiter zu übertragen, der sich in Informatik auskennt. Und DU...?

7 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Fragen an die Theoretische Informatik Was sind die grundsätzlichen Fähigkeiten eines Computers? Wo liegen die Grenzen von Computern? Etwas konkreter: Was ist ein Berechnungsverfahren? Gibt es zum Probelm XY einen Berechnungsverfahren? Was ist überhaupt ein Problem? Warum sind Probleme verschieden schwer zu lösen? Ist das lösbare Problem XY auch effizient lösbar? Was heißt effizient?

8 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Verschiedene Probleme Erstelle ein sortiertes Telefonbuch! Erstelle einen Stundenplan für jede Schule, sodaß sowohl für Lehrer wie Schüler keine Lücken enstehen! Optimiere die Produktionseinteilung vom Mercedes! Optimiere den Auslieferweg eines Zustelldienstes! Wie wird das Wetter morgen? Hat die Gleichung f (x 1,..., x n ) = 0 eine Lösung? Der Computer reagiert nicht. Hat es Sinn zu warten?

9 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Intuitive Berechenbarkeit Jeder von uns hat eine gewisse Vorstellung davon, was prinzipiell berechenbare Probleme sind, und ob sie eher leicht sind oder eher schwer bzw. mühsam. Händische Addition ist leicht Matrizenmultiplikation ist deutlich mehr Arbeit. Stundenpläne werden händisch durch probieren und mit viel Erfahrung erstellt, also sehr mühsam. Mathematische Beweise sind i.a. nicht berechenbar 1 Es gibt auch Probleme, bei denen wir (noch) nicht wissen, ob sie durch ein Berechnungsverfahren gelöst werden können. 1 Sonst hätte der Beweis von Fermats letzem Satz n 3 : a, b, c N : a n + b n = c n wohl nicht fast 400 Jahre gebraucht.

10 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Intuitive Berechenbarkeit, algorithmische Lösbarbkeit 1 1 Grafik aus: Asteroth, Baier: Theoretische Informatik, Pearson Studium

11 Begriff Algorithmus Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Das Zehnte Hilbert sche Problem 2 : Eine diophantische (=ganzzahlige) Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt. Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen Zahlen lösbar ist. Hilbert hat also explizit und in definierter abstrakter Form nach einem Entscheidungsalgorithmus gefragt. Tatsächlich konnte 1970 bewiesen werden, daß es keinen solchen Algorithmus geben kann. 2 David Hilbert präsentiert 1900 in Paris die 23 offenen Probleme der Mathematik

12 Fragen an die Theoretische Informatik Probleme intuitive Berechenbarkeit Algorithmusbegriff formalisiert Intuitive Berechenbarkeit formalisiert Verfahren, Operationen, endliche Anzahl endliche, numerierte Anweisungsliste (Programm) bedingte Verzweigung (JZERO), Sprung(GOTO) Rechenoperationen: + (Zwischen-)Ergebnisse: c(0), c(1),..., c( ) Konstanten #k, direkte Adressierung c(k) indirekte Adressierung c(c(k)) definierter Haltebefehl: END = Registermaschine (RAM)

13 Registermaschine: Konfigurationen RM-Berechnenbarkeit Schema einer Registermaschine (RAM) 1 Graphik aus: Asteroth, Baier: Theoretische Informatik, Pearson Studium

14 Registermaschine: Konfigurationen RM-Berechnenbarkeit LOAD x c(0) := v(x) STORE k c(k) := c(0) STORE k if c(k) 1 then c(c(k)) := c(0) else b := ADD x c(0) := c(0) + v(x) SUB x c(0) := max {0, c(0) v(x)} MULT x c(0) := c(0) v(x) DIV x if v(x) > 0 then c(0) := c(0) v(x) else b := GOTO k b := k JZERO k if c(0) = 0 then b := k END b := danach: b := b + 1 (außer nach Verzweigungen) Argumentwert x v(x) #k k k c(k) k c(c(k)) i N 0 : c(i) N c :N 0 N 0 :i c(i) b = HALT

15 Registermaschine: Konfigurationen RM-Berechnenbarkeit Ein- und Ausgabe Die Eingabe für eine RM R soll eine Liste von k ganzen Zahlen n 1,..., n k N 0 sein. c(j) := n j Alle anderen Register werden vor dem Start auf 0 gesetzt Falls R terminiert, erwarten wir das Ergebnis in einem bestimmten Register, z.b. im Accumulator c(0).

16 Registermaschine: Konfigurationen RM-Berechnenbarkeit Ein- und Ausgabe Definition (initiale Registerbelegung) Eine Funktion c : N 0 N 0 heißt initiale Registerbelegung mit n 1,..., n k einer RM und wird als c[n 1,..., n k ] angeschrieben, wenn { 0 : j = 0 j > k c(j) = n j : 1 j k

17 Registermaschine: Konfigurationen RM-Berechnenbarkeit Konfigurationen Definition (Konfiguration) Die Konfiguration einer RM ist ein Tupel κ = (b, c), wobei b N { } der aktuelle Befehlszähler ist und c N 0 N 0 den Speicherinhalt darstellt. Der Inhalt c Speichers umfasst den Akkumulator c(0) sowie die Registerzellen c(1),..., c( ) Der Zusammenhang der aufeinanderfolgenden Konfigurationen bei der schrittweisen Ausführung der RM R wird durch die sog. Konfigurationsrelation R beschrieben.

18 Registermaschine: Konfigurationen RM-Berechnenbarkeit Konfigurationsrelation Definition (Konfigurationsrelation R ) Sei κ = (b, c) und κ = (b, c ), dann ist κ R κ, genau dann, wenn b und R von der Konfiguration κ durch Ausführung der Programmzeile b in die Konfiguration κ übergeht. Eine terminierte Konfiguration (, c) hat keine Nachfolgekonfiguration. Definition ( n R, R ) κ 0 R κ genau dann wenn κ = κ. κ n+1 R κ gdw κ N N N 0 0 : κ n R κ κ R κ R ist die reflexive, transitive Hülle von R.

19 Registermaschine: Konfigurationen RM-Berechnenbarkeit Definition Die durch R berechnete partielle Funktion f R : N k N ist gegeben durch { : c N N0 0 : κ f R (n 1,..., n k ) = 0 R (, c) N c(0) : c N 0 0 : κ 0 R (, c) wobei κ 0 = (1, c[n 1,..., n k ]) die Startkonfiguration darstellt.

20 Registermaschine: Konfigurationen RM-Berechnenbarkeit RM-Berechenbarkeit Definition Eine partielle Funktion f : N k N wird RM-berechenbar genannt, wenn es eine Registermaschine R gibt, sodass f = f R.

21 Registermaschine: Konfigurationen RM-Berechnenbarkeit Beispiel: Berechne n m Startkonfiguration: q 0 = (1, c[n, m]), n, m N 0 Gesucht: Programm für R, sodaß f R (n, m) =!! n m Pseudocode für n m z = 1; while m > 0 z := z n; m := m 1; wend 1 LOAD #1 2 STORE 3 3 LOAD 2 4 JZERO 11 5 SUB #1 6 STORE 2 7 LOAD 3 8 MULT 1 9 STORE 3 10 GOTO 3 11 LOAD 3 12 END

22 Registermaschine: Konfigurationen RM-Berechnenbarkeit Problemcodierung Eingabewerte x 1,..., x n N Codierungen gesucht für Ganze Zahlen n i = x, n i+1 = sign(x) Rationale Zahlen Vorkommateil, Nachkommateil, Vorzeichen Zähler, Nenner, Vorzeichen Graphen G(V, E) Anzahl Knoten, quardatische Adjazenzmatrix aufzählen Adjazenzmatrix zeilenweise binär verschlüsseln Programm einer RM zeilenweise, Befehlscode + Argument 20

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Turing-Maschine, Berechenbarkeit INSTITUT FÜR THEORETISCHE 0 KIT 07.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen

Mehr

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr

3. Ziel der Vorlesung

3. Ziel der Vorlesung 3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Was ist ein Computer?

Was ist ein Computer? Grundlagen 1 Lernziel der Vorlesung: Einblicke und Überblicke zu den Mitteln der Informatik Hardware und Software den Methoden der Informatik Analysieren, Entwerfen, Algorithmieren, Programmieren, Testen,

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

3. Turingmaschinen FORMALISIERUNG VON ALGORITHMEN. Turingmaschinen Registermaschinen Rekursive Funktionen UNTERSCHEIDUNGSMERKMALE DER ANSÄTZE:

3. Turingmaschinen FORMALISIERUNG VON ALGORITHMEN. Turingmaschinen Registermaschinen Rekursive Funktionen UNTERSCHEIDUNGSMERKMALE DER ANSÄTZE: FORMALISIERUNG VON ALGORITHMEN Wegen der beobachteten Zusammenhänge zwischen Berechnungs-, Entscheidungs- und Aufzählungsverfahren genügt es Berechnungsverfahren zu formalisieren. Weiter genügt es Verfahren

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Prof. Dr. Institut für Informatik Abteilung I Wintersemester 2012/13 Organisatorisches Vorlesung Dienstag und Donnerstag 10:15 11:45 Uhr (HS 1) und 12:30 14:00 Uhr (HS 2) Vorlesung am Vormittag = Vorlesung

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Prof. Dr. Rudolf Berrendorf Fachbereich Informatik Fachhochschule Bonn-Rhein-Sieg URM - Programmierung Dipl.-Inf. Sigrid Weil Fachbereich Informatik Fachhochschule Bonn-Rhein-Sieg Einordnung Programmier-Paradigma:

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008 Dozent: Prof. Dr. Rainer Schrader Informatik II Informationen und Daten Rainer Schrader Zentrum für Angewandte Informatik Köln 13. Oktober 2008 Tel.: 470-6030 email: schrader@zpr.uni-koeln.de Sprechstunde:

Mehr

Informatik und Informationstechnik (IT)

Informatik und Informationstechnik (IT) Informatik und Informationstechnik (IT) Abgrenzung Zusammenspiel Übersicht Informatik als akademische Disziplin Informations- und Softwaretechnik Das Berufsbild des Informatikers in der Bibliothekswelt

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

Die Informatik als junge Wissenschaft

Die Informatik als junge Wissenschaft Die Informatik als junge Wissenschaft Die Informatik ist die Wissenschaft von der automatischen Informationsverarbeitung. Die Informatik befasst sich mit den Gesetzmäßigkeiten und Prinzipien informationsverarbeitender

Mehr

ALP I Rekursive Funktionen

ALP I Rekursive Funktionen ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive

Mehr

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Anweisungen... 4-2 4.1 Strukturierte Programmierung... 4-2 4.1.1 Geschichte... 4-2 4.1.2 Strukturierung im Kleinen... 4-2 4.2 Einige Beispielanwendungen... 4-4 4.2.1 Addierer (do-schleife)...

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Tourist Town. wenn Computer ins Schwitzen geraten. Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014

Tourist Town. wenn Computer ins Schwitzen geraten. Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014 Tourist Town wenn Computer ins Schwitzen geraten Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014 Inhalt 1. Was kommt jetzt? 2. Tourist Town Dominierende Mengen 3. Ausblick Isolde Adler Tourist

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Algorithmen

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, zwicker@iam.unibe.ch

Mehr

b) Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel

b) Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel 2. Turingmaschinen Zur Formalisierung von Algorithmen benutzen wir hier Turingmaschinen. Von den vielen Varianten dieses Konzeptes, die sich in der Literatur finden, greifen wir das Konzept der on-line

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Informatik I. Lutz Donnerhacke lutz@iks-jena.de. PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb

Informatik I. Lutz Donnerhacke lutz@iks-jena.de. PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb Informatik I Lutz Donnerhacke lutz@iks-jena.de PGP:db089309 1c1c 6311 ef09 d819 e029 65be bfb6 c9cb 1 Semesterübersicht Grundbegriffe der theoretischen Informatik Übersicht über Funktionen von Betriebsystemen

Mehr

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Informatik - Lehrgang 2000/2001 GRUNDLAGEN

Informatik - Lehrgang 2000/2001 GRUNDLAGEN Informatik - Lehrgang 2000/2001 GRUNDLAGEN Ein Überblick! Das Werden der Informatik! Daten! Technische Informatik Der von Neumann Computer Versuch einer Entmystifizierung 2 Grundlagen Micheuz Peter Das

Mehr

Das Studium der Informatik in Braunschweig

Das Studium der Informatik in Braunschweig Das Studium der Informatik in Braunschweig Vorkurs SS 2012 W. Struckmann, Ch. Peltz, 23. März 2012 Berufsbild des Informatikers Bologna-Prozess Informatik-Studium in Braunschweig Etwas Informatik aus den

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

SWE1 / Übung 2 (19.10.2011)

SWE1 / Übung 2 (19.10.2011) SWE1 / Übung 2 (19.1.211) Simulation von Algorithmen Testen, Testplan Beispiel arithmetische Ausdrücke Handsimulation von Algorithmen Man versteht einen Algorithmus (insbesonders einen "Fremden"), wenn

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2011 Dozent: Prof. Dr. J. Rothe, Prof. Dr. M. Leuschel J. Rothe (HHU Düsseldorf)

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Informatik II. Registermaschinen. Registermaschinen. Registermaschinen. Rainer Schrader. 7. Dezember 2005

Informatik II. Registermaschinen. Registermaschinen. Registermaschinen. Rainer Schrader. 7. Dezember 2005 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 7. Dezember 25 / 82 2 / 82 Gliederung Aufbau und Eigenschaften universelle RAM s RAM-Berechenbarkeit Nichtentscheidbarkeit Reduzierbarkeit

Mehr

Das Studium im Fach Informatik

Das Studium im Fach Informatik [Projekttage Studien- und Berufsorientierung der Jgst. 12] Fachbereich Informatik Fakultät für Mathematik und Informatik FernUniversität Hagen 22. Februar 2007 Was Informatik nicht ist Was ist Informatik?

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Algorithmen und Datenstrukturen Laufzeitabschätzung

Algorithmen und Datenstrukturen Laufzeitabschätzung Algorithmen und Datenstrukturen Laufzeitabschätzung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen,

Mehr

6 3 1 7 5 9 2 4 8 Geben Sie dazu jedes Mal, wenn sie die Zeile 15 passieren, die aktuelle Feldbelegung an. Der Anfang wurde bereits gemacht.

6 3 1 7 5 9 2 4 8 Geben Sie dazu jedes Mal, wenn sie die Zeile 15 passieren, die aktuelle Feldbelegung an. Der Anfang wurde bereits gemacht. Aufgabe 2: ALI von der Hochsprache zur Maschinenebene a) Schreiben Sie ein Pascal- sowie das zugehörige RePascal-PROGRAM Quadratsumme, welches nach Eingabe einer natürlichen Zahl n die Summe der ersten

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Geschichte und Einteilung der Informatik 01101101 01011001 11010011 10011000 00000011 00011100 01111111 11111111 00110100 00101110 11101110 01110010 10011101 00111010 2 Der

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München

Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München Informatik 1 Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München 1 0 Allgemeines Zielgruppen Siehe Modulbeschreibung Studierende anderer (nicht Informatik)

Mehr

Der λ-kalkül. Frank Huch. Sommersemester 2015

Der λ-kalkül. Frank Huch. Sommersemester 2015 Der λ-kalkül Frank Huch Sommersemester 2015 In diesem Skript werden die Grundlagen der Funktionalen Programmierung, insbesondere der λ-kalkül eingeführt. Der hier präsentierte Stoff stellt einen teil der

Mehr

GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, diener@math.uni-siegen.de

GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, diener@math.uni-siegen.de GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 6. Juni - 13. Juni 1 / 49 Die Turingmaschine war das erste (bzw. zweite) formale Modell der Berechenbarkeit. Sie wurden bereits 1936 (also lange

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

1 Syntax von Programmiersprachen

1 Syntax von Programmiersprachen 1 Syntax von Programmiersprachen Syntax ( Lehre vom Satzbau ): formale Beschreibung des Aufbaus der Worte und Sätze, die zu einer Sprache gehören; im Falle einer Programmier-Sprache Festlegung, wie Programme

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Schulinternes Curriculum für Informatik (Q2) Stand April 2015

Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren

Mehr

Vom Abitur zur Informatik (computer science)

Vom Abitur zur Informatik (computer science) Vom Abitur zur Informatik (computer science) André Frimberger, andre@frimberger.de 16.06.2009 André Frimberger Vom Abitur zur Informatik (computer science) 1 1 Einleitung Was ist Informatik? 2 Das Informatikstudium:

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren?

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? 32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? Autor Leif Kobbelt, RWTH Aachen Dominik Sibbing, RWTH Aachen Hast Du schon

Mehr

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant?

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant? Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Einleitung 1 2 der nebenläufigen Programmierung WS 2011/12 Stand der Folien: 18. Oktober 2011 1 TIDS

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Rekursionsanfang, Rekursionsschritt oder äquivalente Antworten. (z.b.: Abbruchbedingung (= Basisfall), eigentliche Rekursion (= Selbstaufruf))

Rekursionsanfang, Rekursionsschritt oder äquivalente Antworten. (z.b.: Abbruchbedingung (= Basisfall), eigentliche Rekursion (= Selbstaufruf)) Formale Methoden der Informatik WS / Lehrstuhl für Datenbanken und Künstliche Intelligenz Prof.Dr.Dr.F.J.Radermacher H. Ünver T. Rehfeld J. Dollinger 8. Aufgabenblatt Besprechung in den Tutorien vom..

Mehr